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Abstract 

 

SARS-CoV-2 case data are primary sources for estimating epidemiological parameters and 

for modelling the dynamics of outbreaks. Understanding biases within case based data 

sources used in epidemiological analyses are important as they can detract from the value of 

these rich datasets. This raises questions of how variations in surveillance can affect the 

estimation of epidemiological parameters such as the case growth rates. We use standardised 

line list data of COVID-19 from Argentina, Brazil, Mexico and Colombia to estimate delay 

distributions of symptom-onset-to-confirmation, -hospitalisation and -death as well as 

hospitalisation-to-death at high spatial resolutions and throughout time. Using these 

estimates, we model the biases introduced by the delay from symptom-onset-to-confirmation 

on national and state level case growth rates (rt) using an adaptation of the Richardson-Lucy 

deconvolution algorithm. We find significant heterogeneities in the estimation of delay 

distributions through time and space with delay difference of up to 19 days between epochs at 

the state level. Further, we find that by changing the spatial scale, estimates of case growth 

rate can vary by up to 0.13 d-1. Lastly, we find that states with a high variance and/or mean 

delay in symptom-onset-to-diagnosis also have the largest difference between the rt estimated 

from raw and deconvolved case counts at the state level. We highlight the importance of 

high-resolution case based data in understanding biases in disease reporting and how these 

biases can be avoided by adjusting case numbers based on empirical delay distributions. Code 

and openly accessible data to reproduce analyses presented here are available. 
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Introduction 

 

Surveillance of Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has 

expanded since it was first reported in November 2019 (Oude Munnink et al., 2021; Zhu et 

al., 2020). However, disease surveillance remains highly heterogeneous across countries and 

case definitions have changed significantly as a result of changing testing capacity, improved 

understanding about transmission during the asymptomatic phase and general human 

behavioural change in response to the pandemic (Flaxman et al., 2020; Verity et al., 2020; 

Wu et al., 2020; Ke et al., 2021; Pullano et al., 2021; Parag, Cowling and Donnelly, 2022). 

Improvements to surveillance efforts can affect key epidemiological distributions by reducing 

the time delay from exposure to onset of infectiousness to diagnosis (Kraemer et al., 2021). 

These in turn can directly influence estimation of the time-varying reproduction number (Rt) 

and growth rate (rt) (Rong et al., 2020; Pitzer et al., 2021) (Supplementary Table. 1). 

Estimation of these epidemiological distributions/parameters provide key information on 

changes in transmission, which contribute to decisions on the implementation of 

pharmaceutical and non-pharmaceutical interventions (NPIs) (Anderson et al., 2020; Dushoff 

and Park, 2021; Parag, Thompson and Donnelly, 2021; Pellis et al., 2021). 

  

Initial estimations of SARS-CoV-2 epidemiological distributions/parameters were based on 

biased data primarily due to limited capacity of testing for SARS-CoV-2 in hospitalised 

patients (Vandenberg et al., 2021). This contributes to a degree of uncertainty and 

heterogeneity in the accuracy and precision of these estimates especially when comparing 

them between countries and across age groups (Cowling et al., 2020; Mellan et al., 2020; 

Verity et al., 2020; Parag, Cowling and Donnelly, 2022). Since the initial stages of the 

pandemic, global surveillance and notification systems have significantly improved 

(Vandenberg et al., 2021) providing a wealth of data which can be used to re-evaluate SARS-

CoV-2 epidemiological distributions/parameters.  

 

This raises the question of how variations in surveillance affects the estimation of 

epidemiological distributions/parameters. We aim to understand how spatial and temporal 

heterogeneities in reporting (specifically delays in reporting) can impact the accuracy of 

estimates of epidemiological parameters (specifically growth rate rt) within and between 

countries. To do this, we are using a rich, standardised, and individual level line list database 

extracted from Global.health (https://global.health/). We focus on estimating the delays 
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between symptom-onset-to-confirmation, -hospitalisation and -death as well as 

hospitalisation-to-death.  
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Methods 

  

Data 

 

The Global.health database contains individual case data from over 100 countries 

(https://global.health/). The database contains a rich array of fields describing demographics, 

location (up to Administrative Area 3 resolution), and key epidemiological and clinical 

events for confirmed COVID-19 cases. In relational database format, each row is a single 

confirmed COVID-19 case, and columns detail attributes for each case (Schema: 

https://github.com/globaldothealth/list/blob/c0da57d6b227ab861ad5e695d711699c02c2721f/

data-serving/scripts/export-data/data_dictionary.txt). Data is primarily sourced from official 

country line lists compiled and shared by national health institutions where available, as was 

the case for all countries in this study (Xu et al., 2020). The detail of the case data varies by 

country: inter-country variability in COVID-19 data collection and reporting online leads to 

differences in Global.health data availability, as detailed in Figure 1. The dataset used in this 

study was downloaded from Global.health on 31/01/2022. An updated line list can be 

downloaded from Global.health via the website or by following instructions on the API docs: 

https://github.com/globaldothealth/list/tree/main/api. We can provide the exact dataset 

downloaded for this analysis upon written request. 

 

To investigate the spatial heterogeneity of epidemiological parameters inferred from public 

data, we focus on COVID-19 line lists from four countries in Latin America that have 

consistently provided comprehensive and detailed line list data since the start of the pandemic 

in early 2020: Mexico, Brazil, Argentina, and Colombia. For each country, we aggregated 

data to the state level, then for each state, calculated delay distributions defined in 

Supplementary Table 1. To investigate trends over time, the line lists for each country are 

split into three time-periods hereafter called epochs. These epochs represent different stages 

of the SARS-CoV-2 epidemic in each country. We cover the 1st and 2nd waves of infections 

as well as a period of low incidence in infections between these two waves:  

 

 Epoch 1: 2020-03-03 to 2020-06-30 (initial COVID-19 wave) 

 Epoch 2: 2020-07-01 to 2020-11-30 (receding epidemic and low case counts) 

 Epoch 3: 2020-12-01 to 2021-03-31 (second wave/SARS-CoV-2 VOCs) 
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Additional filtering of the data was applied to these time delays to eliminate biases introduced 

by erroneous entries. We removed all cases which were reported before the first reported case 

in the countries of interest based on the Ministry of Health’s websites (Roberts, Rossman and 

Jarić, 2021). Moreover, we removed outliers that fell outside of the 97.5% range of the data 

on each of the delay distributions. 

  

Epidemiological Distributions  

 

To estimate the epidemiological distribution, a gamma probability density function (PDF) 

was fitted to onset-to-death and hospitalisation-to-death whilst a generalised lognormal 

(GLN) probability density function (Singh et al., 2012) was fitted to onset to diagnosis and 

hospitalisation (Table 1). These PDFs were chosen as they were evaluated to best fit COVID-

19 line list data (Hawryluk et. al., 2020). The parameters of each distribution are fitted by a 

joint hierarchical model with partial pooling similar to (Hawryluk et. al., 2020), using state 

level data (Administrative Area 1 resolution) from Argentina, Brazil, Colombia, and Mexico. 

 

Table 1: Probability density functions with analytical formulae for mean and variance. y 

denotes the data, 𝞶 () is a gamma function. GLN, generalised log-normal. 

 

PDF Mean Variance 

gamma(y|α,β) = 
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Posterior samples of the parameters are generated using Hamiltonian Monte Carlo (HMC) 

(Hoffman and Gelman, 2014) in Stan (Carpenter et al., 2017) using PyStan (v.2.19.0.0: 

https://mc-stan.org/users/interfaces/pystan). Four chains with 2000 iterations, with 50% of the 

iterations dedicated to burn-in, were used for each fit. For all fitted densities, the mean and 

variance parameters were constrained to be positive. 
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Correlation analysis 

 

Spearman’s rank-order correlation coefficient (rs) was calculated for delays between 

symptom-onset-to-confirmation, -hospitalisation and -death as well as hospitalisation-to-

death for each state, using the scipy.stats ‘spearmanr’ function (scipy version 1.7.3). P-values 

are provided by this function, which indicates the probability of an uncorrelated system 

producing data with a correlation value at least as extreme as the one observed. The p-values 

should be interpreted with caution as we have a limited sample size (n = number of states in 

each country). 

 

Deconvolution 

  

We used deconvolution to adjust for delays in the development of detectable viral loads, 

symptom onset, and reporting (Gostic et al., 2020). Deconvolution allows us to reconstruct 

the unlagged incidence time series given a known delay distribution (estimated above). Here, 

we adapted the method by Goldstein et al. (Goldstein et al., 2009). This method uses the daily 

confirmed incidence curve (It) and the symptom onset to confirmation probability distribution 

(d1,...,dI) to calculate the expected number of cases (μt) to occur at time t adjusting for delays. 

We assume that the daily incidence curve (It) is Poisson distributed. The model requires non-

negativity constraints on the parameters λt, which represents estimates of mean infection 

incidence, reflecting the fact that they are Poisson means. 

 

Equation 1:  

 

 

  μ𝑡 = ∑ 𝜆𝑠𝑑𝑡−𝑠

𝑡

𝑆=1

 

 

 

 

 

 

The model ran for 50 iterations or until the normalised x2 statistic (Equation 2) comparing the 

observed and expected number of cases per day falls below 1. Here, N represents the length 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted March 31, 2022. ; https://doi.org/10.1101/2022.03.31.22273230doi: medRxiv preprint 

https://doi.org/10.1101/2022.03.31.22273230
http://creativecommons.org/licenses/by/4.0/


 8 

of our study period, E is the expected number of cases on day i and D is the probability of 

observation on day i. We calculated the deconvolved case counts at both the national and 

state level for each epoch.  

 

Equation 2: 

 

𝑥2 =
1

𝑁
∑

(𝐸𝑖
𝑛 − 𝐷𝑖)2

𝐸𝑖
𝑛

𝑖

 

 

 
 
Growth rate  

  

To estimate the daily growth rate (rt) by country and state we adapted the approach from 

Pellis et al. (Pellis et al., 2021). In short, the growth of daily case numbers of lagged and 

unlagged SARS-CoV-2 cases (y) at time (t) was considered exponential. To estimate rt, a 

Poisson family generalised linear model (GLM) with a log link was applied. To allow growth 

rates to vary over time in a semi-parametric manner, a generalised additive model (GAM) 

was used where y(t) ∝ es(t) for some smoother s(t). As such, rt is the time derivative of the 

smoother rt = s(t). We started calculating the growth rate once the cumulative number of 

daily cases reached over 100 on the national level and over 20 on the state level to ensure that 

the exponential growth phase was captured. 

 

Code: Code to reproduce analyses can be accessed here: 

https://github.com/fojackson8/COVID19_mapping_epiparams 

and data can be downloaded via https://data.covid-19.global.health/ or via our API: 

https://github.com/globaldothealth/list/tree/main/api. Data downloads require agreeing with 

the Terms of Use: https://global.health/terms-of-use/. 

 

 

 

 

 

 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted March 31, 2022. ; https://doi.org/10.1101/2022.03.31.22273230doi: medRxiv preprint 

https://github.com/fojackson8/COVID19_mapping_epiparams
https://data.covid-19.global.health/
https://github.com/globaldothealth/list/tree/main/api
https://global.health/terms-of-use/
https://doi.org/10.1101/2022.03.31.22273230
http://creativecommons.org/licenses/by/4.0/


 9 

Results 

 

Number of Data Entries / Global.health Case Counts 

 

Disease reporting varied by country and field. Figure 1 shows the number and proportion of 

recorded cases with data entries from the Global.health linelist from which we can infer the 

delays between onset-to-confirmation (A), onset-to-hospitalisation (B), hospitalisation-to-

death (C) and onset-to-death (D). There are significant heterogeneities between countries and 

overtime between the number of cases recorded and a data entry being present for a specific 

delay. For example, almost all cases in Mexico are populated with the delay between onset-

to-confirmation. In contrast, while almost all initial cases in Argentina were populated with 

the delay between onset-to-confirmation, over time, the proportion of cases with data entries 

fell consistently to around 55%. Further, there is a large variability in completeness of the 

fields that allow estimation of symptom-onset-to-diagnosis ranging between 36% - 97% in 

Brazil. 
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Estimation of Delay distribution and Growth rate 

 

We estimate the delay distributions (Supplementary table 1), reconstruct deconvolved case 

numbers and rt for local SARS-CoV-2 epidemics in Argentina, Brazil, Colombia, and 

Mexico. 

 

 

Figure 1: The number and proportion of recorded cases with data entries for each epidemiological distribution 

have been extracted from Global.health line lists for Argentina, Brazil, Colombia, and Mexico. Figure 1A, 1B 

and 1D represent the delay from symptom-onset-to-diagnosis, -hospitalisation, and -death respectively whilst 

Figure 1C represents the delay from hospitalisation-to-death. The blue, red, teal, and yellow solid line represents 

a 7-day rolling average for the total number of data entries for Argentina, Brazil, Colombia, and Mexico 

respectively. The blue, red, teal and yellow dashed line represents a 7 day rolling average for the proportion of 

recorded cases with data entries for Argentina, Brazil, Colombia, and Mexico respectively. The dashed vertical 

lines represent epoch change times.  
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Delay Distributions 

 

PDFs were applied to epidemiological data from Argentina, Brazil, Colombia, and Mexico to 

estimate the delay from symptom onset-to-diagnosis, delay from symptom onset-to-

hospitalisation, delay from hospitalisation-to-death, and the delay from symptom onset-to-

death at the state level. Posterior plots of state-level results (Figures 2-3 and Supplementary 

Figures 2-3) show the shape and spread for the delay for all delay distributions between states 

and over time. 

 

Brazil 

 

 

 

 

 

 

Figure 2: Delay distributions are estimated from daily case counts on the state level for three distinct epochs for 

Brazil. Figure 2A, 2B and 2D represent the delay from symptom-onset-to-diagnosis, -hospitalisation, and -death 

respectively whilst Figure 2C represents the delay from hospitalisation-to-death. Orange represents epoch 1, 

purple represents epoch 2 and blue represents epoch three. All plots are ordered from the smallest to largest by 

the epoch with the smallest mean delay.  
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In Brazil, we observe substantial heterogeneities in the mean delay across all four 

distributions between states and for the epochs. For example, for all states, the mean delay 

from symptom-onset-to-diagnosis increases from 7.24 days in epoch 1 to 10.46 days in epoch 

2, declining to 5.55 days in epoch 3 (Supplementary Table 2). At the state level, Distrito 

Federal had the 3rd overall lowest mean delay of 4.08 days whilst Paraná had the highest 

mean delay of 22.74 days (Figure 2, Supplementary Table 3). Interestingly, this trend was 

reversed for the distribution of hospitalisation-to-death with Distrito Federal having the 

highest mean delay of 13.89 days and Paraná having the 3rd lowest mean delay of 10.01 days 

(Figure 2, Supplementary Table 3). Additionally, states with a large delay from symptom-

onset-to-diagnosis also had a large delay from symptom-onset-to-hospitalisation (rs = 0.58, p 

< 0.01). Conversely, we found states with a large delay from symptom-onset-to-diagnosis had 

a shorter delay from hospitalisation-to-death (rs = 0.60, p < 0.01) (Supplementary Figure 

1).  Moreover, we found that the longer the delay from symptom-onset-to-hospitalisation the 

shorter the delay from hospitalisation-to-death (rs = -0.37, p < 0.01) (Supplementary Figure 1) 

implying the longer it takes to be hospitalised after becoming symptomatic the shorter the 

time in hospital before death. 
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Mexico 

 

 

 

 

 

 

 

 

 

Similar to Brazil, we found heterogeneities across states and time for all delay distributions 

within Mexico (Figure 3). Moreover, the trends for each distribution overtime are similar to 

Brazil with the mean delay from symptom-onset-to-diagnosis decreasing overtime from 3.08 

in epoch 1 and 2.62 in epoch 3 (Supplementary Table 2). However, there is substantially less 

variability in the delay from symptom-onset-to diagnosis and from hospitalisation-to-death 

(Figure 3 A and C). This can be seen by the mean difference in delay from symptom-onset-to 

Figure 3: Delay distributions are estimated from daily case counts on the state level for three distinct epochs for 

Mexico. Figure 3A, 3B and 3D represent the delay from symptom-onset-to-diagnosis, -hospitalisation, and -death 

respectively whilst Figure 3C  represents the delay from hospitalisation-to-death. Orange represents epoch 1, 

purple represents epoch 2 and blue represents epoch three. All plots are ordered from the smallest to largest by 

the epoch with the smallest mean delay.  
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diagnosis and from hospitalisation-to-death between the highest state (Nayarit) and lowest 

state (Chihuahua) differing only by 2.33 days and 3.76 days respectively over all epochs 

(Supplementary table 3). Further, like Brazil, we also found that increases in the mean delay 

from symptom-onset-to-diagnosis was negatively correlated with symptom-onset-to-death 

(rs  = -0.38, p = 0.03) and positively correlated with symptom-onset-to-hospitalisation (rs  = 

0.65, p < 0.01) (Supplementary Figure 1).  

 

Argentina 

 

In contrast to both Brazil and Mexico, epoch 1 in Argentina had the lowest delay from 

symptom-onset-to-diagnosis and the highest delay for the symptom-onset-to-death 

(Supplementary Figure 2). We found that there was a high inter-state variance, as seen by the 

elongated shape on the violin plot. For the 11 states where data was available for the delay 

from symptom-onset-to-hospitalisation, the mean delay increased from 2.46 days in epoch 1 

to 4.64 days in epoch 3 whilst the mean delay between symptom-onset-to-death decreased 

from 16.98 days in epoch 1 to 15.54 days in epoch 3 (Supplementary table 2). We did not 

find a significant relationship between delay distributions but note that no data was available 

for hospitalisation-to-death (Supplementary Figure 1). 

 

Colombia 

 

Like Argentina, we find that for Colombia epoch 1 had the lowest delay from symptom-onset-

to-diagnosis (Supplementary Figure 3A). We found that the overall mean delay between 

symptom-onset-to-diagnosis is substantially longer for epoch 3 (10.83 days) than for epoch 1 

(1.96 days) (Supplementary table 2). This large increase in the overall mean delay is driven by 

three states; Norte de Santander, Guainía, and Santa, which have mean delay from symptom-

onset-to-diagnosis of over 30 days for epoch 3 (Supplementary Figure 3A, Supplementary 

Table 3). There is no overall trend across symptom-onset-to-death (Figure 5B). 
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Deconvolution of case time series 

  

We apply methods from Goldstein et al. to raw SARS-CoV-2 case counts (date of 

confirmation) in the four countries studied to obtain the deconvolved daily case counts. 

Figure 4 shows the deconvolved incidences curves. Notability, we find a marked delay in 

cases for Colombia in epoch 3 particularly after the 1st of February 2021. Further, we find 

that the initial peak in cases within Brazil had significant delays perhaps due to high case 

incidence. 

 

 

 

 

 

 

 

 

Figure 4: Deconvolved case counts have been estimated from raw case counts extracted from Global.health line 

lists for Argentina, Brazil, Colombia, and Mexico. The blue and red line represents a 7-day rolling average of 

deconvolved and raw case counts respectively. The dashed lines represent epoch change times.  
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Growth rates 

We applied the Pellis et al. model to estimate rt  from raw case data and deconvolved case 

data for each of our countries of interest (Figure 5). Based on the deconvolved case counts, 

initially, for all countries the mean rt  was above zero, indicating a growing epidemic. For all 

countries the mean rt declined moving into the second epoch. Argentina experienced a mean 

rt  falling consistently below zero during epoch 2. Towards the end of epoch 2, the mean rt 

increased above zero and remained above zero at the start of epoch 3 for all countries. 

 

 

 

 

 

 

Figure 5:  rt  estimated from both raw and deconvolved case counts for Argentina, Brazil, Colombia, and Mexico. 

The light-shaded area represents the 95% Confidence Interval with the darker-shaded area presenting where the 

two estimations overlap. The solid line represents the mean rt  estimate with rt  estimated from raw case counts in 

red and deconvolved case counts in blue. The vertical dashed lines represent epoch change times and the 

horizontal dashed line represents rt= 0.  
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Generally, it appears that the rt estimated from the raw case counts lags behind the rt 

estimated from the deconvolved case counts, which is expected. However, this difference is 

not significant, and all 95% confidence intervals (CIs) are overlapping (Figure 5). At the start 

of the study period there is an increase in uncertainty for the deconvolved case counts 

represented by the wider CIs and in general higher rt in all countries using raw case data. 

Next, we evaluated rt on a state level by selecting states with the lowest mean delay (Figure 

6A, 6B, 6E and 6G) and highest mean delay (Figure 6B, 6D, 6F and 6H) of symptom-onset-

to-confirmation. We compared rt estimates from state and national deconvolved case counts 

in addition to raw case counts. When the delay from symptom-onset-to-confirmation is low, 

there is a mismatch between the rt calculated using national level deconvolved case counts 

and the rt calculated using raw case and state level deconvolved case counts. For example, in 

La Pampa, Argentina (Figure 6E), mean rt is initially below 0 (-0.03 d-1) when using national 

level deconvolved case counts and above 0 when using raw (0.1 d-1) and state level 

deconvolved case counts (0.07 d-1). Conversely, when the delay from symptom-onset-to-

confirmation is high, there is a mismatch between the rt calculated using state level 

deconvolved case counts and the rt calculated using raw case and national level deconvolved 

case counts. This can be seen in Roraima state, Brazil (Figure 6B), where there are 

fluctuations of rt below and above 0 when rt is calculated using state level deconvolved case 

counts when compared to rt estimations from raw and national level deconvolved case counts 

where rt = ~0 indicating epidemic stabilisation has occurred.  
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Figure 6: rt  estimated from both raw, national and states level deconvolved case counts for states with the 

highest mean delay in symptom-onset-to-diagnosis (6A,6C,6E and 6G) and the lowest mean delay in symptom-

onset-to-diagnosis (6B,6D,6F and 6H) for Argentina, Brazil, Colombia, and Mexico. The light-shaded area 

represents the 95% Confidence Interval with the darker-shaded area presenting where the two estimations 

overlap. The solid line represents the mean rt  estimate with rt  estimated from raw case counts in red, state level 

deconvolved case counts in orange and national level case counts in blue. The vertical dashed lines represent 

epoch change times. 
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Discussion 

 

In this study, we fitted multiple probability density functions to a number of epidemiological 

datasets to quantify the delay from symptom-onset-to-hospitalisation and hospitalisation-to-

death, from the Global.health database (https://global.health/), using Bayesian hierarchical 

models. Subsequently, the national level and state level delay from symptom-onset-to-

confirmation was used to deconvolve raw case counts and we measure the impact on case 

growth rates rt.  

 

We found that across all countries investigated (Argentina, Brazil, Colombia, and Mexico) 

there were strong geographical heterogeneities between states for our inferred delays 

(Supplementary Table 2 and 3) with the delays from symptom-onset-to-diagnosis and 

symptom-onset-to-death being most accentuated. Whilst studies exploring testing 

heterogeneities in Latin America are limited, in the early stages of the epidemic, frequent and 

free testing was not available and testing was largely reserved for patients within hospitals 

and symptomatic individuals (Asahi, Undurraga and Wagner, 2021; Gaudart et al., 2021; 

Vandenberg et al., 2021). Less urbanised states, such as Roraima state, Brazil, Michoacán 

state, Mexico, and Boyacá, Colombia within the countries analysed had the largest delay in 

symptom-onset-to-diagnosis. It has been shown in other settings that access to testing varied 

geographically based on geographic accessibility (Jaitman, 2015) and length of travel to 

healthcare facilities (Syed, Gerber and Sharp, 2013; Kelly et al., 2016; Rader et al., 2020). 

 

In addition to spatial heterogeneities, strong temporal heterogeneities were observed. For 

Brazil and Mexico, the delay in symptom-onset-to-diagnosis decreased over time by 23% and 

15% respectively whilst for Argentina and Colombia this delay increased over time by 18% 

and 452% respectively. Brazil and Mexico experienced a more rapid epidemic progression 

with the first wave of cases peaking at the end of the first epoch (Figure 4B and 4D). In 

contrast, Colombia and Argentina had a slower epidemic progression with their first wave of 

cases peaking in the second epoch (Figure 4A and 4C). This is also reflected in the number of 

data entries with Brazil and Mexico having over double the number of entries in epoch 1 than 

Argentina and Colombia (Figure 1). With limited testing resources available (Asahi, 
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Undurraga and Wagner, 2021; Gaudart et al., 2021; Vandenberg et al., 2021), it is plausible 

that public health departments in Brazil and Mexico struggled to test all symptomatic cases in 

a timely manner when compared to Argentina and Colombia which had fewer cases during 

that period. 

 

By using deconvolution to infer the unlagged time series of infections, we can improve the 

accuracy of key epidemiological parameters (Gostic et al., 2020). In particular, by using the 

delay distribution of symptom-onset-to-confirmation we allow rt  to be estimated closer to 

real time (some have called this ‘nowcasting’ (McGough et al., 2020)). We found that in 

states with a small delay from symptom-onset-to-diagnosis there was a mismatch between rt 

estimated using national level deconvolved case counts and raw and state level deconvolved 

case counts. Further, in states with a large delay from symptom-onset-to-diagnosis there was 

a mismatch between rt estimated using state level deconvolved case counts and raw and 

national level deconvolved case counts. This is significant as using deconvolved case counts 

at a less granular spatial scale can significantly affect the interpretation of the epidemic 

picture. For example, for Roraima state, Brazil (Figure 6B) using national level deconvolved 

case counts to estimate rt we would predict that epidemic stabilisation has occurred even 

though cases have changed significantly throughout time 

(https://github.com/CSSEGISandData/COVID-19). 

 

While our results provide a rigorous underpinning and insight into delay distributions and 

impact of these on epidemiological parameters estimation, we acknowledge several 

limitations. The Global.health database which contains line lists that our distributions have 

been estimated from, though extensive, contains typing errors, and the degree to which these 

bias our estimates are unknown. Our data ingestion pipeline is mostly automated and only 

occasionally are we able to manually verify the accuracy of the data. Further, when 

comparing line list data between and within countries we note disparities in notification 

systems and differences in case definitions. Further work should evaluate the demographic 

biases in these data and how that may affect transmission dynamics (longer delays for less 

severe cases in younger age groups may impact transmission substantially). Lastly, there is a 

low testing rate for the countries analysed (Hasell et al., 2020) and heterogeneities in testing 

rates in both time and space (Vandenberg et al., 2021) which can influence the results for 

both cases and rt. Future epidemiological work is needed to compare parameters estimated 

from case data, death data and excess death data across different settings (Gostic et al., 2020) 
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and more intensive monitoring and/or the use of alternative data sources such as genomic 

data (Inward, Faria and Parag, 2022) is needed to improve the reliability of estimations. 

Few countries report highly detailed epidemiological data limiting the ability to perform 

robust analyses on the impact of delays on transmission across the world. One primary 

concern for limited sharing of these data is privacy. Our work demonstrates the ability to 

perform scalable analyses of delay distributions and their impact on case growth rates and 

could be applied across all settings and through time. In the future, raw data may not need to 

be shared publicly: algorithms could locally process line list data stored in each country, with 

only aggregated statistics shared globally. 

 

This work has highlighted the impact that both spatial and temporal heterogeneities can have 

on delay distributions and subsequent estimations of the case growth rate. Whilst more 

epidemiological datasets from a variety of countries and regions with different sampling 

intensities are needed to create a more generalisable understanding and to identify predictors 

of these differences, we have shown that accounting for delays on both a national and state 

level can introduce substantial differences in the estimation of epidemiological parameters. 

This finding identifies the need for more targeted attempts at performing epidemiological 

surveillance and epidemic analyses particularly in resource-poor settings which have limited 

surveillance systems.  
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Supplementary Information 
 

Supplementary Table 1: Key distribution, parameters, and definitions for SARS-CoV-2 

 

Supp Table 1: Key distributions, parameters, and definitions for SARS-CoV-2 

Distribution/Parameter Definition 

Basic reproduction number 

(R0) 

Average number of individuals infected by a single 

infected person in a fully susceptible population 

Time-varying or effective 

reproduction number (Rt) 

Average number of secondary infections generated 

per effective primary case at a certain time point and 

in the presence of susceptible depletion or 

interventions 

Infection fatality ratio (IFR) Estimates proportion of deaths among all infected 

individuals 

Symptom-onset-to-diagnosis Time between the onset of symptoms and a  

 Positive diagnostic test  

Symptom-onset-to-

hospitalisation 

Time between the onset of symptoms and 

hospitalisation 

Hospitalisation-to-death Time between the hospitalisation and death 

Symptom-onset-to-death Time between the onset of symptoms and death 

 

 

 

Supplementary Table 2:  Summary of inferred means and case counts per country and 

epoch 

 
Impact of spatiotemporal heterogeneity in COVID-19 disease surveillance on 
epidemiological parameters and case growth rates 
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Supplementary Table 3:  Summary of inferred means at the state level per country and 

epoch for each distribution of interest  

 

Impact of spatiotemporal heterogeneity in COVID-19 disease surveillance on 

epidemiological parameters and case growth rates 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Figure 1: Spearman’s rank-order correlation coefficient correlations between delay distributions 

for each state, taking the mean value of the delay across all epochs. Values marked with a star denote p-value of 

this pairwise correlation was less than 0.05. 
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Supplementary Figure 2: Delay distributions are estimated from daily case counts on the state level for three 

distinct epochs for Argentina. Supplementary Figure 2A, 2B and 2C represent the delay from symptom-onset-to-

diagnosis, -hospitalisation, and -death respectively. Orange represents epoch 1, purple represents epoch 2 and 

blue represents epoch three. All plots are ordered from the smallest to largest by the epoch with the smallest 

mean delay.  
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Supplementary Figure 3: Delay distributions are estimated from daily case counts on the state level for three 

distinct epochs for Colombia. Supplementary Figure 3A and 3B represent the delay from symptom-onset-to-

diagnosis and -death respectively. Orange represents epoch 1, purple represents epoch 2 and blue represents 

epoch three. All plots are ordered from the smallest to largest by the epoch with the smallest mean delay.  
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