Classification of Omicron BA.1, BA.1.1 and BA.2 sublineages by TaqMan assay consistent with whole genome analysis data

3

4 Yosuke Hirotsu^{a*}, Makoto Maejima^b, Masahiro Shibusawa^b, Yume Natori^b, Yuki Nagakubo^{b,c},

- 5 Kazuhiro Hosaka^b, Hitomi Sueki^b, Hitoshi Mochizuki^{a,d,e}, Toshiharu Tsutsui^f, Yumiko Kakizaki^f,
- 6 Yoshihiro Miyashita^f, and Masao Omata^{e,h}
- 7
- ⁸ ^aGenome Analysis Center, Yamanashi Central Hospital, 1-1-1 Fujimi, Kofu, Yamanashi,
- 9 Japan^bDivision of Microbiology in Clinical Laboratory, Yamanashi Central Hospital, 1-1-1
- 10 Fujimi, Kofu, Yamanashi, Japan
- ¹¹ ^cDivision of Genetics and Clinical Laboratory, Yamanashi Central Hospital, 1-1-1 Fujimi, Kofu,
- 12 Yamanashi, Japan

13 ^dCentral Clinical Laboratory, Yamanashi Central Hospital, 1-1-1 Fujimi, Kofu, Yamanashi,

- 14 Japan
- ¹⁵ ^eDepartment of Gastroenterology, Yamanashi Central Hospital, 1-1-1 Fujimi, Kofu,
- 16 Yamanashi, Japan
- ¹⁷ ^fLung Cancer and Respiratory Disease Center, Yamanashi Central Hospital, 1-1-1 Fujimi,
- 18 Kofu, Yamanashi, Japan
- ¹⁹ ^hThe University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
- 20
- 21 *Corresponding author: Yosuke Hirotsu, Genome Analysis Center, Yamanashi Central
- 22 Hospital, 1-1-1 Fujimi, Kofu, Yamanashi, Japan
- 23 Post code: 400-8506
- 24 Email: hirotsu-bdyu@ych.pref.yamanashi.jp
- 25 Tel: +81-55-253-7111, Fax: +81-55-253-8011
- 26 ORCID iD: 0000-0002-8002-834X
- 27
- 28 Running title: TaqMan assay discriminates Omicron sublineages
- 29

30 Abstract

31 **Objective**

Recently, the Omicron strain of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread and replaced the previously dominant Delta strain. Several Omicron sublineages (BA.1, BA.1.1 and BA.2) have been identified, with in vitro and preclinical reports showing that the pathogenicity and therapeutic efficacy differs between BA.1 and BA.2. We sought to develop a TaqMan assay to identify these subvariants.

37 Methods

A TaqMan assay was constructed for rapid identification and genotyping of Omicron sublineages. We analyzed three characteristic mutations of the spike gene, $\Delta 69-70$, G339D and Q493R, by TaqMan assay. The accuracy of the TaqMan assay was examined by comparing its results with the results of whole genome sequencing (WGS) analysis.

42 Results

43 A total of 169 SARS-CoV-2 positive samples were analyzed by WGS and TaqMan 44 assay. The 127 samples determined as BA.1/BA.1.1 by WGS were all positive for Δ 69–70, 45 G339D and Q493R by TaqMan assay. Forty-two samples determined as BA.2 by WGS were 46 negative for Δ 69–70 but positive for G339D and Q493R by TaqMan. The concordance rate 47 between WGS and the TaqMan assay was 100% (169/169).

48 Conclusion

49 TaqMan assays targeting characteristic mutations are useful for identification and
 50 discrimination of Omicron sublineages.

51

52 Keywords: SARS-CoV-2, VOC, Omicron, BA.1, BA.2

54 Introduction

55 The global pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-56 2) has become a threat to human life. However, since its outbreak, scientific knowledge has 57 accumulated on the transmission and pathogenicity of this virus. Additionally, the 58 development of vaccines and antiviral treatments has contributed to preventing infection and 59 reduced the risk of severe illness and mortality.

50 SARS-CoV-2 is an RNA virus with a genome size of approximately 30 kb [1]. SARS-51 CoV-2 mutates at a rate of approximately two mutations per month [2], and is prone to 52 mutations most frequently occurring in the *spike* and *orf1ab* genes [3]. These mutations can 53 affect transmissibility of the virus and efficacy of antiviral drugs and vaccines. To control the 54 emergence of new strains, it is important to continuously monitor viral evolution through 55 genomic epidemiological analysis [4].

Recently, a new strain designated B.1.1.529 was detected and isolated in Gauteng Province, South Africa [5]. The World Health Organization designated the B.1.1.529 lineage as a variant of concern (VOC) on November 26, 2021 [5], naming it Omicron in line with the naming convention adopted for previous VOCs using the Greek alphabet, and it has since spread to a number of countries to become a globally dominant strain [6]. Omicron contains more than 30 nonsynonymous mutations in the spike protein, therefore Omicron viruses may reduce the efficacy of antibody therapy and evade vaccine-induced immunity.

73 Omicron viruses are classified into several sublineages including BA.1, BA.1.1, 74 BA.2 and BA.3, which have been observed worldwide. In the early period following Omicron 75 emergence, BA.1 was the dominant sublineage; however in Denmark, the United Kingdom, 76 India, the Philippines, and South Africa, BA.2 became dominant [7-9], with BA.2 reported to 77 be more transmissible than BA.1 [10]. Convalescent sera and sera from mRNA vaccine 78 recipients showed decreased neutralizing activity against BA.1, BA,1.1. and BA.2 [11-13]. In 79 infection experiments using hamsters, BA.2 caused more inflammation in the lungs and was 80 more pathogenic than BA.1 [8]. Antibody cocktail therapy (casirivimab-imdevimab), which 81 had lost neutralizing activity in BA.1 and BA.1.1, showed partially neutralizing activity in BA.2 82 [14]. In addition, S309 (sotrovimab) demonstrated less neutralization activity against BA.2 83 compared with BA.1 and BA.1.1 [14, 15]. The RNA-dependent RNA polymerase inhibitors, 84 remdesivir and molnupiravir, and the protease inhibitor nirmatrelvir remained effective in BA.2 85 as well as BA.1 [14]. Therefore, genotyping of Omicron sublineages is important for determining infection control and treatment strategies. 86

In this study, we present a TaqMan assay to discriminate between BA.1/BA.1.1 and
BA.2. This method is feasible for any laboratory equipped to perform quantitative real-time
PCR.

90

91 Methods

92 SARS-CoV-2 diagnostic testing

93 Nasopharyngeal swab samples were collected using cotton swabs and placed in 94 viral transport media (Copan Diagnostics, Murrieta, CA). Multiple molecular diagnostic testing 95 platforms, including SARS-CoV-2 quantitative reverse transcriptase PCR in accordance with 96 the protocol developed by the National Institute of Infectious Diseases in Japan [16]. 97 FilmArray Respiratory Panel 2.1 with the FilmArray Torch system (bioMérieux, Marcy-l'Etoile, 98 France) [17], Xpert Xpress SARS-CoV-2 test using Cepheid GeneXpert (Cepheid, Sunnyvale, 99 CA) [18] and Lumipulse antigen test with the LUMIPULSE G600II system (Fujirebio, Inc., 100 Tokyo, Japan) were used for this study [19, 20].

101

102 Whole genome sequencing (WGS)

103 We subjected 171 samples collected from coronavirus disease 2019 (COVID-19) 104 patients to whole genome analysis (Table S1). WGS analysis was performed as previously 105 described [21-23]. In brief, SARS-CoV-2 genomic RNA was reverse transcribed into cDNA 106 and amplified by using the Ion AmpliSeg SARS-CoV-2 Insight Research Assay (Thermo 107 Fisher Scientific, Waltham MA) on the Ion Torrent Genexus System. Sequencing reads and 108 quality were processed using Genexus software with SARS-CoV-2 plugins. The 109 sequencing reads were mapped and aligned using the torrent mapping alignment program. 110 Assembly was performed with the Iterative Refinement Meta-Assembler [24].

111To determine the viral clade and lineage classifications, the consensus FASTA files112were downloaded and processed through Nextstrain [25], and Phylogenetic Assignment of113Named Global Outbreak Lineages (PANGOLIN) [26]. The FASTA files were deposited in the114Global Initiative on Sharing Avian Influenza Data (GISAID) EpiCoV database [2]. All GISAID115Accession IDs are noted in Table S1.

116

117 TaqMan assay

We used the pre-designed TaqMan SARS-CoV-2 Mutation Panel for detecting SARS-CoV-2 spike Δ 69–70, G339D and Q493R (Thermo Fisher Scientific). The TaqMan probe detected both wild-type and variant sequences of SARS-CoV-2, with the TaqMan minor groove binder probe for the wild-type allele labelled with VIC dye and the variant allele with FAM dye fluorescence. TaqPath 1-Step RT-qPCR Master Mix CG was used as master mix and the qPCR was performed on the Step-One Plus Real Time PCR System (Thermo Fisher Scientific).

126 Ethics approval

127 The Institutional Review Board of the Clinical Research and Genome Research 128 Committee at Yamanashi Central Hospital approved this study and the use of an opt-out 129 consent method (Approval No. C2019-30). The requirement for written informed consent 130 was waived owing to the observational nature of this study and the urgent need to collect 131 COVID-19 data.

132

133 **Results**

134 Multiple mutations are present in Omicron

Omicron contains numerous mutations compared with other VOCs [27-29]. Thirtythree mutations have been identified in the spike protein in BA.1, 34 in BA.1.1 and 29 in BA.2. BA.1 and BA.1.1 share 33 mutations, but BA.1.1 has an additional mutation in R346K compared with BA.1 (Figure 1). Compared with BA.1 and BA.1.1, the spike protein mutations in BA.2 are very different. Unique mutations in BA.1/BA.1.1 are A67V, Δ 69–70, T95I, Δ 143– 145, N211I, Δ 212, S371L, G466S, G496S, T547K, N856K and L981F. Conversely, unique mutations in BA.2 are T19I, L24S, Δ 25–27, V213G, S371F, T376A, D405N and R408S.

- 142
- 143

Construction of a TaqMan assay to distinguish Omicron sublineages

144 To distinguish BA.1/BA.1.1 from BA.2, we constructed a TagMan assay system to 145 analyze the spike protein mutations that characterize the Omicron sublineages. Thus, we 146 used pre-designed TagMan probes to distinguish $\Delta 69-70$, G339D and Q493R. Spike G339D 147 and Q493R mutations are detected in BA.1/BA.1.1 and BA.2 but not in other VOCs (Figure 148 S1). The spike $\Delta 69-70$ mutation was also used to distinguish sublineages because it is 149 detected in BA.1/BA.1.1 but not in BA.2 (Figure 1). When analyzed using nucleic acids 150 extracted from nasopharyngeal swabs, G339D and Q493R mutations were specifically 151 detected in Omicron-infected patients (Figure 2A and 2B). In addition, the $\Delta 69-70$ mutation 152 was distinct between BA1/BA.1.1 and BA.2 (Figure 2C). These results showed that TagMan 153 assays could detect Omicron strains and distinguish between Omicron sublineages.

154

155 **Comparison of TaqMan assay and WGS data**

To examine whether the TaqMan assay could accurately distinguish Omicron sublineages, we compared WGS data and TaqMan assay results using 169 SARS-CoV-2 positive samples (Table 1). WGS analysis determined 127 samples to be BA.1/BA.1.1 and 42 samples to be BA.2 (Table 1). In these samples, TaqMan assay analysis showed that all BA.1/BA.1.1 samples were positive for Δ 69–70, G339D and Q493R, while BA.2 samples were negative for Δ 69–70 and positive for G339D and Q493R (Table 1). The TaqMan assay

162 data were consistent with WGS data, demonstrating 100% (169/169) agreement. Therefore,

- 163 the TaqMan assay represents a useful technique for distinguishing Omicron sublineages.
- 164

165 *Mutations in TaqMan assay target sites*

166 During WGS analysis of serially collected samples, SARS-CoV-2 viruses with the 167 spike G339N mutation (position 22577–22578: c.1015 1016delGGGinsAA) were detected 168 in two individuals (Accession ID: EPI ISL 11018144 and EPI ISL 11018145) (Figure 3A). 169 Analysis with PANGOLIN classified these samples as BA.2. The mutation that occurred at 170 codon 399 overlapped with the target site of the TaqMan assay. We therefore examined 171 whether the TagMan assay targeting G339D could efficiently amplify the target site in the 172 sample with G399N. In both BA.2 G339D and BA.2 G339N samples, sufficient amplification 173 signals were obtained for $\Delta 69-70$ and Q493R. However, compared with BA.2 G339D, BA.2 174 G339N showed a lower amplification efficiency of the variant allele-specific signal (blue line 175 in Figure 3B). In conclusion, the TaqMan assay used in this study specifically detected 176 characteristic mutations related to Omicron sublineages in clinical samples.

177

178 **Discussion**

179 In this study, we present data regarding the use of a TaqMan assay to distinguish 180 between Omicron strains and their sublineages. WGS analysis is the most standard method 181 to determine these sublineages. However, WGS analysis of all specimens is restricted by 182 limited resources and is difficult to apply under conditions of rapid spread of infection. In this 183 regard, we have established a TaqMan assay that more conveniently and rapidly identifies 184 Omicron strains and distinguishes the sublineages. BA.1/BA.1.1 and BA.2 are reported to 185 differ in transmissibility and treatment response, and so the World Health Organization 186 recommends monitoring BA.2 as a separate sublineage [30]. Therefore, assay systems that 187 distinguish these subtypes will be important in determining preventive measures, infection 188 control and treatment strategies.

189 Each viral lineage has its own characteristic mutations. By targeting these mutations, 190 it is possible to distinguish mutant strains and sublineages. Based on the accumulating WGS 191 data during surveillance, we consider the TaqMan assay to be a suitable approach to detect 192 characteristic mutations that occur frequently among viral lineages. According to the GISAID 193 database, as of March 11, 2022, the frequency of mutations targeted in this study detected 194 in each sublineage were as follows. $\Delta 69$ -70 in 96.1%, 95.7% and 0.1% of BA.1, BA.1.1 and 195 BA.2, respectively; G339D in 87.9%, 99.3% and 96.3% of BA.1, BA.1.1 and BA.2, 196 respectively; Q493R in 88.3%, 91.2% and 92% of BA.1, BA.1.1 and BA.2, respectively [29]. 197 It is also possible to target other mutations as reported by other groups [31, 32]. Analysis of

multiple characteristic mutations is expected to improve the accuracy of classification of viruslineage.

200 WGS analysis generally requires labor-intensive procedures such as reverse 201 transcription reactions from RNA to cDNA, library preparation, purification and library 202 quantification. In addition, facilities and laboratories with limited analytical equipment and 203 resources cannot perform WGS analysis. Alternatively, TaqMan assays are useful to 204 distinguish VOCs and their sublineages guickly and easily in any laboratory with gPCR 205 facilities. Recently, а Delta-Omicron hybrid strain (AY.4/BA.1 recombinant, 206 EPI ISL 10819657) was reported in France and has been detected in several European 207 countries [2, 33]. The TagMan method could be adapted to identify any such newly emerging 208 mutant strains.

There are, however, several limitations. TaqMan assays do not always accurately determine the sublineages in some situations. WGS analysis may be necessary when the characteristic mutations of newly-emerging strains or sublineages remain under investigation. It should also be noted that if mutations occur at the TaqMan probe or primer locations, the PCR amplification efficiency will be reduced and the signal will be attenuated, which may make interpretation difficult (Figure 3B).

Our study showed that the TaqMan assay can be used to specifically detect Omicron viruses and classify subvariants. By applying this method to SARS-CoV-2-positive specimens, it is possible to analyze multiple specimens rapidly. Although accumulated data are still needed [8, 11, 14, 34], BA.1 and BA.2 show different susceptibilities to antibody and antiviral therapy. Rapid classification of Omicron sublineages may be clinically critical in providing appropriate treatment to patients with COVID-19.

221

Data availability

The sequences of SARS-CoV-2 genomes are available on GISAID (<u>www.gisaid.org</u>). We have provided the accession numbers in the Supplementary Information. Source data are provided with this paper.

226

227 Acknowledgements

We thank all medical and ancillary hospital staff for their support. We thank Gillian Campbell, PhD, from Edanz (https://www.jp.edanz.com/ac) for editing a draft of this manuscript.

The authors have no conflicts of interest.

231

232 Conflict of interest

233

234

235 Funding source

This study was supported by a Grant-in-Aid for the Genome Research Project from Yamanashi Prefecture (to M.O. and Y.H.), the Japan Society for the Promotion of Science (JSPS) KAKENHI Early-Career Scientists JP18K16292 (to Y.H.), a Grant-in-Aid for Scientific Research (B) 20H03668 (to Y.H.), a Research Grant for Young Scholars (to Y.H.), the YASUDA Medical Foundation (to Y.H.), the Uehara Memorial Foundation (to Y.H.) and Medical Research Grants from the Takeda Science Foundation (to Y.H.).

242

243 **Reference**

- Zhou P, Yang X-L, Wang X-G, Hu B, Zhang L, Zhang W, Si H-R, Zhu Y, Li B, Huang C-L
 et al: A pneumonia outbreak associated with a new coronavirus of probable bat
 origin. *Nature* 2020, **579**(7798):270-273.
- 247 2. Shu Y, McCauley J: GISAID: Global initiative on sharing all influenza data from
 248 vision to reality. *Euro Surveill* 2017, 22(13).
- van Dorp L, Acman M, Richard D, Shaw LP, Ford CE, Ormond L, Owen CJ, Pang J, Tan
 CCS, Boshier FAT *et al*: Emergence of genomic diversity and recurrent mutations in
 SARS-CoV-2. Infection, Genetics and Evolution 2020, 83:104351.
- Oude Munnink BB, Worp N, Nieuwenhuijse DF, Sikkema RS, Haagmans B, Fouchier
 RAM, Koopmans M: The next phase of SARS-CoV-2 surveillance: real-time
 molecular epidemiology. *Nature Medicine* 2021, 27(9):1518-1524.
- 255 5. World Health Organization: Classification of Omicron (B.1.1.529): SARS-CoV-2
 256 Variant of Concern. 2021.
- 257 6. Desingu PA, Nagarajan K: Omicron BA.2 lineage spreads in clusters and is
 258 concentrated in Denmark. *Journal of Medical Virology* 2022.
- Fonager J, Bennedbæk M, Bager P, Wohlfahrt J, Ellegaard KM, Ingham AC, Edslev SM,
 Stegger M, Sieber RN, Lassauniere R *et al*: Molecular epidemiology of the SARS-CoV 2 variant Omicron BA.2 sub-lineage in Denmark, 29 November 2021 to 2 January
 2022. Eurosurveillance 2022, 27(10):2200181.
- Yamasoba D, Kimura I, Nasser H, Morioka Y, Nao N, Ito J, Uriu K, Tsuda M, Zahradnik J,
 Shirakawa K *et al*: Virological characteristics of SARS-CoV-2 BA.2 variant. *bioRxiv* 2022:2022.2002.2014.480335.
- 266 9. Emma B. Hodcroft: CoVariants: SARS-CoV-2 Mutations and Variants of Interest.
 267 2021.
- 26810.Ito K, Piantham C, Nishiura H: Estimating relative generation times and relative269reproduction numbers of Omicron BA.1 and BA.2 with respect to Delta in Denmark.

270		medRxiv 2022:2022.2003.2002.22271767.
271	11.	Iketani S, Liu L, Guo Y, Liu L, Chan JFW, Huang Y, Wang M, Luo Y, Yu J, Chu H <i>et al</i> :
272		Antibody evasion properties of SARS-CoV-2 Omicron sublineages. Nature 2022.
273	12.	Mykytyn AZ, Rissmann M, Kok A, Rosu ME, Schipper D, Breugem TI, van den Doel PB,
274		Chandler F, Bestebroer T, de Wit M et al: Omicron BA.1 and BA.2 are antigenically
275		distinct SARS-CoV-2 variants. bioRxiv 2022:2022.2002.2023.481644.
276	13.	Yu J, Collier A-rY, Rowe M, Mardas F, Ventura JD, Wan H, Miller J, Powers O, Chung B,
277		Siamatu M et al: Neutralization of the SARS-CoV-2 Omicron BA.1 and BA.2 Variants.
278		New England Journal of Medicine 2022.
279	14.	Takashita E, Kinoshita N, Yamayoshi S, Sakai-Tagawa Y, Fujisaki S, Ito M, Iwatsuki-
280		Horimoto K, Halfmann P, Watanabe S, Maeda K et al: Efficacy of Antiviral Agents
281		against the SARS-CoV-2 Omicron Subvariant BA.2. New England Journal of Medicine
282		2022.
283	15.	Takashita E, Kinoshita N, Yamayoshi S, Sakai-Tagawa Y, Fujisaki S, Ito M, Iwatsuki-
284		Horimoto K, Chiba S, Halfmann P, Nagai H et al: Efficacy of Antibodies and Antiviral
285		Drugs against Covid-19 Omicron Variant. New England Journal of Medicine 2022.
286	16.	Shirato K, Nao N, Katano H, Takayama I, Saito S, Kato F, Katoh H, Sakata M, Nakatsu Y,
287		Mori Y et al: Development of Genetic Diagnostic Methods for Novel Coronavirus
288		2019 (nCoV-2019) in Japan . Jpn J Infect Dis 2020, 73 (4):304-307
289	17.	Hirotsu Y, Maejima M, Shibusawa M, Amemiya K, Nagakubo Y, Hosaka K, Sueki H,
290		Mochizuki H, Tsutsui T, Kakizaki Y et al: Analysis of Covid-19 and non-Covid-19
291		viruses, including influenza viruses, to determine the influence of intensive
292		preventive measures in Japan. J Clin Virol 2020, 129:104543.
293	18.	Hirotsu Y, Maejima M, Shibusawa M, Natori Y, Nagakubo Y, Hosaka K, Sueki H, Amemiya
294		K, Hayakawa M, Mochizuki H et al: Direct comparison of Xpert Xpress, FilmArray
295		Respiratory Panel, Lumipulse antigen test, and RT-qPCR in 165 nasopharyngeal
296		swabs. BMC Infectious Diseases 2022, 22(1):221.
297	19.	Hirotsu Y, Maejima M, Shibusawa M, Amemiya K, Nagakubo Y, Hosaka K, Sueki H,
298		Hayakawa M, Mochizuki H, Tsutsui T et al: Prospective Study of 1,308
299		Nasopharyngeal Swabs from 1,033 Patients using the LUMIPULSE SARS-CoV-2
300		Antigen Test: Comparison with RT-qPCR. International Journal of Infectious Diseases
301		2021.
302	20.	Hirotsu Y, Maejima M, Shibusawa M, Nagakubo Y, Hosaka K, Amemiya K, Sueki H,
303		Hayakawa M, Mochizuki H, Tsutsui T et al: Comparison of Automated SARS-CoV-2
304		Antigen Test for COVID-19 Infection with Quantitative RT-PCR using 313
305		Nasopharyngeal Swabs Including from 7 Serially Followed Patients. International

306		Journal of Infectious Diseases 2020.					
307	21.	Hirotsu Y, Omata M: Detection of R.1 lineage severe acute respiratory syndrome					
308		coronavirus 2 (SARS-CoV-2) with spike protein W152L/E484K/G769V mutations in					
309		Japan. PLOS Pathogens 2021, 17 (6):e1009619.					
310	22.	Hirotsu Y, Omata M: SARS-CoV-2 B.1.1.7 lineage rapidly spreads and replaces R.1					
311		lineage in Japan: Serial and stationary observation in a community. Infection,					
312		Genetics and Evolution 2021, 95:105088.					
313	23.	Hirotsu Y, Omata M: Discovery of a SARS-CoV-2 variant from the P.1 lineage					
314		harboring K417T/E484K/N501Y mutations in Kofu, Japan. Journal of Infection 2021,					
315		82 (6):276-316.					
316	24.	Shepard SS, Meno S, Bahl J, Wilson MM, Barnes J, Neuhaus E: Viral deep sequencing					
317		needs an adaptive approach: IRMA, the iterative refinement meta-assembler. BMC					
318		Genomics 2016, 17 :708.					
319	25.	Hadfield J, Megill C, Bell SM, Huddleston J, Potter B, Callender C, Sagulenko P, Bedford					
320		T, Neher RA: Nextstrain: real-time tracking of pathogen evolution. Bioinformatics					
321		2018, 34 (23):4121-4123.					
322	26.	Rambaut A, Holmes EC, O'Toole A, Hill V, McCrone JT, Ruis C, du Plessis L, Pybus OG:					
323		A dynamic nomenclature proposal for SARS-CoV-2 lineages to assist genomic					
324		epidemiology. Nat Microbiol 2020, 5(11):1403-1407.					
325	27.	Wang L, Cheng G: Sequence analysis of the emerging SARS-CoV-2 variant Omicron					
326		in South Africa. Journal of Medical Virology 2022, 94(4):1728-1733.					
327	28.	Saxena SK, Kumar S, Ansari S, Paweska JT, Maurya VK, Tripathi AK, Abdel-Moneim AS:					
328		Characterization of the novel SARS-CoV-2 Omicron (B.1.1.529) variant of concern					
329		and its global perspective. Journal of Medical Virology 2022, 94(4):1738-1744.					
330	29.	Julia LM, Ginger T, Alaa AL, Manar A, Marco C, Emily H, Jerry Z, Mark Z, Nate M, Kristian					
331		GA et al: outbreak.info.					
332	30.	World Health Organization: Statement on Omicron sublineage BA.2. 2022.					
333	31.	Erster O, Kabat A, Asraf H, Levy V, Mannasse B, Azar R, Nemet I, Kliker L, Fleishon S,					
334		Mandelboim M et al: Novel RT-qPCR assays enable rapid detection and					
335		differentiation between SARS-CoV-2 Omicron (BA.1) and BA.2 variants. medRxiv					
336		2022:2022.2002.2022.22271222.					
337	32.	Lee WL, Gu X, Armas F, Wu F, Chandra F, Chen H, Xiao A, Leifels M, Chua FJD, Kwok					
338		GW et al: Quantitative detection of SARS-CoV-2 Omicron BA.1 and BA.2 variants in					
339		wastewater through allele-specific RT-qPCR. medRxiv					
340		2022:2021.2012.2021.21268077.					
341	33.	Colson P, Fournier P-E, Delerce J, Million M, Bedotto M, Houhamdi L, Yahi N, Bayette J,					

342		Levasseur A, Fantini J et al: Culture and identification of a "Deltamicron" SARS-CoV-									
343		2	in	а	three	cases	cluster	in	southern	France.	medRxiv
344		2022:2022.2003.2003.22271812.									
345	34.	Zho	ou H, ⁻	Tada ⁻	r, Dcosta	BM, Landa	u NR: Neu t	traliza	tion of SARS	-CoV-2 Om	icron BA.2
346		by [·]	Thera	apeut	ic Monoc	lonal Anti	bodies. bio	Rxiv 2	2022:2022.20	02.2015.480	166.
347											
348											

•						
WGS		TaqMan assay				
Lineage	n	Spike ∆69-70	Spike Q493R	Spike G339D		
BA.1 / BA.1.1	127	127	127	127		
BA.2	42	0	42	42		

349 Table 1. Comparison of results between WGS and TaqMan assay

350 WGS, whole genome sequencing

351 352

353 Figure 1. Mutations in Omicron sublineages

Mutations are shown in Omicron sublineages BA.1, BA.1.1 and BA.2. The color gradient indicates the frequency of detected mutations. The pink circles indicate the presence of mutations. The frequency of mutation data was referenced from the website outbreak.info [29].

- 359
- 360

Figure 2. Genotyping of Omicron sublineages by TaqMan assay

362 (A-C) Samples were analyzed with a TaqMan assay that detects mutations in 363 Omicron spike proteins. Spike protein mutations G339D (A), Q493R (B) and Δ 69–70 (C) 364 were targeted. G399D and Q493R indicated Omicron (including BA.1/BA.1.1 and BA.2), 365 while Δ 69–70 was used to distinguish BA.1/BA.1.1 from BA.2. Blue circles indicate variant 366 alleles (FAM dye) and red circles indicate wild-type alleles (VIC dye).

368 369

Figure 3. Analysis of samples with mutations in the TaqMan probe site

Two samples were classified by WGS analysis as BA.2 containing a G339N mutation. (A) The mutation site occurred at codon 339, from wild type (GGT, glycine [G]) to the variant form (GAT, aspartate [D] or AAT, aspartate [N]). (B) Most BA.2 lineage viruses carry the G339D mutation, but two samples showed a G339N mutation by WGS. Compared with BA.2 G339D, the fluorescent signal (blue line) was lower in the BA.2 G339N samples.

377

378

379 Figure S1. Mutation frequency in VOCs and Omicron sublineages

380 The percentages of spike mutations Δ 69–70, G339D and Q493R in each VOC analyzed in

381 this study are shown. The pink circles indicate the presence of mutations. The frequency of

382 mutation data was referenced from the website outbreak.info [29].