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Abstract

To define appropriate planning scenarios for future pandemics of respiratory pathogens,
it is important to understand the initial transmission dynamics of COVID-19 during
2020. Here, we fit an age-stratified compartmental model with a flexible underlying
transmission term to daily COVID-19 death data from states in the contiguous U.S. and
to national and sub-national data from around the world. The daily death data of the
first months of the COVID-19 pandemic was categorized into one of four main types:
“spring single-peak profile”, “summer single-peak profile”, “spring/summer two-peak
profile” and “broad with shoulder profile”. We estimated a reproduction number R as a
function of calendar time tc and as a function of time since the first death reported in
that population (local pandemic time, tp). Contrary to the multiple categories and
range of magnitudes in death incidence profiles, the R(tp) profiles were much more
homogeneous. We find that in both the contiguous U.S. and globally, the initial value of
both R(tc) and R(tp) was substantial: at or above two. However, during the early
months, pandemic time R(tp) decreased exponentially to a value that hovered around
one. This decrease was accompanied by a reduction in the variance of R(tp). For
calendar time R(tc), the decrease in magnitude was slower and non-exponential, with a
smaller reduction in variance. Intriguingly, similar trends of exponential decrease and
reduced variance were not observed in raw death data. Our findings suggest that the
combination of specific government responses and spontaneous changes in behaviour
ensured that transmissibility dropped, rather than remaining constant, during the initial
phases of a pandemic. Future pandemic planning scenarios should be based on models
that assume similar decreases in transmissibility, which lead to longer epidemics with
lower peaks when compared with models based on constant transmissibility.

Author summary

In planning for a future novel respiratory pandemic, or the next variant of SARS-Cov-2,
it is important to characterize and understand the observed epidemic patterns during
the first months of the COVID-19 outbreak. Here, we describe COVID-19 epidemic
patterns observed in the U.S. and globally in terms of patterns of the basic reproduction
number, R(t), using an age-stratified compartmental model. We find that daily death
data of the first months of the COVID-19 pandemic can be classified into one of four
types: “spring single-peak profile”, “summer single-peak profile”, “spring/summer
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two-peak profile” and “broad with shoulder profile”. Using the concept of local
pandemic time, tp, we show a consistent pattern on four continents of an initial large
magnitude and variance in reproductive number R(tp) that decreases monotonically and
hovers around one for many days, regardless of specific intervention measures imposed
by local authorities and without an accompanying decrease in daily death prevalence.
We attribute this to significant behavior changes in populations in response to the
perceived risk of COVID-19.

Introduction 1

The roll out of effective vaccines [1, 2] and the emergence of more transmissible [3–5] 2

and antigenically distinct [6] lineages of SARS-Cov-2 virus [7] marked the end of the 3

global first wave of the COVID-19 pandemic. Over the first year, the COVID-19 4

pandemic has negatively impacted the health and well being of almost every population 5

around the world. In the absence of an effective vaccine, most countries implemented 6

non-pharmaceutical interventions (NPIs), including travel restrictions, school and work 7

closures, social distancing, contact tracing, quarantining and mask requirements [8–10]. 8

However, the degree of compliance of the population with these measures, and their 9

effectiveness, varied greatly from one setting to another and, even now, is not fully 10

understood [11–15]. 11

The transmission of the SARS-Cov-2 virus is often quantified using the time-varying 12

reproduction number, R(t), which represents the mean number of secondary cases that 13

a single index case will infect. Many studies have focused on estimating the impact of 14

different interventions on R(t) under the implicit assumption that interventions are 15

similar between different populations [16–27]. However, the analytical approach in these 16

studies conditions on the assumption that the interventions as measured are the main 17

drivers of changes in R(t), with transmissibility assumed to be constant otherwise. 18

In this study, we develop an age-stratified compartmental model [26] with a 19

smoothly varying reproduction number and use it to study the epidemic, from January 20

to October of 2020, in 49 jurisdictions in the contiguous U.S. and 89 locations globally. 21

Our model allows for multiple values of R(t) and is an extension of our previous work 22

which used a smoothly varying two-value functional form [28–30]. We consider the idea 23

that, whereas epidemic patterns vary from one location to another, trends in R(t) are 24

consistent if measured relative to “pandemic time”, defined as the time elapsed since 25

the first reported death in a location. Trends in pandemic time R(tp) are compared to 26

those of calendar time R(tc). Unlike earlier studies, our model fits the inferred daily 27

death and we use a Markov Chain Monte Carlo (MCMC) procedure [31] to fit R(t) to 28

an increasing number of pandemic days. For each fitting time-window, we analyze the 29

value of R(t) for the prior two weeks and discuss the results for the U.S. and globally 30

without attempting to correlate any changes in R(tp) with specific NPIs. 31

Methods 32

Data Selection 33

Many data streams can be used as a measure for the spread of the COVID-19 34

pandemic [11–13]; however, daily confirmed number of cases, confirmed 35

hospitalizations [1] and cumulative deaths are the most commonly used, and, in 36

particular, these datasets as reported by the Johns Hopkins University (JHU) team [32]. 37

Because of likely biases in the confirmed number of cases (e.g., the large change in test 38

availability over time and the transition to rapid home testing) and the limited 39

availability of hospitalization data, we use the reported confirmed deaths as the most 40
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accurate and least biased measure of the pandemic. We note that the death data are 41

also imperfect and may underestimate the true toll of the pandemic (Viglione et al. [33] 42

and Centers for Disease Control and Prevention [34]). We start with the cumulative 43

reported deaths as published by JHU [32] and infer daily deaths for each location. Data 44

for the study were retrieved from the JHU database in November, 2020. Irregularities in 45

reporting may result in negative incidence values for some days and these days are given 46

a weight of zero in our fitting procedure. All other days with non-negative values are 47

given an equal weight of one. 48

The data were split into two groups: US-states and global. The US dataset included 49

all 48 contiguous states and the District of Columbia. Global data locations were chosen 50

from both country level and administrative level-one divisions 51

(state/province/territory/etc). Sub-country locations include those that appeared in the 52

JHU database on April 31, 2020 (Canada, Australia), but exclude European island 53

territories. Locations in the United States and China were also excluded from the global 54

dataset. After these exclusions, the final list of locations in the global dataset was 55

chosen as the top 110 by cumulative deaths. 56

Country level population totals and age distributions were taken from the United 57

Nations World Population Prospects 2019 [35]. Male and Female populations are 58

combined and five-year age bins are aggregated to the following 10-year bins: 0-9, 10-19, 59

. . . , 70-79, 80+. For the United States, state-level populations and age distributions 60

were taken from census data [36,37], and converted to the same combined-sex and 61

decadal ages format. 62

Model and Fits 63

We use an age-stratified SE[I]4RX compartmental model (where X refers to death and 64

four levels of severity for the infectious compartment are included: asymptomatic, flu 65

like, mild and severe) to fit the inferred daily reported death for each location 66

separately. Given the relatively low level of mobility between states/countries during 67

the first nine months of the pandemic, this is a reasonable approximation. The 68

age-specific parameters of the model are taken from [38], and the age specific contact 69

matrix is directly derived from the work of Walker et al. [39] using the“squire” R 70

package available on github: https://github.com/mrc-ide/squire. 71

In previous studies on influenza and influenza-like-illness [28–30] we used a smoothly 72

varying two-value functional form to describe R(t). Here we extend this model to an 73

arbitrary number of values: 74

R(t) =
1

2

[
a0 + aN +

N∑
n=1

(
(an − an−1) tanh

(
t− tn−1

L

))]
(1)

This produces a smooth curve where at roughly time tn−1, the value of R(t) 75

transitions to an with an approximate transition time of a ≈ 2L days. 76

For each location, we determine the joint posterior distribution for the model 77

parameters by the fitting the inferred daily reported death using an adaptive step size 78

MCMC [31] procedure with 106 steps. Only the parameters that govern the time 79

variation of R(t) are optimized (a0, ..., aN and t1, ..., tN−1) and the timescale of 80

variation is set to approximately seven days (using L = 3 in Equation 1). The objective 81

function in the fitting procedure is a Poisson-based Log-Likelihood, and the fitting 82

maximizes the probability that the inferred daily reported death is a Poisson expression 83

of the model daily incidence death. Multiple models of R(t) (with 2,3, 4 and 5 values, 84

i.e. N = 1, ..., 4) are fitted to each location and the AICc [40] score is calculated for 85

each model. We select the best N based on AICc score ( provided the effective chain 86

size of all the parameters is greater than 50). 87
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We use a simulate-and-recover procedure to validate the model. A known synthetic 88

profile for R(t) is used to generate synthetic daily death incidence data. The model is 89

fit to synthetic data and the recovered incidence and R(t profile is compared with the 90

known input (S1 Fig in Supporting Information). The model is able to recover a large 91

variety of synthetic profiles with high accuracy. 92

To investigate how R(t) evolved during the course of the pandemic we introduce the 93

concept of “local pandemic time”, defined as the number of days elapsed since the first 94

reported death in a location. For each location, the fitting procedure is repeated using 95

an increasing number of local pandemic days: we start with 30 days of data since the 96

first reported death and increase it to 45, 60, 75, 90 and 105. We also fit and report the 97

reproduction number as a function of calendar time R(tc). Starting with data only until 98

mid-April 2020 and increasing it in five increments of 15 days. This analysis was first 99

applied to the contiguous U.S. (48 states and the District of Columbia) and then 100

extended to 110 locations outside the U.S. The characteristics of calendar and pandemic 101

times R(t) and the similarities between the U.S. and the world are highlighted in the 102

Results and Discussion sections. 103

Data and Code Availability 104

The dataset used in this study is freely available from JHU [32]. The codes used in this 105

study along with a dataset downloaded on March 25, 2022 and documentation are 106

available from: https://zenodo.org/badge/latestdoi/475441357. 107

Results 108

The U.S. outbreak was first detected in the state of Washington in late February [41]. 109

The next six months of the pandemic can be thought of as a sequence of four state-level 110

archetypal epidemic curves of reported deaths (Fig 1). The first appears as a “spring 111

single-peak profile”. This north-east wave spreads from New York and New Jersey to 112

neighboring states (e.g., Connecticut and Massachusetts), and to the entire north-east 113

corridor (e.g., Rhode Island, New Hampshire, Virginia, the District of Columbia, 114

Maryland, Delaware and Pennsylvania). Overall, during this period, most states in HHS 115

regions 1-3 exhibit the north-east profile with a large peak in daily deaths. We describe 116

the second typical shape we observe as a “summer single-peak profile”. It is observed in 117

a few states that avoided a spring peak but saw their first peak in the summer (e.g. 118

South Carolina, Tennessee, Florida, Texas, Arizona, Arkansas and Idaho). The third 119

typical shape exhibits two peaks, in both the spring and the summer. For example 120

Georgia, Louisiana and Nevada. The fourth typical profile, “broad with shoulder 121

profile”, comes from states that do not exhibit a clear sharp peak (e.g North Carolina, 122

Kentucky, Oregon, Utah, and California) but rather a broad long shoulder-like profile 123

with increases in deaths appearing only in the summer/early fall. Finally, we note that 124

sparsely populated states (such as North and South Dakota), which largely avoided the 125

spring and summer peaks, did not start to show increases in deaths until September. 126

Individual model results appear in Fig 2 for four U.S. jurisdictions and in S4 Fig of 127

Supporting Information for 15 global locations. The four selected U.S. locations 128

represent the different data profiles described above (summer peak, extended shoulder 129

with summer peak, spring peak, and spring and summer peaks). Similarly, the global 130

locations were chosen to be representative of four continents and all data profiles. The 131

different epidemic profiles lead to different patterns in the time-varying transmissibility 132

when viewed in calendar time. For example, the profile for Pennsylvania starts at R ≈ 3 133

before dropping to just below 1 in May. It maintained that value up to July before 134

rising to ≈ 1.27. In contrast, Texas shows an initially high value (> 2.5), then drops 135
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Fig 1. Inferred daily reported deaths (plus one) for the contiguous U.S. From
top to bottom, the 48 states and the District of Columbia are ordered by the Human
and Health Services (HHS) regions and within each region they are ordered by
decreasing latitude. Regions are separated by a dashed grey line. For each location, the
date of first reported death is marked with a black dot. Only the first nine months of
the pandemic are shown. For clarity, the data are plotted on a log scale and normalized
per 106 people.

rapidly to values just above 1, until late June, at which point it increases to slightly 136

more than 1.5 before returning to values hovering just above 1 for the remainder of the 137

interval. The difference in complexity between the two inferred epidemic profiles is 138
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Fig 2. Fitting inferred daily reported deaths. Sample fits to inferred daily
reported deaths (plus one) for four U.S jurisdictions red circles and right y-axis. The
grey traces are 100 samples from the posterior distribution of the fit and the orange
crosses denote the reported per capita cumulative deaths (no y-axis). The median and
95% confidence interval for R(t) is shown in dark and light blue with the left y-axis.
Locations are ordered by decreasing cumulative deaths (not shown).

evident in the version of the model with the most parsimonious number of changepoints 139

(see Methods). The number of changepoints with the lowest AICC for Pennsylvania was 140

three whereas for Texas it was four. For California and Georgia the number of 141

changepoints was also four. Whereas the details of the patterns in the time-varying 142

transmissibility may vary between locations, we do find that for all four U.S. 143

jurisdictions and most of the 15 locations (exhibiting very different dynamics) the initial 144

value of R(t) is high (above 3 in Italy, Iran and Sweden) and it decreases to either below 145

or around 1 (dashed grey line). In all cases the model produces a smooth result for R(t), 146

and with its’ flexible form we are able to fit the variety of profiles described before: 147

early spring only peak (e.g Italy and Sweden), summer only peak (Egypt), spring and 148

summer double peak (Panama and Japan), spring and/or summer and a 149

September/October resurgence (Iran, Russia, Portugal and Armenia), and a broad peak 150

(Bangladesh and Nigeria). The quality of the fits shown in Fig 2 and S4 Fig is 151

representative of the results we obtain for all locations included in this study. 152

The distribution of deaths per capita across states in the continental U.S. was stable 153

for the first half of the study. In contrast, the distribution of R numbers declined 154

substantially during the same period (Fig 3). We refitted overlapping subsets of the 155

daily death data for the contiguous U.S. starting with data up to mid-April 2020 and 156

increasing in five increments of 15 days (Fig 3 panel(a)). We found initial values of 157

R(tc) that were large (mean/median of 2.46/2.33), started to decrease only in May and 158

approached one in June (S1 Table of Supporting Information). We then defined 159

pandemic time tp – as an alternative for calendar time – as the number of days elapsed 160

since the first reported death in a given population and estimated R(tp) the 161

reproduction number as a function of pandemic time (a time shift for each population, 162

Fig 3 panel (b)). Although patterns of R in calendar and pandemic time were similar, it 163

dropped more quickly in pandemic time and had a lower variance (S2 Table of SI). The 164
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Fig 3. Calendar and pandemic time analysis for the U.S. A violin plot
representation of per capita daily deaths for the contiguous U.S. and the distribution of
calendar and pandemic times R values for the contiguous U.S. (top and bottom panels
respectively). (a) Calendar daily death prevalence calculated using a (centralized)
moving average of two weeks using the same dates as in panel (c). (b) Pandemic time
daily death prevalence calculated for each jurisdiction using a (centralized) moving
average of two weeks around the local pandemic date. (c) Calendar time R(tc)
estimated using data from the first reported death in each jurisdiction and up-to the
date indicated in the panel. The full black line denotes an exponential fit to the results
(see also S3 Table of SI). (d) Pandemic time R(tp) estimated by fitting the first: 30, 45,
60, 75, 90, and 105 days after the first reported death in each jurisdiction. The full
black line denotes an exponential fit to the results (see also S4 Table of SI). In panels
(b) and (d), the mean date associated with the local pandemic times is indicated above
each set of results. In all four panels, to increase readability, a jitter is applied to the
displayed data points.

difference between R in pandemic time and calendar time was also apparent when we 165

fitted an exponential decay model to both sets of estimates: the model was a much 166

better explanation for the temporal pattern of R in pandemic time than it was for 167

calendar time (Tables S3 Table and S4 Table of SI). The daily number of deaths per 168

capita remained far more stable when viewed in both calendar and pandemic time 169

(Fig 3 upper panels). A histogram and heat map representation of the pandemic time 170

evolution of R for the contiguous U.S. is presented in S5 Fig of the Supporting 171

Information. 172

We repeated our analyses for populations outside the U.S. We grouped 110 global 173

locations by continent (Africa, Americas, Asia-Oceania, Europe) and again ordered 174

them by decreasing latitude (S2 Fig of Supporting Information). Here, too, we observed 175

rich dynamics in the timeseries of reported deaths on all continents, with all profile 176
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Fig 4. Calendar and pandemic time analysis for the world. Same as Fig 3 but
for 89 world locations. (See Tables S7 Table and S8 Table of SI for the exponential fit
parameters.

types present that were observed in the contiguous U.S. (see above). In the Americas, 177

the spring single peak profile was observed only in Canada and Ecuador whereas most 178

states in Central and South America showed either the summer or (late summer peak) 179

single peak. The two countries with a large number of deaths in South America (Brazil 180

and Mexico) also showed a large wide peak that extended over more than three months. 181

The data for Asia-Pacific showed an increase in death in most places only in June (e.g., 182

the single summer peak profile). However, Iran was a notable exception, showing the 183

spring-summer double peak profile (with the first peak having already occurred in 184

April) followed by a third resurgence in September. In Australia (and particularly the 185

state of Victoria) we see the single summer peak profile (with the peak in death 186

occurring in August/early September). Examples for the summer single peak profile are 187

Bangladesh and Saudi Arabia, which largely avoided any excess death during the spring. 188

The data for Europe showed clear regional grouping with Italy and Spain leading the 189

spring single peak followed closely by most of the larger European countries. 190

For both calendar and pandemic time we found similar trends to those observed in 191

the contiguous U.S. (Fig 4 and S5 Table and S6 Table of SI). For consistency, our 192

analysis of R for calendar and pandemic time included only 89 out of the 110 locations 193

with two or more weeks of data for all dates after April 15, 2020. For the calendar R, 194

the initial values in mid-April were above two and had a large variance (mean/median 195

and standard deviation of 2.48/2.30 and 0.76). As with the U.S. populations, the 196

decline in magnitude and variance of the calendar R was slower than the exponential 197

decline of R in pandemic time R, which hovered around a value of one for many days. 198

However, the rate of decline in transmissibility in pandemic time was slower than that 199

for the contiguous U.S. (compare the top right panels of 3 and 4, and S2 Table and S6 200
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Table, and S4 Table and S8 Table). We have verified that our conclusions for the 201

calendar and pandemic R(t) do not change when more global locations are included in 202

the analysis (S3 Fig in Supporting information). For the contiguous U.S., here, too, we 203

found that the daily number of deaths per capita remained far more stable than 204

transmissibility when viewed in both calendar and pandemic times (Fig 4 lower panels). 205

A histogram and heat map representation of the pandemic time evolution of R is 206

presented in S6 Fig of the Supporting Information. 207

Discussion 208

We describe a consistent pattern of an initial high value of R(tp) that falls steadily 209

during the first few months after deaths are recorded in a population. Using an 210

age-stratified compartmental model fit to different populations around the world. We 211

found that initial values and variance of R(tp) were large. However, as the pandemic 212

progressed, the magnitude and variance of R(tp) decreased monotonically, eventually 213

hovering around one for a prolonged period. While the magnitude and variance of R(tp) 214

estimated from deaths decreased consistently across the globe, the daily number of 215

deaths themselves did not. In contrast, as a function of calendar time, the initial value 216

of R(tc) was larger (a mean value of 2.47 and a variance of 0.37/0.58 for the U.S./world) 217

and the decrease in magnitude was slower, with a lower reduction in the variance. 218

In contrast with many other studies [15–27,42–45], we did not explicitly consider 219

individual interventions as explanations for reducing values of R. Rather, we 220

investigated overall trends in R. This, we believe, may help guide higher-level planning 221

for the next pandemic caused by a severe respiratory pathogen. We found a common 222

pattern of a reduction in transmissibility during the initial period, rather than constant 223

transmissibility, of which there were no obvious examples. Therefore, regardless of the 224

specific intervention plans in place for individual countries, we suggest that initial 225

planning for future similar pandemics should not be based on assumptions of prolonged 226

constant transmissibility driving a rapid peak and the development of population 227

immunity. 228

Our study relies on a number of potentially important assumptions, approximations 229

and limitations. First, we chose the daily deaths as the dataset to fit to the model, 230

inferring it from cumulative confirmed deaths, as opposed to using other data such as 231

cases , which have been associated with known and considerably larger biases. However, 232

while the deaths are likely a more reliable measure of the pandemic than cases they are 233

far from perfect. Different states and countries use different criteria when registering 234

deaths (for example, some report only confirmed deaths while others report both 235

probable and confirmed deaths) and have different delays in reporting. Additionally, the 236

reported numbers have been shown to be lower than the true toll of the pandemic (see 237

e.g [33,34,46–49]). 238

Our age-stratified compartmental model treats each population separately and 239

ignores travel and importation of cases from other locations. While both global and 240

local travel were significantly disrupted in 2020, they were responsible for the initial 241

spread of COVID-19, and continue to play a role during latter periods. In this work, we 242

ignored the initial introduction of cases to a location and focused on the dynamics of 243

the virus following its introduction to a population. Also, we assumed the same quality 244

of care over time at all locations. In practical terms, in the model, we assume that the 245

probability of death from COVID-19 depended only on age during this period prior to 246

wide spread vaccination. In reality, treatments for severe patients have improved over 247

time, and they varied from one location to another. (We note however, that the first 248

treatment for COVID-19, the antiviral Remdesivir, was fully approved by the FDA only 249

on October 22, 2020 [50], which coincides with the end of the time frame of this study, 250
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and likely had little impact in most places.) 251

We note that a large number of studies have used available databases of 252

interventions [8–10], coupled with statistical methods, to estimate the impact of 253

different interventions on the time-varying reproduction number [15–27,42–45] . In an 254

extensive study, Liu et al. [16] applied statistical methods to 13 categories of NPIs using 255

confirmed cases data from January to June of 2020 from 130 countries. They concluded 256

that there is a strong association between school closure and internal movement 257

restrictions on the reduction in Reff(t), which was taken from EpiForecast [51] and 258

based on the Cori method [52]. Another major statistical study by Haug et al. [15] used 259

a large database of interventions [8] and multiple statistical methods to quantify 6,068 260

NPIs in 79 locations on Reff(t), concluding that less intrusive and costly NPIs can be as 261

effective as more intrusive ones. A Bayesian hierarchical model was used by Brauner et 262

al. [21] to study 8 NPIs in 41 countries using national case and death counts 263

(January-May 2020), concluding that the banning of large gatherings and school 264

closures had a large relative reduction on R(t). 265

Although the methods used here have some similarities with other published studies, 266

the use of compartmental models with a time-varying reproduction number has been 267

more limited. In the initial phase of the pandemic, Linka et al. [42] used a two-value 268

time-varying reproduction number and an SEIR model to study the correlation between 269

the reproduction number of COVID-19 and public health interventions in Europe. The 270

reproduction number was fit using a machine learning (ML) procedure and the authors 271

found a strong correlation between passenger air travel, driving, walking and transit 272

mobility and the effective reproduction number (with a long time delay of about 17 273

days). In another study Dickman [43] developed a deterministic SEIR model without 274

age or spatial structure but with a time-dependent reproduction number. The model 275

allowed the transmission parameter, β, to have three piecewise constant values and the 276

parameters of the model were obtained by least squares fitting to the reported 277

cumulative confirmed number of cases at a large number (160) of locations, providing 278

insight into the initial decrease in the value of the reproduction number. Anderson et 279

al. [44] studied the effect of social distancing measures using early (March-April 2020) 280

case-count data from British Columbia and five other jurisdictions. They developed an 281

SEIR model with physical distancing compartments that contribute a reduced amount 282

to the force of infection. In this model, the fractional reduction to the force of infection 283

is due to increase in physical distancing and it is allowed to linearly change, over the 284

course of one week, from 1 (no physical distancing) to a final value which they estimate 285

using a Bayesian statistical model. Duque et al. [45] describe an age and risk stratified 286

SEIR-style model with a transmission parameter that is reduced during 287

stay-at-home/work-safe-order time periods and use it as part of an optimization 288

framework that seeks to minimize lockdown days while preventing healthcare surges. 289

Weitz et al. [53] developed an SEIR model with “short-term awareness of risk”, that 290

depends on the death rate, and showed that this feedback mechanism can result in 291

highly asymmetric epidemic curves and death time-series with extended plateau periods. 292

However, this model was not used to fit any data. Implicit in all of these studies is the 293

assumption that interventions are similar between different populations and that they 294

can be correlated to changes in R(t). The main differences between our work and these 295

studies are that we did not attempt to correlate changes in R(t) with any specific NPIs 296

and we used an age-stratified compartmental model with a flexible, smoothly varying, 297

time-dependent reproduction number. 298

Whereas the conclusions of our study do not directly contradict any of these 299

previously published results [15–27,42–45], our approach of using the dynamics and 300

prevalence of COVID-19 to understand patterns in R(t) is unique in several ways, and 301

particularly through the introduction of “local pandemic time”. Changes in the 302
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time-dependent transmission are driven by many factors that vary from one location to 303

another. For example, some countries (e.g. South Korea [54,55]) were effective in 304

quickly tracing and isolating new COVID-19 cases and some (e.g. Australia [56] and 305

New Zealand [57]) imposed long lockdowns. Many countries kept K-12 schools closed for 306

the entire time period of this study [58,59], whereas a few, e.g. Denmark [60], were 307

successful at re-opening their education system without significantly increasing 308

community transmission. Avoiding (or closing) indoor settings and imposing masks 309

requirements varied from country to country (and state to state) [61] as did the 310

enforcement and public adherence to these guidelines/orders [62]. The ability to isolate 311

and protect elderly and otherwise vulnerable populations significantly impacted the 312

cumulative confirmed death in many countries. For example, European countries, 313

including the United Kingdom, failed to protect their senior population [63]. The 314

methodology presented here avoids the need to estimate the impact of any of these 315

factors on the time-varying reproduction number. Yet, at the same time, it also 316

provides a starting point for attempting to understand these impacts in the future. 317

Our study focuses on the first wave of the COVID-19 pandemic. The monotonic 318

reduction in the time-varying reproduction number persisted in the U.S. and globally 319

for many days but, during the last three to four months of 2020, it began to increase in 320

nearly all locations in the northern hemisphere, as well as many in the southern 321

hemisphere (e.g. South Africa). This increase marked the beginning of a global second 322

wave and was due to climatic effects and the spread of the novel Alpha (B.1.1.7) and 323

Beta (B.1.351) variants first detected in south-east England and South Africa in 324

September 2020 [7], with the former estimated to be greater than 50% more 325

transmissible than pre-existing variants [3–5]. Similarly, the next wave of COVID-19 326

infections was driven by the novel Delta (B.1.617) variant and the last by Omicron 327

(BA.1 and BA.2) [7, 64,65]. All three variants, and in particular Omicron, spread faster 328

than the variants dominant during the time frame of this study. To describe the 329

emergence, and rise to dominance of a new variant, compartmental models will need to 330

be extended to include at least two strains with different transmissibility. These 331

subsequent waves resulted in a massive increase in cases, hospitalization and deaths that 332

eclipsed that of the first wave, in spite of a global vaccinations effort and the 333

development of multiple new treatments (e.g. monoclonal antibody treatments). 334

General properties of the initial wave of the COVID-19 pandemic will likely remain a 335

topic of considerable interest for many years [66]. In future studies, we plan to extend 336

the framework developed here. Should other datasets (e.g., case counts and/or 337

hospitalizations) become less biased and more available, we will incorporate them into 338

the objective function we fit. Our model can also be made more flexible by including 339

differences in quality of healthcare over time and location, which will allow for coupling 340

between geographic regions [29]. Our previous work on forecasting ILI in the 341

U.S. [28–30] highlights the important role that spatial coupling can play in respiratory 342

disease transmission, and which we anticipate will become increasingly more important 343

as travel restrictions have been relaxed and movement between states, countries, and 344

continents significantly increases. 345
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et al. The effectiveness of eight nonpharmaceutical interventions against 406

COVID-19 in 41 countries. Science. 2020;371(6531). 407

22. Islam N, Sharp SJ, Chowell G, Shabnam S, Kawachi I, Lacey B, et al. Physical 408

distancing interventions and incidence of coronavirus disease 2019: natural 409

experiment in 149 countries. BMJ. 2020;370. 410

23. Chinazzi M, Davis JT, Ajelli M, Gioannini C, Litvinova M, Merler S, et al. The 411

effect of travel restrictions on the spread of the 2019 novel coronavirus 412

(COVID-19) outbreak. Science. 2020;368(6489):395–400. 413

24. Prem K, Liu Y, Russell TW, Kucharski AJ, Eggo RM, Davies N, et al. The effect 414

of control strategies to reduce social mixing on outcomes of the COVID-19 415

epidemic in Wuhan, China: a modelling study. The Lancet Public Health. 416

2020;5(5):e261–e270. 417

25. Firth JA, Hellewell J, Klepac P, Kissler S, Kucharski AJ, Spurgin LG. Using a 418

real-world network to model localized COVID-19 control strategies. Nat Med. 419

2020;26(10):1616–1622. 420

26. McCombs A, Kadelka C. A model-based evaluation of the efficacy of COVID-19 421

social distancing, testing and hospital triage policies. PLoS Comput Biol. 422

2020;16(10):e1008388. 423

27. Challen R, Tsaneva-Atanasova K, Pitt M, Edwards T, Gompels L, Lacasa L, 424

et al. Estimates of regional infectivity of COVID-19 in the United Kingdom 425

following imposition of social distancing measures. Philosophical Transactions of 426

the Royal Society B. 2021; p. 376. 427

28. Riley P, Ben-Nun M, Linker JA, Cost AA, Sanchez JL, George D, et al. Early 428

Characterization of the Severity and Transmissibility of Pandemic Influenza 429

Using Clinical Episode Data from Multiple Populations. PLoS Comput Biol. 430

2015;11(9):e1004392. 431

29. Ben-Nun M, Riley P, Turtle J, Bacon DP, Riley S. Forecasting national and 432

regional influenza-like illness for the USA. PLoS Comput Biol. 433

2019;15(5):e1007013. 434

30. Turtle J, Riley P, Ben-Nun M, Riley S. Accurate influenza forecasts using 435

type-specific incidence data for small geographical units. PLoS Comput Biol. 436

2021; p. e1009230. 437

March 31, 2022 13/24

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 1, 2022. ; https://doi.org/10.1101/2022.03.31.22273267doi: medRxiv preprint 

https://doi.org/10.1101/2022.03.31.22273267
http://creativecommons.org/licenses/by-nd/4.0/


31. Gilks, WR, and Richardson, S and Spiegelhalter D. Markov Chain Monte Carlo 438

in Practice. CRC Press; 1995. 439

32. COVID-19 Map - Johns Hopkins Coronavirus Resource Center;. 440

https://coronavirus.jhu.edu/map.html. 441

33. Viglione G. How many people has the coronavirus killed? Nature. 442

2020;585(7823):22–24. 443

34. Rossen LM. Excess Deaths Associated with COVID-19, by Age and Race and 444

Ethnicity — United States, January 26–October 3, 2020. MMWR Morb Mortal 445

Wkly Rep. 2020;69. 446

35. United Nations Population Division. wpp2019: World Population Prospects 2019; 447

2020. 448

36. Walker K, Herman M. tidycensus: Load US Census Boundary and Attribute 449

Data; 2020. 450

37. U S Census Bureau. American Community Survey 2014-2018 5-Year Estimates; 451

2019. 452

38. Verity R, Okell LC, Dorigatti I, Winskill P, Whittaker C, Imai N, et al. 453

Estimates of the severity of coronavirus disease 2019: a model-based analysis. 454

Lancet Infect Dis. 2020;20(6):669–677. 455

39. Walker PGT, Whittaker C, Watson OJ, Baguelin M, Winskill P, Hamlet A, et al. 456

The impact of COVID-19 and strategies for mitigation and suppression in low- 457

and middle-income countries. Science. 2020;369(6502):413–422. 458

40. Akaike H. A new look at the statistical model identification. IEEE Trans 459

Automat Contr. 1974;19(6):716–723. 460

41. Holshue ML, DeBolt C, Lindquist S, Lofy KH, Wiesman J, Bruce H, et al. First 461

Case of 2019 Novel Coronavirus in the United States. N Engl J Med. 462

2020;382(10):929–936. 463

42. Linka K, Peirlinck M, Kuhl E. The reproduction number of COVID-19 and its 464

correlation with public health interventions. Comput Mech. 2020;66:1035–1050. 465

43. Dickman R. A SEIR-like model with a time-dependent contagion factor describes 466

the dynamics of the Covid-19 pandemic. medRxiv. 2020; p. 2020.08.06.20169557. 467

44. Anderson SC, Edwards AM, Yerlanov M, Mulberry N, Stockdale JE, Iyaniwura 468

SA, et al. Quantifying the impact of COVID-19 control measures using a 469

Bayesian model of physical distancing. PLoS Comput Biol. 2020;16(12):e1008274. 470

45. Duque D, Morton DP, Singh B, Du Z, Pasco R, Meyers LA. Timing social 471

distancing to avert unmanageable COVID-19 hospital surges. Proc Natl Acad Sci 472

U S A. 2020;117(33):19873–19878. 473

46. David A. The pandemic’s true death toll: millions more than official counts. 474

Nature;601:312–315. 475

47. Ariel K, Dmitry K. Tracking excess mortality across countries during the 476

COVID-19 pandemic with the World Mortality Dataset. eLife. 2021;10:e69336. 477

doi:DOI: 10.7554/eLife.69336. 478

March 31, 2022 14/24

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 1, 2022. ; https://doi.org/10.1101/2022.03.31.22273267doi: medRxiv preprint 

https://coronavirus.jhu.edu/map.html
https://doi.org/10.1101/2022.03.31.22273267
http://creativecommons.org/licenses/by-nd/4.0/


48. Koum Besson ES, Norris A, Bin Ghouth AS, Freemantle T, Alhaffar M, Vazquez 479

Y, et al. Excess mortality during the COVID-19 pandemic: a geospatial and 480

statistical analysis in Aden governorate, Yemen. BMJ Global Health. 2021;6(3). 481

doi:10.1136/bmjgh-2020-004564. 482

49. Warsame A, Bashiir F, Freemantle T, Williams C, Vazquez Y, Reeve C, et al. 483

Excess mortality during the COVID-19 pandemic: a geospatial and statistical 484

analysis in Mogadishu, Somalia. Int J Infect Dis. 2021;113:190–199. 485

50. Emergency Use Authorization;. 486

https://www.fda.gov/emergency-preparedness-and-response/ 487

mcm-legal-regulatory-and-policy-framework/ 488

emergency-use-authorization#coviddrugs. 489

51. Abbott S, Hellewell J, Thompson R, Sherratt K, Gibbs H, Bosse N, et al. 490

Estimating the time-varying reproduction number of SARS-CoV-2 using national 491

and subnational case counts [version 2; peer review: 1 approved with 492

reservations]. Wellcome Open Res. 2020;5. 493

52. Cori A, Ferguson NM, Fraser C, Cauchemez S. A New Framework and Software 494

to Estimate Time-Varying Reproduction Numbers During Epidemics. Am J 495

Epidemiol. 2013;178(9):1505–1512. 496

53. Weitz JS, Park SW, Eksin C, Dushoff J. Awareness-driven behavior changes can 497

shift the shape of epidemics away from peaks and toward plateaus, shoulders, and 498

oscillations. Proc Natl Acad Sci U S A. 2020;117(51):32764–32771. 499

54. COVID-19 National Emergency Response Center, Epidemiology & Case 500

Management Team, Korea Centers for Disease Control & Prevention. Contact 501

Transmission of COVID-19 in South Korea: Novel Investigation Techniques for 502

Tracing Contacts. Osong Public Health Res Perspect. 2020;11(1):60–63. 503

55. Park YJ, Choe YJ, Park O, Park SY, Kim YM, Kim J, et al. Contact Tracing 504

during Coronavirus Disease Outbreak, South Korea, 2020. Emerg Infect Dis. 505

2020;26(10):2465–2468. 506

56. Smith P. Hard lockdown and a “health dictatorship”: Australia’s lucky escape 507

from covid-19. BMJ. 2020;371. 508

57. Baker MG, Wilson N, Anglemyer A. Successful Elimination of Covid-19 509

Transmission in New Zealand. N Engl J Med. 2020;383(8). 510

58. COVID-19 School Closures;. 511

https://crpe.org/pandemic-learning/tracking-district-actions/. 512

59. Education: From disruption to recovery; 2020. 513

https://en.unesco.org/covid19/educationresponse. 514

60. Olagnier D, H MT. The Covid-19 pandemic in Denmark: Big lessons from a 515

small country. Cytokine Growth Factor Rev. 2020;53:10–12. 516

61. The New York Times. See Coronavirus Restrictions and Mask Mandates for All 517

50 States; 2020. https://www.nytimes.com/interactive/2020/us/ 518

states-reopen-map-coronavirus.html. 519

62. Charoenwong B, Kwan A, Pursiainen V. Social connections with 520

COVID-19–affected areas increase compliance with mobility restrictions. Science 521

Advances. 2020;6(47):eabc3054. 522

March 31, 2022 15/24

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 1, 2022. ; https://doi.org/10.1101/2022.03.31.22273267doi: medRxiv preprint 

https://www.fda.gov/emergency-preparedness-and-response/mcm-legal-regulatory-and-policy-framework/emergency-use-authorization#coviddrugs
https://www.fda.gov/emergency-preparedness-and-response/mcm-legal-regulatory-and-policy-framework/emergency-use-authorization#coviddrugs
https://www.fda.gov/emergency-preparedness-and-response/mcm-legal-regulatory-and-policy-framework/emergency-use-authorization#coviddrugs
https://www.fda.gov/emergency-preparedness-and-response/mcm-legal-regulatory-and-policy-framework/emergency-use-authorization#coviddrugs
https://www.fda.gov/emergency-preparedness-and-response/mcm-legal-regulatory-and-policy-framework/emergency-use-authorization#coviddrugs
https://crpe.org/pandemic-learning/tracking-district-actions/
https://en.unesco.org/covid19/educationresponse
https://www.nytimes.com/interactive/2020/us/states-reopen-map-coronavirus.html
https://www.nytimes.com/interactive/2020/us/states-reopen-map-coronavirus.html
https://www.nytimes.com/interactive/2020/us/states-reopen-map-coronavirus.html
https://doi.org/10.1101/2022.03.31.22273267
http://creativecommons.org/licenses/by-nd/4.0/


63. The New York Times. More Than 100,000 U.S. Coronavirus Deaths Are Linked 523

to Nursing Homes; 2020. https://www.nytimes.com/interactive/2020/us/ 524

coronavirus-nursing-homes.html. 525

64. Covid Data Tracker;. 526

https://covid.cdc.gov/covid-data-tracker/#variant-proportions. 527

65. Tracking SARS-CoV-2 Variants;. 528

https://www.who.int/en/activities/tracking-SARS-CoV-2-variants/. 529

66. Mills CE, Robins JM, Lipsitch M. Transmissibility of 1918 pandemic influenza. 530

Nature. 2004;432:904–906. 531

March 31, 2022 16/24

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 1, 2022. ; https://doi.org/10.1101/2022.03.31.22273267doi: medRxiv preprint 

https://www.nytimes.com/interactive/2020/us/coronavirus-nursing-homes.html
https://www.nytimes.com/interactive/2020/us/coronavirus-nursing-homes.html
https://www.nytimes.com/interactive/2020/us/coronavirus-nursing-homes.html
https://covid.cdc.gov/covid-data-tracker/#variant-proportions
https://www.who.int/en/activities/tracking-SARS-CoV-2-variants/
https://doi.org/10.1101/2022.03.31.22273267
http://creativecommons.org/licenses/by-nd/4.0/


Supporting information 532

S1 Fig. Simulate and Recover. Sample fits to synthetic data generated using
known R(t) profiles. The synthetic daily death (red circles and left y-axis) is generated
using known synthetic R(t) profiles (red line and right y-axis). The median result of
the fit is shown in blue and the shaded light-blue is the 95% CI. The recovered, median,
R(t) is also shown in blue along with the 95% CI in light-grey.
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S2 Fig. Global Inferred per capita daily death. Inferred per capita daily reported
deaths for 120 locations (other than the U.S.) grouped by continent (with Australia
grouped with Asia). To balance the number of locations on each continent, here we
show more locations than used for the analysis of R. (See text for more detail.) Within
each panel locations are ordered by decreasing latitude from top to bottom. For each
location, the date of the first reported death is marked with a black dot. For clarity,
data is shown on a log scale and saturated at 60 for all panels other than the bottom
right.
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S3 Fig. R values sensitivity analysis. Median/mean (top/bottom row) calen-
dar/pandemic (left/right column) R values and their standard deviations inferred using
different selection procedures for 89-110 global locations. Limited: for both calendar
and pandemic analysis use the same limited subset of 89 locations for which there was
two weeks or more of daily inferred death data for the first calendar time calculation.
Increase: use the same subset of locations for the six calendar and pandemic (R(tc) and
R(tp)) analysis, but allow the number of locations to gradually increase from 89 to 110
as more locations have sufficient calendar data. Different: the calendar analysis includes
the subset of 89 locations that had sufficient data at the time of the first calendar
calculation and the pandemic analysis includes all 110 locations that have sufficient data
for at all six pandemic times.

March 31, 2022 19/24

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 1, 2022. ; https://doi.org/10.1101/2022.03.31.22273267doi: medRxiv preprint 

https://doi.org/10.1101/2022.03.31.22273267
http://creativecommons.org/licenses/by-nd/4.0/


S4 Fig. Daily inferred death fits. Sample fits to inferred daily reported deaths
(red circles and right y-axis) from 15 countries. The grey traces are 100 samples from the
posterior distribution of the fit and the orange crosses denote the reported per capita
cumulative deaths (no y-axis). The median and 95% confidence interval for R(t) is
shown in dark and light blue with the left y-axis. Locations are ordered by decreasing
cumulative deaths (not shown).
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S5 Fig. Left column: histogram plots of the pandemic time R(tp) values for the
contiguous U.S. as calculated by the model by fitting the inferred daily reported deaths
using 30, 45, 60, 75, 90 and 105 days (panels (a) to (f)) since the first reported death in
each location. The black vertical dashed line is at R(tp) = 1. Right panel: a heat map
representation of the data showing the value for each of the 49 contiguous jurisdictions.
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S6 Fig. Same as S5 Fig but for 110 world locations. For clarity the entire U.S. is
treated as a single country in these maps and we display results for more locations than
the 89 discussed in the text and tables.
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S1 Table. Calendar time reproduction number. Estimated R(tc) values for the 533

contiguous U.S. (49 jurisdiction) as a function of calendar time. Numbers in parentheses 534

denote the 95% confidence interval of the mean and median values and SD denotes 535

standard deviation.

Date Mean Median Standard Deviation #Below one
04-15-2020 2.46(2.28-2.64) 2.33(2.15-2.54) 0.61 0
04-30-2020 2.38(2.21-2.55) 2.25(2.13-2.71) 0.59 0
05-15-2020 1.98(1.87-2.10) 1.91(1.78-2.09) 0.41 0
05-30-2020 1.41(1.30-1.53) 1.32(1.15-1.58) 0.41 5
06-14-2020 1.20(1.10-1.29) 1.04(1.00-1.13) 0.34 17
06-29-2020 1.07(1.01-1.14) 1.00(0.95-1.05) 0.22 23

536

S2 Table. Pandemic time reproduction number. Same as S1 Table but as a 537

function of local pandemic time R(tp).

Days since st death Mean Median Standard Deviation #Below one
30 1.99(1.84-2.14) 2.00(1.73-2.11) 0.53 1
45 1.22(1.13-1.30) 1.19(1.08-1.28) 0.31 13
60 1.03(0.97-1.08) 1.00(0.94-1.06) 0.19 25
75 0.97(0.94-1.00) 1.00(0.94-1.02) 0.10 27
90 0.99(0.96-1.02) 0.97(0.96-1.01) 0.11 30
105 0.96(0.92-1.00) 0.94(0.90-0.99) 0.13 33

538

S3 Table. Exponential Fits to R. Results of exponential fit 539

R (t) = R∞ + (R0 −R∞) e−αt to calendar R(tc) values for the 49 U.S. jurisdictions.

Parameter Estimate Standard Error Pr(> |t|)
R∞ -5.37 10.98 0.62
R0 2.57 0.061 < 2−16

α 0.003 6.6 ∗ 10−4 1.97 ∗ 10−4

540

S4 Table. Exponential Fits to R. Same as S3 Table but for pandemic R(tp) values 541

for the 49 U.S. jurisdictions.

Parameter Estimate Standard Error Pr(> |t|)
R∞ 0.97 0.024 < 2−16

R0 1.99 0.039 < 2−16

α 0.094 0.0017 < 2−16

542
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S5 Table. Calendar time reproduction number. Estimated R(tc) values for 89 543

global locations as a function of calendar time. Numbers in parentheses denote the 95% 544

confidence interval of the mean and median values and SD denotes standard deviation.

Date Mean (95% CI) Median (95%) CI Standard Deviation # Below one
04-15-2020 2.48(2.32-2.64) 2.30(2.16-2.46) 0.76 0
04-30-2020 2.15(2.02-2.29) 2.17(1.93-2.26) 0.67 4
05-15-2020 1.66(1.55-1.76) 1.68(1.51-1.83) 0.50 9
05-30-2020 1.26(1.17-1.34) 1.17(1.08-1.42) 0.41 27
06-14-2020 1.09(1.02-1.17) 1.05(0.92-1.13) 0.35 44
06-29-2020 1.03(0.97-1.10) 0.98(0.90-1.07) 0.32 49

545

S6 Table. Pandemic time reproduction number. Same as S5 Table but as a 546

function of local pandemic time, R(tp).

Days Since 1st Death Mean (95% CI) Median (95% CI) Stanard Deviation #Below one
30 2.00(1.85-2.14) 1.90(1.63-2.21) 0.68 3
45 1.30(1.19-1.41) 1.24(1.06-1.33) 0.52 30
60 1.08(1.00-1.15) 1.02(0.90-1.17) 0.36 43
75 1.02(0.95-1.09) 0.95(0.85-1.08) 0.33 48
90 1.03(0.95-1.10) 0.94(0.87-1.12) 0.35 47
105 1.03(0.96-1.09) 1.04(0.90-1.13) 0.31 42

547

S7 Table. Exponential Fits to R. Results of exponential fit 548

R (t) = R∞ + (R0 −R∞) e−αt to calendar R(tc) values for the 89 global locations. 549

Parameter Estimate Standard Error Pr(> |t|)
R∞ 0.42 0.26 0.117
R0 2.55 0.052 < 2−16

α 0.018 4.4 ∗ 10−4 < 2−16

S8 Table. Exponential Fits to R. Same as S7 Table but for pandemic R(tp) values 550

for the 89 global locations. 551

Parameter Estimate Standard Error Pr(> |t|)
R∞ 1.01 0.030 < 2−16

R0 2.00 0.047 < 2−16

α 0.094 0.0014. < 2−16
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