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Abstract 

Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease with an overall 5 year-

survival rate of just 5%. A better understanding of the carcinogenesis processes and the 

mechanisms of progression of PDAC is mandatory. 

Fifty-two PDAC patients treated with surgery and adjuvant therapy, with available primary 

tumor, normal tissue, preneoplastic lesions (PanIN), and/or lymph node metastases, were 

selected for the study. Proteins were extracted from small punches and analyzed by LC-MS/MS 

using data-independent acquisition. Proteomics data was analyzed using probabilistic graphical 

models, allowing functional characterization. Comparisons between groups were done using 

linear mixed models. Three proteomics tumor subtypes were defined. T1 (32% of patients) was 

related to adhesion, T2 (34%) had metabolic features, and T3 (34%) presented high splicing 

and nucleoplasm activity. These proteomics subtypes were validated in the PDAC TCGA cohort. 

Relevant biological processes related to carcinogenesis and tumor progression were studied in 

each subtype. Carcinogenesis in T1 subtype seems to be related to an increase of adhesion and 

complement activation nodes activity, whereas tumor progression seems to be related to 

nucleoplasm and translation nodes. Regarding T2 subtype, it seems that metabolism and, 

especially, mitochondria act as the motor of cancer development. T3 analyses point out that 

nucleoplasm, mitochondria and metabolism, and extracellular matrix nodes could be involved 

in T3 tumors carcinogenesis. Identified processes were different among proteomics subtypes, 

suggesting that the molecular motor of the disease is different in each subtype. These 

differences can have implications in the development of future tailored therapeutic 

approaches for each PDAC proteomics subtype. 

Keywords: Pancreatic ductal adenocarcinoma, high-throughput proteomics, carcinogenesis, 

tumor progression, molecular profiles  
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Introduction 

Pancreatic adenocarcinoma (PDAC) is an aggressive disease with an overall 5 year-survival rate 

of only 5%. At the time of diagnosis, 80% of the tumors are already in incurable stages. On the 

other hand, in patients with localized disease, surgery represents the only possible curative 

treatment. However, despite performing a radical resection, 80% of the patients are going to 

relapse (1, 2). 60,430 new pancreatic adenocarcinoma cases and 48,220 related deaths have 

been estimated to occur in 2021 in the United States with an increasing incidence, being the 

fourth cause of cancer death (3). Therefore, it is an absolute priority deepen into the 

knowledge of pancreatic adenocarcinoma pathogenesis. 

PDAC molecular subtypes have been already defined using transcriptomics data (4-6). Collison 

et al. divided PDAC into a classical, an exocrine-like, and a quasi-mesenchymal subtype (5). 

Moffit et al. established a classification making distinctions between tumor subtypes -basal-

like and classical-, and stromal subtypes -normal and activated- (4). Finally, Bailey et al. divided 

PDAC into squamous, pancreatic progenitor, immunogenic and aberrantly differentiated 

endocrine exocrine (ADEX) subtypes (6). Squamous, quasi-mesenchymal and basal-like 

subtypes are pretty well aligned across the three classifications. Puleo et al. suggested that the 

differences showed by Bailey et al. were due to the cellularity of the samples (7). 

Proteomics has been developed as a complementary approach to the massive sequence of 

genes and genomes and analysis at the RNA level. Its importance lies in the fact that proteins 

ultimately define the function and the operations of cells, tissues and organisms (8). Whereas 

genomics usually shows why things happen, proteomics explains what is happening. In this 

regard, genomics and proteomics complement each other integrating different levels of 

information. 

A previous study defined proteomics subtypes of PDAC using hepatic metastases, classifying 

tumors into metabolic, progenitor-like, proliferative and inflammatory subtypes (9). Another 

study identified using proteomics four risk subgroups of PDAC (10). Recently, Cao et al. studied 

early biomarkers of PDAC by proteogenomics using tumor and normal adjacent tissues (11). 

However, until now, a proteomics study in order to define those processes involved in tumor 

development and progression has not been performed.  

In this study, a molecular characterization of paired pancreatic adenocarcinoma samples 

(normal tissue-preneoplastic lesions-primary tumor-lymph node metastases) based on a 

proteomics analysis pipeline followed by computational approaches were performed to 

deepen the molecular information.  
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Coupling proteomics with our data analysis pipeline allow identifying those biological 

processes related to carcinogenesis and tumor progression through the analysis of paired 

samples. Network analysis based on probabilistic graphical models (PGMs) was used to further 

characterize those biological functions that may be relevant to tumor development and 

progression, comparing the different type of samples. Three proteomics tumor PDAC subtypes 

were identified and biological processes involved in carcinogenesis and tumor progression 

were different among them. 
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Material & Methods 

Patient samples and clinical data 

Patients with PDAC treated with surgery and adjuvant therapy from February 2010 to October 

2020 at Hospital Universitario La Paz with available FFPE primary tumor and normal tissue, 

preneoplastic lesions grade 2-3 (PanIN), and/or lymph node metastases, were selected for the 

study. Samples were punched in order to study the differences associated with the different 

types of regions. A total of 52 primary tumors, 47 non-tumor tissues, 43 PanIN, and 31 lymph 

nodes were obtained for the proteomics analyses. The study was approved by the Ethical 

Committee from Hospital Universitario La Paz (IRB number: 1349). 

Protein isolation 

Protein isolation was done as previously described (12). Briefly, FFPE sections were 

deparaffinized in xylene and washed twice in absolute ethanol. Protein isolates were prepared 

in 2% of SDS. Protein quantity was measured using MicroBCA Protein Assay Kit (Pierce-Thermo 

Scientific). Finally, 10 µg of each protein extract were digested with trypsin (1:50) and SDS was 

eliminated from the lysates using Detergent Removal Spin Columns (Pierce). Before mass-

spectrometry experiments, samples were desalted using ZipTips (Millipore), dried, and 

resolubilized in 15 µL of a 0.1% formic acid and 3% acetonitrile solution. 

Peptides were acidified to perform a stage-tip cleanup using two Empore reversed-phase 

extraction disks (3M) (13). Digests were dried in a SpeedVac and stored at −20°C until LC-

MS/MS analysis. Peptides were re-solubilized in 20 µl of 3% acetonitrile, 0.1% formic acid and 

1 µl of indexed retention time (iRT)-peptides (Biognosys) were spiked in each sample for MS 

analysis. For the DDA analysis and subsequent spectral library generation, a small volume of 

each sample was taken and combined into a total of 10 pooled samples.  

Liquid chromatography-mass spectrometry experiments 

One hundred and seventy-three samples from 52 PDAC patients including non-tumor tissue, 

primary tumor, PanIN and affected lymph nodes were analyzed by high-throughput 

proteomics. 

Mass spectrometry analysis was performed on an Orbitrap Fusion (Thermo Scientific) 

equipped with a Digital PicoView source (New Objective) and coupled to a M-Class UPLC 

(Waters). Solvent composition of the two channels was 0.1% formic acid for channel A and 

0.1% formic acid, 99.9% acetonitrile for channel B. For each sample 2 μl of peptides were 
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loaded on a commercial MZ Symmetry C18 Trap Column (100Å, 5 µm, 180 µm x 20 mm, 

Waters) followed by nanoEase MZ C18 HSS T3 Column (100Å, 1.8 µm, 75 µm x 250 mm, 

Waters). The peptides were eluted at a flow rate of 300 nl/min. After an initial hold at 5% B for 

3 min, a gradient from 5 to 22% B in 109 min and 32% B in 8 min was applied. The column was 

washed with 95% B for 5 min and afterwards the column was re-equilibrated to starting 

conditions for additional 10 min.  

For library generation using the pooled samples, the mass spectrometer was operated in data-

dependent mode (DDA) acquiring a full-scan MS spectra (350−1’500 m/z) at a resolution of 

120’000 at 200 m/z after accumulation to a target value of 400’000. Data-dependent MS/MS 

were recorded in the Orbitrap using quadrupole isolation with a window of 1.4 Da and HCD 

fragmentation with 30% normalized collision energy (NCE). Orbitrap resolution was set to 

30’000, maximum injection time to 54 ms with a target value of 50’000, and the cycle time was 

set to 3 s. Charge state screening was enabled. Singly, unassigned, and charge states higher 

than seven were rejected. Precursor masses previously selected for MS/MS measurement 

were excluded from further selection for 25 s, and the exclusion window was set at 10 ppm. 

For the analysis of the individual samples, the mass spectrometer was operated in data-

independent mode (DIA). DIA scans covered a range from 400 to 1100 m/z in windows of 20 

m/z. The resolution of the DIA windows was set to 30000, with an AGC target value of 50’000, 

the maximum injection time set to Dynamic and a NCE of 30. Each instrument cycle was 

completed by a full MS scan monitoring 350 to 2000 m/z at a resolution of 120000.  

The samples were acquired using internal lock mass calibration on m/z 371.1010 and 

445.1200. The mass spectrometry proteomics data were handled using the local laboratory 

information management system (LIMS) (14) and all relevant data have been deposited to the 

ProteomeXchange Consortium via the PRIDE (http://www.ebi.ac.uk/pride) partner repository 

with the data set identifier PXD032076. 

Spectral library generation and protein quantification 

A hybrid spectral library was generated using the Pulsar search engine and spectral library 

generation functionality in Spectronaut (14.0.200601.47784, Biognosys) applying the default 

parameter settings to DDA and DIA runs. Spectra were searched against a canonical SwissProt 

database for human and common protein contaminants (NCBI taxonomy ID9606, release date 

20190709). Carbamidomethylation of cysteine was set as fixed modification, while methionine 

oxidation and N-terminal protein acetylation were set as variable modifications. Enzyme 

specificity was set to trypsin/P allowing a minimal peptide length of 7 amino acids and a 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 15, 2022. ; https://doi.org/10.1101/2022.03.31.22273227doi: medRxiv preprint 

https://doi.org/10.1101/2022.03.31.22273227


maximum of two missed-cleavages. Precursor and fragment tolerance was set to Dynamic, 

respectively for the initial search. The maximum false discovery rate (FDR) was set to 0.01 for 

peptides and 0.01 for proteins. Protein quantification was performed in Spectronaut using the 

default settings. The quantitative data were extracted using the BGS Factory Report (default) 

and used for follow-up analyses. Stringent filtering of the extracted feature groups by the 

Spectronaut reported q-Value was applied. For precursor fragment groups we required a per 

run q-value of at most 0.05 and a per experiment q-value of at most 0.01. The q-value sparse 

mode was used in combination with a global imputing strategy. To perform statistical 

modeling, fragment intensities were aggregated into precursor and peptide intensities.  

Data preprocessing 

Proteomics data was transformed into log2. At least 75% of valid values in at least one group 

(non-tumor tissue, PanIN, primary tumor, and lymph nodes) was applied as quality criterion. 

Then, missing values were imputed to a normal distribution using Perseus software (15). 

Study of GATA6 expression by immunohistochemistry 

For GATA6 determination, optimal tissue blocks were selected by an expert pathologist on 

haematoxylin and eosin (H&E) slides. Representative tumor areas of each case were selected 

for tissue microarray (TMA) construction. Two representative cores of 1.2 mm in diameter 

were taken and arrayed into a receptor block using a tissue microarrays (TMA) workstation 

(Beecher Instruments, Silver Spring, MD, USA) as previously described (16). 4 µm sections of 

the TMAs were used for immunohistochemistry (IHC) purposes. Briefly, slides were cut with a 

semiautomatic microtome HM 3508 (MICROM), deparaffinized and rehydrated in water. 

Antigen retrieval was performed in a DAKO PT Link. Peroxidase activity was blocked with Dako 

Protein block for 10 minutes, incubated for 30 minutes with primary antibodies, detected with 

Dako Envision Plus kit, and counterstained with haematoxylin. All reagents are from Dako 

(Agilent, CA, USA). GATA-6 antibody used:  ref. nº AF1700 (R&D Systems, MN, USA). 

Probabilistic graphical models 

As in previous works (12, 17), probabilistic graphical models (PGMs) were calculated using 

proteomics data without any a priori information in R using grapHD package (18). This analysis 

allows organizing protein data according their expression profile and identify relevant 

biological processes. The resulting networks were split into functional nodes accordingly to the 

gene ontology of its branches. Gene ontology analyses to assign a function to each functional 

node were done in DAVID webtool (19), using homo sapiens as background and GOTERM-FAT, 
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Biocarta and KEGG as categories. Once the functional nodes were assigned, functional node 

activities were calculated as the mean expression of those proteins involved in the main 

function of each node. These functional node activities were used to make comparisons 

between groups of samples.  

Statistical analyses 

Hierarchical cluster (HCL) based on correlation and average linkage using to establish tumor 

proteomics subtypes, were done using MeV software (20). Mixed linear models with fixed 

effects were used to establish the significant differences between groups of samples. These 

calculations were done in R using the library lme4 (21). For the comparison between tumor 

samples, a Mann-Whitney test was used. Finally, the relationships between clinical parameters 

and subtypes were studied using Chi-squared tests. These tests were done using Graph Pad 

Prism v6; p-values were two-sided and considered significant below 0.05. 

Validation of PDAC proteomics subtypes in TCGA cohort 

A centroid based on the 313 differential proteins defined in the SAM was calculated for each 

tumor proteomics subtype. On 284 of these 313 proteins an equivalent gene existed in the 

TCGA cohort. Using these 284 genes, TCGA samples were classified in one of the three defined 

subtypes. Then, functional node activities were calculated to verify that the subgroups had the 

same molecular features than the tumor proteomics subtypes. 
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Results 

Clinical data 

From a cohort of 110 PDAC patients treated with surgery and adjuvant therapy from February 

2010 to October 2020 at Hospital Universitario La Paz, fifty-two patients were selected for 

proteomics experiments. For these patients all the available samples were analyzed: non-

tumor tissue, preneoplastic lesions grade 2-3 (PanIN), tumor, and lymph nodes. 47 non-tumor 

samples, 43 PanIN, and 31 lymph node samples were available.  

Regarding clinical data, only information about fifty patients was available due to loss of 

follow-up after surgery of two of them. These fifty patients were used for the analyses that 

involved clinical parameters (Table 1). 

The median of follow-up was 13 months and 37 relapses had occurred, of which 10 were local 

relapses and 27 were distant relapses. All patients were treated with surgery and adjuvant 

therapy, and none of them received neoadjuvant therapy. 

Proteomics experiments 

3,927 proteins were identified in DIA mass-spectrometry experiments. After applying a quality 

criterion of at least 75% of valid values in at least one group (non-tumor tissue, PanIN, primary 

tumor, and lymph nodes), 2311 proteins were used for the subsequent analyses. 

Proteomics pancreatic ductal adenocarcinoma subtypes 

At first, all the samples were analyzed by a hierarchical cluster (HCL) to establish differences 

between different types of tissues. Surprisingly, the HCL was not capable to split samples by 

tissue type, i.e., establishing a group of non-tumor tissue, another of tumor samples, another 

with PanIN and a last one containing the lymph node samples (S1 Fig). 

In order to establish if the variability associated with this distribution that does not distinguish 

by sample origin was related to different proteomics tumor subtypes, only tumor samples 

were selected to perform the analysis. In this case, the HCL clearly established three different 

groups of tumors in PDAC according to their proteomics profile. T1 included 16 (32%) patients 

whereas T2 and T3 was composed by 17 (34%) patients each one (Fig 1).  
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As in previous works (12, 17), a network analysis based on PGMs were used to characterize in 

depth the differences at biological processes level between the three proteomics PDAC tumor 

subtypes. The resulting network was divided into eight functional nodes, two of them with an 

overrepresentation of adhesion proteins. Functional node activities showed differences 

between the three subtypes. T1 presented higher functional node activities in adhesion and 

complement activation nodes, and will be referred as “adhesion subtype” for now on. T2 had 

higher functional node activities of mitochondria and metabolism and translation nodes, being 

for now on, the “metabolic subtype”. Finally, T3 showed higher functional node activities in 

nucleoplasm and splicing, and will be named as “nucleoplasm subtype” (Fig 2). 

Regarding the clinical relevance of these subtypes, T1 and T2 contained most of the pancreatic 

tumors located in the head of the pancreas and T3 contained most of the tumors located in 

the body and tail (Sup Figure 1A). There were not significant differences between T groups 

according to gender, diabetes, pancreatitis, smoking, grade, type of resection, pT, pN, stage or 

location of metastases. Any differences in prognosis according overall survival or disease-free 

survival between the three PDAC proteomics subtypes were founded (Sup Fig 1B). The 

percentage of relapses at 12 months was 37% in T1 subtype, and 53% in T2 and T3 subtypes. 

Study of classical defined biomarkers from PDAC transcriptomics subtypes 

Of the defined biomarkers from transcriptomics PDAC subtypes, only Mucin 5 (MUC5A), 

characteristic of Moffit classical subtype and Bailey progenitor subtype, and insulin (INS), 

characteristic of Bailey’s ADEX subtype, were identified in the list of the identified and 

quantified proteins. MUC5A expression was compared across the defined PDAC proteomics 

subtypes and it was significantly higher in T1-adhesion subtype. Additionally, insulin protein 

(INS) had a higher expression in T2 subtype, being comparable with ADEX subtype (Sup Fig 2). 

 

GATA6, a marker characteristically expressed in Moffit classical subtype, was studied by IHQ. 

All T3 tumors showed a positive expression of GATA6 by IHC, and negative ones were split into 

T1 and T2 subtype (Sup Fig 3). Altogether, these results suggested that T2 tumors correspond 

to ADEX subtype and contained classical and basal-like tumors; T1 also contained basal-like 

and classical subtypes; and T3 corresponded only to classical tumors that also had an 

overexpression of proteins related to nucleoplasm. 

Identification of biological processes involved in carcinogenesis and tumor progression in each 

PDAC proteomics subtype 
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Since differences between subtypes are bigger than differences between the types of the 

samples, we studied the differences between samples at a functional level in order to 

characterize the biological processes involved in the progression of the disease independently 

in each defined proteomics subtype. Thus, new analyses including each type of sample (normal 

pancreatic tissue, PanIN, tumor and lymph nodes) were performed for each proteomics 

subtype. 

 

1. Identification of T1 carcinogenesis and tumor progression processes 

T1 tumor samples are characterized by a higher adhesion and complement functional nodes 

activities comparing with the other PDAC proteomics tumor subtypes. 

A network based on PGMs was constructed including all types of samples from patients with 

T1 tumors. The resulting network had eleven functional nodes, one without an 

overrepresented biological function (Fig 3A). Functional node activities and mixed linear 

models were used to define those biological processes with differential functional node 

activities between tissue samples (Fig 3B, Table 2). 

 

Using mixed linear models, differences between non-tumor and tumor tissue were identified. 

Mitochondria, pancreatic secretion, and translation nodes activity decreased in tumor samples 

comparing to PanIN, and adhesion2, and complement activation and antigen presentation 

nodes activity presented an increase in tumor samples comparing to PanIn. 

Significant differences between tumors and lymph nodes and therefore related to tumor 

progression were identified in complement activation and antigen presentation, adhesion 2, 

ECM, nucleoplasm, and translation functional nodes. In this case, nucleoplasm and translation 

were higher in lymph nodes and the others suffered a decrease in their activity in lymph node 

samples. 

Adhesion 2 node contains some relevant proteins such as HSPB1 or THY. Complement 

activation node was mainly formed by immunoglobulins and complement proteins as C3 or 

C1QB. The translation node was mainly formed by ribosomal proteins (RPL3, RL23A, RL11, RL8, 

RS9, etc.). Finally, the most relevant protein included in nucleoplasm node was HIF1AN. 

 

2. Identification of T2 carcinogenesis and tumor progression processes 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 15, 2022. ; https://doi.org/10.1101/2022.03.31.22273227doi: medRxiv preprint 

https://doi.org/10.1101/2022.03.31.22273227


T2 tumors were characterized as a higher mitochondria, metabolism and translation activity 

comparing to the other PDAC tumor subtypes and presented overlapping characteristics with 

ADEX subtype. Again, a network was built using all T2 samples. It was composed of 12 

functional nodes, two of them with two associated functions: pancreatic secretion and 

metabolism, and the other cytoskeleton and MAPK (Fig 4A). 

Functional node activities and mixed linear models were used to define those biological 

processes with differential functional node activity between tissue samples (Fig 4B). 

Those biological processes identified as related to tumor development were pancreatic 

secretion and metabolism, which were significantly higher in tumor samples than in normal 

tissues and PanIN. 

These functional node activities (pancreatic secretion and metabolism) presented a significant 

decrease in lymph node samples comparing to tumors, being able to be associated with tumor 

progression. 

Pancreatic secretion node contained several relevant proteins such as TYMP, NAMPT or 

pancreatic lipases as PNLIP. 

3. Identification of T3 carcinogenesis and tumor progression processes 

T3 subtype was characterized by a higher nucleoplasm activity and also had overlapping 

characteristics with classical subtype. The obtained network using protein expression data 

from T3 samples was composed by ten functional nodes (Fig 5A).  

Functional node activities showed differences between no tumor and tumor samples in 

nucleoplasm, mitochondria & metabolism, and ECM. ECM had a decrease in their activity in 

tumors comparing to normal samples while nucleoplasm showed an increase in tumor 

samples. In addition, tumor samples presented a decrease in mitochondria & metabolism node 

activity compared to PanIN. In the case of tumor and lymph nodes, there are not any processes 

significantly different between them (Fig 5B). 

Nucleoplasm node was formed by some well-known proteins as PARP1, ELAVL1, SART3, RAN, 

FUBP1, APEX1 or AKT1S1. 

A summary of the differential functional node activities and its corresponding biological 

processes is presented in Table 2. Complete results of mixed linear models are provided in Sup 

File 1. 
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Validation of these tumor subtypes in the TCGA cohort 

In order to confirm the described PDAC proteomics subtypes, the TCGA cohort was used. 

According to a centroid assignation, there were 46 (25%) PDAC samples in T1 subtype, 73 

(40%) in T2, and 65 (35%) samples in T3 subtype. Using functional node activities calculated in 

this cohort confirmed that the TCGA samples assigned to T2 subtype had metabolic 

characteristics. T1 subtype samples had higher activities in adhesion node as it occurred in the 

proteomics cohort. T3 subtype showed a higher activity in nucleoplasm and splicing functional 

node (Sup Fig 4). None differences in overall survival between the tumor proteomics subtypes 

were found. 
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Discussion 

This is the first study in PDAC using proteomics to define molecular subtypes and mechanisms 

involved in tumor development and progression in each subtype. Samples from 52 PDAC 

patients including non-tumor tissues, preneoplastic lesions, primary tumors and lymph nodes, 

were analyzed by high-throughput proteomics and a Systems Biology approach in order to 

identify relevant biological processes in tumor development and progression. 

Using this approach, we have defined three proteomics PDAC subtypes, which can be detected 

even in the earliest stages of tumor development. Each defined subtype showed specific 

molecular features. T1 subtype is related with adhesion, T2 subtype has metabolic features, 

and T3 subtype presented high splicing and nucleoplasm activity. These proteomics subtypes 

also shared some characteristics with subtypes previously defined by transcriptomics, while 

providing new and complementary information: T2 tumors correspond to ADEX subtype, 

including some metabolic basal-like and classical subtypes; T1 contained basal-like and classical 

subtypes; and T3 corresponded to those classical tumors with high expression of nucleoplasm 

related proteins. Interestingly, identified processes involved in tumor development and 

progression were different between the three PDAC proteomics subtypes, suggesting that the 

molecular motor of the disease is different in each subtype. These differences can have 

implications in the development of future tailored therapeutic approaches for each PDAC 

proteomics subtype. 

Previous transcriptomics studies defined a group of tumors where adhesion plays an important 

role (4-6), as observed in our proteomics subtype T1. Carcinogenesis in T1 subtype seems to be 

related to a decrease of mitochondria, pancreatic secretion and translation nodes activity, and 

an increase of adhesion and complement activation and antigen presentation nodes activity. 

Adhesion 2 functional node contains some relevant proteins, such as HSPB1 and THY1. HSPB1 

gene codifies Heat Shock Protein 27 (Hsp27), a cell survival protein found at elevated levels in 

many human cancers including prostate, lung, breast, ovarian, bladder, renal, pancreatic, 

multiple myeloma and liver (22, 23). THY1, also known as CD90, is a stem cell marker that 

interacts with monocytes and macrophages, promoting immunosuppressive features of 

immune cells, enhancing the stemness and E-MT of PDAC. It has been suggested that THY1 

establishes a favorable environment that promotes tumor progression (24), which can be 

mediated by high levels of PD-L1 in CD90+ cells (25). In addition, complement and antigen 

activation functional node was mainly composed by immunoglobulins and complement 

proteins. Although the role of complement in PDAC development is still unclear (26), the role 
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of complement in tumor development and modulation of tumor microenvironment has been 

demonstrated (27). The expression of complement C3 in pancreatic cancer was described as 

significantly higher than in normal tissues, being proposed as a diagnostic biomarker of early-

stage pancreatic cancer (28, 29). Depletion of C3 in tumor cells enhanced efficacy of anti–PD-

L1 treatment (30). These results together suggest that high levels of THY1 and complement 

components in T1 tumors provoke and immunosuppressive tumor microenvironment, 

suggesting an inflammatory phenotype, and open up the possibility of using a combination of 

immunotherapy coupled with anti-PD1/PD-L1 therapy in patients with these T1 tumors. 

Differences between tumors and lymph nodes in T1 subtype, related to tumor progression, 

were identified in nucleoplasm, translation, adhesion, extracellular matrix, and complement 

activation nodes. In nucleoplasm functional node HIF1AN stands out, due to its role in the 

regulation loop of IGFR. It has been described that the use of an IGFR inhibitor caused a lower 

expression of this protein and a decrease in growth in pancreatic cancer cells (31, 32) Thus, 

IGFR pathway inhibitors may avoid tumor progression in PDAC T1 proteomics subtype. 

Our data in primary tumors confirmed that mitochondria metabolism plays an important role 

in one of the PDAC proteomics subtypes, T2 subtype. Our analysis based on probabilistic 

graphical models also highlighted the importance of glycolysis and pyruvate metabolism, valine 

metabolism, and fatty acid metabolism among others. In a previous study analyzing tumor and 

adjacent tissue from three PDAC patients, differential proteins related to metabolism, 

especially mitochondrial proteins and proteins whose function is acting as regulators of 

pancreatic juices, were identified (33). In addition, in a previous proteomics study in hepatic 

PDAC metastases, a group related to metabolism was defined, characterized by the expression 

of ethanol oxidation, mitochondrial fatty-acid beta oxidation and retinoic acid signaling 

pathways (9). Metabolism and pancreatic secretion nodes had differential activity between T2 

normal tissue, PanIN and tumors, and also between tumors and lymph nodes. Pancreatic 

secretion node contained some relevant proteins. For instance, expression of the angiogenic 

factor TYMP has been correlated to capecitabine and fluorouracil response (34, 35). 

Additionally, Law et al. established in their proteomics study that TYMP had a strong 

correlation with patient survival in PDAC (9). Another protein in this node is NAMPT, whose 

inhibitor STF-118804, in combination with chemotherapy agents such as paclitaxel, 

gemcitabine, and etoposide, showed an additive effect in the decrease of cell viability and 

growth in PDAC (36). PNLIP is one of the main pancreatic lipases. It is related to orlistat, a drug 

used in obesity treatment. Kridel et al. state that orlistat may inhibit growth of prostate cancer 

by interfering with the metabolism of fats (37). Interestingly, in lymph node metastases these 
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processes presented a significant decrease comparing to primary tumors. In conclusion, 

regarding T2 subtype, it seems that metabolism and, specially, mitochondria act as the motor 

of cancer development. 

The last proteomics subtype, T3, was related to nucleoplasm and histones. Mutational studies 

of PDAC showed a high prevalence of genetic alterations in genes involved in chromatin 

remodeling such as SMARCA2, SMARCA4, MLL2 or ARID1A, among others (38), so it is not 

surprising that proteomics subtyping highlighted the relevance of proteins related to 

nucleoplasm and histone modification. This group also was GATA6 positive, being equivalent 

to classical PDAC tumors. T3 analyses point out that nucleoplasm, mitochondria & metabolism, 

and extracellular matrix nodes could be involved in T3 tumors carcinogenesis. The nucleoplasm 

node also contained some well-known cancer-related proteins, such as PARP1. ELAVL1 is also 

present in this functional node and it has been associated with response to gemcitabine in 

pancreatic cancer (39). SART3 is an RNA-binding nuclear protein that is a tumor-rejection 

antigen. This antigen possesses tumor epitopes capable of inducing HLA-A24-restricted and 

tumor-specific cytotoxic T lymphocytes in cancer patients and may be useful for specific 

immunotherapy. RAN promotes metastasis and invasion in pancreatic cancer by deregulating 

the expression of AR and CXCR4. In this study they also demonstrated that the expression of 

Ran was remarkably higher in lymph lode metastases than in primary pancreatic cancer tissue 

(40). FUBP1 is a target of irofulven, a novel anti-cancer compound, whose anti-tumor activity 

in an advanced pancreatic cancer patient was documented (41). APEX1 redox selective 

inhibitor E3330 caused a significant inhibition of tumor cell migration in PDAC (42). AKT1S1 is a 

target for rapamycin, a drug used in the treatment of other cancers (43, 44).  

Proteomics has been previously used to characterize PDAC disease employing serum, 

pancreatic juice, fresh tissue and paraffin samples. Holm et al. analyzed 21 serum samples 

from patients with pancreatic cancer to identify proteins differentially expressed between 

patients with long or short survival (45). Paulo et al. compared PanIN lesions and PDAC FFPE 

samples, identifying a list of exclusive proteins for each condition. Annexin 4A, fibronectin and 

mucin 2 were exclusively expressed in PDAC samples (46). Naidoo et al. conducted the first 

study of FFPE samples comparing PDAC and lymph node metastases and found that proteins 

differentially expressed were mostly related to immune system and metabolic processes (47). 

Cao et al. recently identified some proteins that could be useful as early detection biomarkers 

in PDAC comparing normal and tumor tissue (11). However, in these studies the differences 

between molecular subtypes were not evaluated. In this context, our approach has two main 

advantages: first, analyzing different stages of tumor progression (non-tumor tissue, PanIN, 
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tumor and lymph nodes) allowed us to study carcinogenesis (differences between PanIN and 

tumor tissue) and tumor dissemination (differences between tumor tissue and lymph nodes) 

independently. Second, our analytical pipeline allows studying biological processes instead of 

proteins individually, providing naive and undirected context to the high-throughput 

proteomics data and allowing interpretation of the molecular features detected in each 

proteomics subtype. Additionally, our proteomics subtypes were validated by the PDAC TCGA 

cohort. 

Remarkably, our analyses showed that differences between tumor subtypes are higher than 

between type of tissues. Connor et al. analyzed 19 paired samples, primary tumors and 

metastases, and showed that they were molecularly conserved, i.e., paired metastases and 

primary tumors were classified in the same molecular subtype (48). The fact that adjacent non-

tumor tissue is more related to its neighbor tumor than non-tumor tissue from other patients 

suggests that the physical tumor border does not correspond with the molecular tumor border 

in pancreatic adenocarcinoma. 

Drug development in PDAC is challenging, as modest results of immunotherapy in this 

pathology points out. Although several reasons for this lack of results have been proposed 

(49), the inclusion of unselected patients in clinical trials, regarding its molecular features, may 

be a hidden factor, point out the need of taking molecular heterogeneity of PDAC into account 

in future developments. Our results suggest some therapeutic strategies to follow up in each 

proteomics subtype. For instance, regarding T1 tumors, HSPB1 is target of the drug apatorsen, 

a second-generation antisense drug able to inhibit the production of Hsp27 in preclinical 

experiments. Data from the RAINIER trial showed adding apatorsen to gemcitabine+nab-

paclitaxel did not improve the outcome of unselected metastatic PDAC patients, but can be 

useful in those patients with high serum doses of Hsp27 (50). Additionally, high levels of 

THY1/PD-L1 and complement components in T1 tumors provoke an immunosuppressive tumor 

microenvironment, suggesting an inflammatory phenotype (25), and depletion of C3 in tumor 

cells enhanced efficacy of anti–PD-L1 treatment (30). These results open up the possibility of 

using a combination of complement immunotherapy coupled with anti-PD1/PD-L1 therapy in 

patients with these T1 tumors. Regarding T2 tumors,  mitochondria is emerging as an 

interesting actionable target, with numerous clinical trials currently testing different drugs 

modulating  mitochondrial activity in PDAC (51). Finally, T3 tumors showed overexpression of a 

variety of actionable targets. Veliparib, a PARP-1/2 inhibitor, was tested with gemcitabine and 

radiotherapy in locally advanced pancreatic cancer in a phase 1 study and the results 

supported a phase 2 validation study (52).  
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The main limitation of this study was the impossibility to get all types of samples from each 

patient. This limitation was mitigated using linear mixed models. Additionally, after dividing 

samples by subtype, the number of samples in each group decreased, which may have 

prevented the detection of differences in the possible predisposing factors, clinical 

characteristics and prognosis of the different proteomic subtypes. In addition, all biological 

processes that might be therapeutic targets in the future needs further study 

In this study, three PDAC proteomics subtypes were defined, an adhesion-related subtype (T1), 

a metabolic-related subtype (T2), and a nucleoplasm subtype (T3). We also suggested several 

biological processes involved in tumor development and progression characteristic of each 

proteomics subtype, suggesting that the motor of the disease is different in each subtype. 

These biological processes could be relevant as a guide to stratify patients and select 

candidates for future tailored therapeutics treatments in PDAC. 
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Figures and Tables with Captions 

 Number of patients = 50 (100%) 

Gender  

Male 30 (60%) 

Female 20 (40%) 

Age (mean) 28-84 (63) 

Diabetes at diagnosis  

Yes 9 (18%) 

No 40 (80%) 

Unknown 1 (2%) 

Tobacco use  

Yes 22 (44%) 

No 21 (42%) 

Unknown 7 (14%) 

Location of primary tumor  

Head 38 (76%) 

Body 3 (6%) 

Tail 5 (10%) 

Various 4 (8%) 

Grade  

Very differentiated 6 (12%) 

Moderately 33 (66%) 

Poor 8 (16%) 

Unknown 3 (6%) 

Type of resection  

R0 16 (32%) 

R1 34 (68%) 

pT  

1 3 (6%) 

2 11 (22%) 

3 34 (68%) 

4 2 (4%) 

pN  

N0 11 (22%) 

N1 39 (78%) 

Stage (TNM)  

Ia 2 (4%) 

Ib 2 (4%) 

IIa 4 (8%) 

IIb 38 (76%) 

III 3 (6%) 

IV 1 (2%) 

Table 1: Patients’ characteristics. 
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Figure 1: Hierarchical clustering (HCL) of PDAC tumor samples clearly showed three proteomics 

subtypes (T1, T2, and T3). HCL is based on average linkage method and Pearson correlation. 
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Fig 2: A. Network formed by 2311 proteins in PDAC tumor samples. B. Functional node 

activities comparing the three proteomics subtypes in tumor samples. ****: p<0.0001; ***: 

0.0001<p<0.001; **: 0.001<p<0.05. 
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Fig 3: A. Network of 2311 proteins in T1 subtype. B. Differential functional node activities 

comparing the different histological samples in T1 subtype according to mixed linear models. 

NT= normal tissue, P= preneoplastic lesions, T= primary tumors, LN= lymph nodes. ****: 

p<0.0001; ***: 0.0001<p<0.001; **: 0.001<p<0.05; *: p<0.05 
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Fig 4: A. Network of 2311 proteins in T2 subtype. B. Differential functional node activities 

comparing the different histological samples in T2 subtype according mixed lineal models. NT= 

normal tissue, P= preneoplastic lesions, T= primary tumors, LN= lymph nodes. ****: p<0.0001; 

***: 0.0001<p<0.001; **: 0.001<p<0.05; *: p<0.05 
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Fig 5: A. Network of 2311 proteins in T3 subtype. B. Differential functional node activities 

comparing the different histological samples in T3 subtype according mixed lineal models. NT= 

normal tissue, P= preneoplastic lesions, T= primary tumors, LN= lymph nodes. ****: p<0.0001; 

***: 0.0001<p<0.001; **: 0.001<p<0.05; *: p<0.05 
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P→T 
↓ 

Pancreatic secretion 

Mitochondria 

Translation 

 
Mitochondria & 

metabolism 

↑ 
Complement activation 

Adhesion 2 

Pancreatic secretion 

Metabolism 
 

T→LN 
↓ 

Complement activation 

Adhesion 2 

ECM 

Pancreatic secretion 

Metabolism 
 

↑ 
Nucleoplasm 

Translation 
  

Table 2: Summary of functional node activities identified as differential using mixed linear 

models between samples in each PDAC proteomics subtype. NT= no tumor tissue, P= 

preneoplastic lesions, T= primary tumor, LN= lymph node metastasis.  
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