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Abstract

To curb the initial spread of SARS-CoV-2, many countries relied on nation-wide implementation of
non-pharmaceutical intervention measures, resulting in substantial socio-economic impacts. Potentially,
subnational implementations might have had less of a societal impact, but comparable epidemiological
impact. Here, using the first COVID-19 wave in the Netherlands as a case in point, we address
this issue by developing a high-resolution analysis framework that uses a demographically-stratified
population and a spatially-explicit, dynamic, individual contact-pattern based epidemiology, calibrated
to hospital admissions data and mobility trends extracted from mobile phone signals and Google.
We demonstrate how a subnational approach could achieve similar level of epidemiological control in
terms of hospital admissions, while some parts of the country could stay open for a longer period.
Our framework is exportable to other countries and settings, and may be used to develop policies on
subnational approach as a better strategic choice for controlling future epidemics.

Introduction
As in many countries around the world [1, 2], control of the first COVID-19 pandemic wave in the Nether-
lands was largely based on nation-wide implementation of a variety of non-pharmaceutical intervention
measures (e.g., lockdown, social distancing, or reduced mobility). Their associated societal burden affected
all areas in the country equally, while infections and the healthcare burden, in contrast, were distributed
heterogeneously across space and time. This brings in focus the question whether the pandemic could
have been controlled equally well with interventions specifically tailored to subnational regions, such
as municipalities or provinces. In addition to preventing the unnecessary broader societal burden of
interventions in (largely unaffected) parts of a country, such tailored strategies potentially have several
additional advantages: (1) more efficient use of resources, such as test kits and mobile laboratories; (2)
reduced economic losses due to interventions; (3) reducing intervention-adherence fatigue in the population.

Epidemiological analyses can help to explore the value of such strategies [3]. However, the challenge
therein lies in the fact that epidemiological dynamics cannot easily be untangled from human behavior,
which varies strongly across societies and cultures [3], and are highly heterogeneous even within a
population living in a certain geographic region [4, 5]. For this reason, such an epidemiological analysis
not only needs to capture the spatio-temporal heterogeneities in both transmission and control of an
infectious disease, but also “to embed itself locally” [6, 7]: the demographic composition of the population
and how people travel, interact and mingle, across different demographic groups and subnational regions
[8–10]. Building a corresponding analysis framework that takes all this into account is however not only
highly complex, but also requires rich data at high resolutions.

Such challenges have left their vivid marks in the first COVID-19 wave. By and large, intervention
measures deployed in spring 2020 were not enough to spatially contain the virus: the worldwide spread
of SARS-CoV-2 along the backbones of globalized travel was too fast to allow continuation of travel
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as usual. Reliable data (specifically, near-real time data needed for policy-informing epidemiology) on
community-transmission were not readily available to researchers and policy makers during most part
of the first wave. For setting intervention policies in such a situation, large parts of the world used
epidemiological insights that were emerging from other countries that experienced the epidemic earlier,
notably China [11, 12]. First, this meant that local embedding was being missed [7]. Second, by the time
reliable data started to become available, national policies in many countries, e.g., the Netherlands [13] or
the UK [14], were mostly informed by models considering populations that were demographically but not
spatio-temporally heterogeneous [15].

Here, using the Netherlands as a case in point, and supported by a combination of rich data sources
(demography, mobility, mixing, hospitalization and seroprevalence), we develop an epidemiological analysis
of the first COVID-19 wave by building a dynamic proxy network of people’s contacts to embed into the
local context as well as to account for high-resolution spatio-temporal heterogeneities [16]. The wave
covers the period February 27, 2020 (the first tested case of COVID-19 in the Netherlands) till June 1,
2020 (lifting of most intervention measures). In relation to the celebration of the Carnival, which is heavily
celebrated in the south of the country, the outbreak started in the Netherlands mainly in the south. In
this timeline, there are four distinguishable periods in terms of the policy landscape, which we refer to
as phases: (i) Phase 1 (Feb 27 - Mar 11) when transmission of the pathogen progressed unchecked, (ii)
Phase 2 (Mar 12 - Mar 22) with minor interventions involving a working-from-home policy, cancellation
of large events, some social distancing and face mask advice in specific buildings such as hospitals, (iii)
Phase 3 (Mar 23 - May 11) involving a strict nation-wide lockdown with closed schools and event centers,
mandated social distancing and working-from-home policies, and (iv) Phase 4 (May 11 - May 31) involving
a gradual lifting of all measures. The analysis not only allows us to individually assess the efficacy of the
(national) non-pharmaceutical intervention measures that were implemented in the Netherlands, but it
also allows us to investigate to what extent subnational implementation of interventions during the first
wave of COVID-19 would have led to poorer or comparable control of the pandemic in the country as a
whole. In larger countries the most appropriate subnational resolution could be at the level of counties,
provinces, or any other existing administrative regions to make best use of clear lines of communication
and responsibilities; in a small, densely populated country like the Netherlands, municipalities are the
most appropriate ones. Our analysis can be exported to any other country provided comparably rich
datasets, capturing the local embedding for the analysis, are available.

Results

Analysis framework
Taking an agent-based approach, we build our framework in two parts: (i) demography, mobility and mixing
considerations that provide a high-degree of local embedding, and (ii) transmission and interventions, each
consisting of four steps (1-4 and 5-8, respectively in Fig. 1). The key steps for the epidemiological dynamics
are summarized below; additional details can be found in the methods section and Appendix 1.1-1.8 (one
Appendix 1 section per step).

In the first part, we define the agents and their movements. In the first step, using registry data
available at the Dutch national statistics agency (CBS, Statistics Netherlands), we stratify the Dutch
population into 11 demographic categories and 380 municipalities. With about 17 million Dutch residents,
we define an agent to represent approximately 100 Dutch residents. We distribute the agents across
municipalities proportionally to population sizes. The second step is to define the probability that an
agent moves between municipalities. This process is constructed using Dirichlet distributions for the
probability of an agent’s location, quantified based on anonymized mobile phone signals. In the third step,
we draw the agent’s locations and movements at hourly time resolution. The fourth step is to define the
mixing of agents present within the same municipality, which depends on the demographic category of the
agent, time of day and the type of activity that the agent is engaged in: ‘home’ , ‘school’, ‘work’ and
‘other’. The corresponding mixing matrices were based on existing surveys [9]. Together, the four steps
establish a dynamic proxy network of people’s contacts throughout the entire country at municipality-level,
with hourly resolution over the full period of analysis.

The second part of the analysis covers transmission and interventions. Here, the fifth step concerns the
initialization of the epidemic transmission model, which was based on observed hospital admissions, which
initially occurred mainly in the south of the country. The sixth step was to define transmission, based on
the SEIR model for agent-to-agent pathogen transmission, which means that every agent at any time
has one of the following four labels: susceptible (S), exposed (E), infected (I) and recovered (R). Every
one-hour time step, susceptible agents may move to the exposed compartment as a result of the force
of infection that they experience as a function of the prevalence of infectious cases in each demographic
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category in the same municipality, expected contact rates between the agent and the different demographic
categories, and their respective infectiousness. The seventh step concerns the quantification of changes
across the first COVID-19 wave: (i) behavioral measures that reduce contact rates, (ii) mobility reductions,
and (iii) school closure. Mobility changes were computed using Google Mobility data and mixing changes
were based on survey data [17] conducted during this period. The effect of behavioral measures were
calibrated to reproduce the epidemic trend over time. In the final step, we simulate transmission and
the effect of changes in interventions over time. Predicted trends in infection numbers were translated to
incident and prevalent hospital admission using a simple cohort model [18] that accounts for the delay
between initial infection and admission as well as the duration of admission. This cohort model was
quantified based on hospitalization data from the Dutch National Intensive Care Evaluation (NICE)
registration. (Henceforth, at any point of time, we refer to individuals that have been exposed in the past
as ‘affected’, so that at that point in time, they are either exposed, infected or recovered.)

A summary of the analysis itself can be found in the Methods section.

Figure 1: Our analysis framework consists of two parts: establishing proxy dynamic contact patterns from information on
demography, mobility and mixing (left panel), and transmission and interventions (right panel); each part consists of four further
steps. See Appendix 2.1 for a description of the data used in steps 2 and 5. Processes in steps 2, 3 and 6 are stochastic in nature.

Reproducing the first COVID-19 wave
Even for a geographically heterogeneous analysis it is necessary to verify that the national trends are
reproduced, which serves to calibrate and validate the relevant parameters in our simulations. The
results of the calibration process, carried out by means of an ensemble of 40 stochastic simulations, is
shown Fig. 2(a-b). The calibration is performed by means of four transmission-related parameters — β1

through β4, one for each phase of the first wave — to reproduce the total national hospital admissions
data spanning approximately three months [panel (a)], including the (initial) doubling time [panel (b)].
Hospital admissions were the most reliable source of data during the first wave, and are shown in Fig. 2
as a thick black line in both panels, with the red line and its margins showing the range produced by our
simulations. The curves in other colors in panel (a) denote the numbers of infected and exposed people,
obtained from simulations. See Methods for the βt-parameter values, and Appendix 1.8 for the details of
the calibration process.

Age stratification in our analysis reveals how the first wave likely played out nationally across
demographic groups, with non-studying adolescents, middle-age working people, and students as the most
affected demographic groups [Fig. 2(c)]. The model predicts similar patterns for seroprevalence levels
across age as was observed in June 2020 [Fig. 2.2]. It also predicts that the epidemic geographically spread
from the south (where COVID-19 is introduced in the analysis) to the north of the country via major
cities in the west [Fig. 2(d)]. This geographic pattern approximately reflects the actual spread in the
Netherlands, although we should not expect the analysis to perfectly reproduce given the high variability
in the ensemble runs (see Appendix 2.4). Finally, in panel 2(e) the hospitalization data over time are
compared for three different locations in the Netherlands: the first Dutch outbreak site in the South
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Figure 2: Calibration (a-b), and demography- and geography-resolved results from our analysis (c-e). Panel (a), left axis: the
daily number of new infections and exposures in yellow and green, respectively. Right axis: daily hospital admissions from analysis
output (red) and observed data (black). Background colors and vertical black lines denote the four phases (arbitrary coloring).
Uncertainty intervals mark the minima and the maxima in the ensemble of realizations used in the analysis; the same holds for
panels (b), (c) and (e). Panel (b): Hospitalization doubling time over the period March 13 - March 27, 2020 (shaded gray shaded
time domain) in analysis (red, 4.6 days) and observed data (black, 4.61 days). Panel (c): % affected agents (i.e., E, I or R)
per demographic group for March 12 (dashed) and March 23 (solid). Panel (d): % affected agents per municipality on two days
(March 5, May 25). Blue circles indicate the geographical locations of the three example municipalities shown in panel (e). Panel
(e): Infected agents (yellow) and hospital-admitted agents (analysis in red, and observed data in black) in three municipalities:
Eindhoven, The Hague and Groningen. Analysis data correspond to an ensemble of 10 independent realizations.

(Eindhoven), a location in the West (The Hague) where the epidemic spread relatively quickly, and a
site in the North (Groningen) which was affected less and also later. That only four (national-level βt-)
parameters leads to realistic geographical spread across 380 individual municipalities over time serves to
validate our approach for a geographically heterogeneous analysis (next section).

After the satisfactory calibration process above, we use the analysis to unravel the impact of individual
lockdown components (behavior, mobility, school closure). Figure 3(a), again a 40-member strong ensemble,
shows how reductions in mobility contributed most to epidemic control; without mobility restrictions (red),
case numbers would have approximately doubled. Behavioral changes (blue) have also had a considerable
impact, albeit lower than mobility. (Determining the impact of the behavioral intervention measures is
fairly straightforward: rather than varying the values of the transmission-related parameters β1-β4, we
simply keep all at the same value as for the very first phase.) Our analysis also predicts school closure
[yellow, Fig. 3(a)] to have had little impact. On this, we note that due to political debate, the Dutch
schools were closed relatively late (March 16, while the first confirmed case was on Feb 27) and therefore
have contributed little to epidemic control in our analysis (logically, earlier closure of schools should
have had a positive epidemiological impact, see Appendix 2.3). The individual lockdown components
contributed similarly to spatial spread [Fig. 3(b)], which quantifies the geographic spread of the COVID-19
pandemic in the Netherlands by following the number of municipalities affected substantially (for this, we
use the measure of having > 0.08% of population hospital admitted).

Effects of subnational implementation of interventions
Next, we evaluate the potential of subnational interventions, which in the Dutch case concerns non-
pharmaceutical interventions issued at the level of municipalities. For a fair comparison across scenarios
and with hospital admission data during the first wave, we implement subnational interventions in our
simulations following the national trend. This means that we initiate lockdown in a municipality when
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Figure 3: Comparing the impacts of nationally administered intervention measures. In both panels, observed data are shown
in black, the reference in green, and the impacts of (i) no behavioral changes like wearing masks, enhanced hygiene and social
distancing in blue, (ii) no mobility reduction in red and (iii) no closing of schools in yellow. Bandwidths indicate the minima
and maxima around the mean of a simulation ensemble of 40 realizations. Panel (a): Cumulative national hospital admissions.
Panel (b): Geographical spread of hospital admissions, measured by the fraction of municipalities that have at least 0.08% of the
population admitted to the hospital.

the simulated prevalence of infectious cases within that municipality has passed a certain threshold — a
fraction of the municipality’s population — where the exact intervention measures are synchronous those
issued in reality on a national scale (Appendix 1.9). Choosing the value of this threshold poses a trade-off:
a lower threshold ensures implementation of local interventions in an early stage of the COVID-19 wave
which would suppress hospital admission counts, but could unnecessarily shut down economic and social
activity in some parts of the country that are less affected by the disease. Vice versa, a higher threshold
would target municipalities where the epidemic has progressed most, but could pose the risk of starting
control too late, resulting in more hospital admissions. To show the effect of different thresholds for
prevalence of infectious cases, we choose a wide range of 3%, 1%, 0.33% and 0.1%. Our choice to use
prevalence of infectious cases for local decision-making is motivated by the following premise. Even though
testing and case reporting were not yet at a sufficient scale to inform local decisions during the first wave,
since then they were significantly scaled up. Moreover, with emerging methods and technologies such as
sewage monitoring, fast identification of disease biology (e.g., time until symptoms) and live tracking of
infections by mass testing [19] and using apps, number of infections in future will be proxy-estimated with
progressively greater accuracy and speed, facilitating faster decision-making on subnational intervention
measures (such as, in the Netherlands, starting or scaling down lockdowns at the level of municipalities).

The results are shown in Fig. 4. In panel (a), the epidemiological impact of subnational interventions
is quantified in terms of the number of hospital admissions, while the societal impact is quantified in
panel (b) by the number of municipalities that are undergoing interventions. In panel (a), the lockdown
as implemented in the Netherlands is represented by the black (observed) and green lines (prediction),
which resulted in approximately 13 thousand hospital admissions up to 1 June 2020. Higher thresholds
for deciding to implement a local lockdown clearly result in higher numbers of cumulative hospital
admissions [panel (a)] and correspondingly a lower number of municipalities affected [panel (b)], and
vice versa. A decision-making threshold of 3% (dark red) can be seen to be too high; although it only
selects a few municipalities to go into lockdown directly at March 12th (185 million additional person-days
intervention-free over the full wave), which could be considered a benefit of this approach, it results in
a 157% increase in number of admissions (∼ 19 thousand). The more stringent thresholds of 1.0% and
0.33% result in numbers of hospital admissions closer to a national lockdown (4,670 and 410 additional
admissions, respectively), but at a more modest societal benefit: 268 and 167 municipalities initialize
interventions later than in the national approach, respectively. This translates to 103 million and 36 million
additional person-days free from interventions over the full period. Interestingly, at the lower threshold of
0.33% (orange), approximately 6% of the municipalities never undergo interventions. Even closer to the
fully national approach, we also tested a threshold of 0.1% (yellow), which yields only a few additional
hospital admissions, and still 18 municipalities remaining intervention-free for over five weeks. The maps
[Fig. 4(c-d)] show the corresponding geographical distribution of percentages of affected people [panel
(c)] and the societal benefits of subnational interventions in terms of the fraction of simulation-ensemble
realizations in which a municipality remains without interventions [panel (d)]. Municipalities that remain
free of interventions are mainly located in the north and east of the country, as can be most clearly seen
for the 0.33% threshold scenario. From a mobility perspective, these municipalities belong to the more
rural, isolated, and less densely populated subnational regions of the country.

During the first COVID-19 wave, the Dutch government did not implement subnational intervention
measures, aside from bringing out an early advice to work from home in the south of the country, the
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Figure 4: Quantification of the trade-off between costs (left) and benefits (right) of locally-adjusted interventions at four threshold
values (0.1%, 0.33%, 1% and 3% of population simultaneously infected). Panel (a): Cumulative hospital admissions for different
scenarios. Panel (b): Fraction of municipalities that do not have any interventions in place. Panel (c): Cumulative fraction
of infection cases per municipality for the three local intervention thresholds. The additional number and percentage growth in
hospital admissions as compared to the observed national interventions is indicated. Panel (d): Geographical indication of which
municipalities have undergone interventions and which ones not. The number of municipalities that do not is shown in panel (b).

epicenter for the first wave. The reasoning was that once COVID-19 cases were discovered locally, most
likely, the pathogen would have already spread throughout the entire country. This is generally in line
with observations that the Netherlands is spatially well-connected in terms of people’s mobility patterns,
facilitated by a robust public transport system and a high population density, with the caveat that hospital
admission data during the first wave did suggest that provinces in the north and east of the country were
substantially less affected. Our results show that when combined with live tracking of local infections in
sufficient detail, implementation of interventions could be postponed or tailored towards local contexts,
without causing too much additional health burden. (This would of course require local governments to
be mandated appropriately and that local populations adhere to local measures.)

Discussion
Using the Netherlands as a case in point, we have evaluated the contribution of different interventions to
the total effect of the lockdown, and explored to what extent subnational implementations of intervention
measures might have had less of a societal impact, but comparable epidemiological impact. To this end, we
have developed a highly detailed geographically- and demographically-stratified analysis framework based
on a dynamic proxy network of people’s contacts throughout the entire country at municipality-level, with
hourly resolution, which in turn utilizes human mobility between municipalities based on mobile phone
signal data. We found that in the Netherlands, mobility reductions during the first wave contributed
most to epidemic control; without them, we predict that a doubling of hospital admissions would have
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occurred. Our analysis, albeit based on a small country, shows that subnational (translated to be at the
municipality-level) implementation of interventions strategies is worth considering, provided that means
to monitor infection levels are available (via sewage surveillance [20], can substantially reduce the societal
burden of interventions. The benefits of such an approach are expected to be even greater for larger
and more populated countries. Moreover, similar or even higher gains can be expected by considering
a subnational approach for also lifting interventions at a subnational level: analogous to initializing
interventions, the reduction of the disease’s prevalence across municipalities is not synchronous and,
depending on the chosen prevalence threshold, some will be able to lift earlier than was done nationally.

Even though the methodology proposed in this paper comprises demographic and geographic stratifica-
tion, and distinguishes multiple circumstances of mixing, there are still forms of granularity that we omit
(e.g., households), which limits our ability to evaluate the impact of specific interventions with higher
precision [21]. For instance, when incorporating the effect of school closures, the effect of interacting only
with family members instead of schoolmates has been captured at the level of a municipality as a whole
(i.e., a different mixing pattern between demographic groups combined with an overall lower transmission
rate). As such, our framework cannot provide insights into the role of households and household-level
interventions, which have for instance been shown to play a critical role in the geographical spread of
infection between schools [22, 23]. Another limitation is that mobility in our framework is quantified based
on mobile phone signal data that only provide anonymized movements between pairs of locations. As such,
the data do not provide identifiers to link multiple movements into one itinerary, which means that in our
analysis, agent movements are somewhat shorter on average than in reality, but agents also visit more
different locations than in reality. We further assume that agent movements vary randomly day-by-day,
whereas in reality commuting means that an agent would repeatedly travel to the same location. However,
the impact of this simplifying assumption is limited as, at the start of an epidemic, the distribution of
movement over agents is of relatively low importance, especially in the case of a relatively small and
highly connected country as the Netherlands. This is in contrast to situations towards the tail of an
epidemic or in larger geographies (e.g., Brazil [24, 25] and India [26]), where the transmission potential
of “high-mobility corridors” can eventually dry up as a result of rising immunity among high-mobility
individuals. Finally, we adopted data on national patterns in mobility (Google mobility), meaning that it
was not possible to account for changes in mobility by geography or demographic group. The geographical
aspects could be addressed by using longitudinal mobile phone signal data or individual-level self-reported
data via mobile phone apps [27–29]. This would require that such data are stored in a useful and accessible
format in a General Data Protection Regulation (GDPR)-compliant manner, which may be challenging
indeed.

In this study, we investigated only one of the several potential uses of our framework in a specific
country. With appropriate data sources, the framework can be adapted to other countries and settings of
similar or larger geographical scale. Importantly, the framework can also address other policy questions
that involve a geographical or social dimension. For instance, we explored the potential impact of
specifically isolating affected subnational areas (i.e., banning all mobility into and out of a municipality
for the Netherlands), which could reduce hospital admissions by about 30%, compared to the actual
national lockdown (Appendix 2.3). With further expansions, the framework could address questions
related to, for instance, closing or limiting specific (public) transport routes [30] and banning specific mass
events [31–33] — for both of which much more fine-grained (temporal and geographical) data would be
required. Evaluating pharmaceutical interventions such as vaccination, too, is possible to capture within
this framework, upon coupling data sources associated with age-stratified vaccination rollout, as well as
types of vaccines used.

In conclusion, we have demonstrated the potential added value of subnational implementation of
interventions which, with appropriate information about infection levels in subnational areas, may
significantly reduce the societal burden of lockdowns to control infectious disease. For the Dutch case, we
calculate explicitly how many municipalities could have remained open with limited additional hospital
admissions: 167 at the start and 12 still open after five weeks, with only 3.4% more hospital admissions.
Of course, these numbers cannot be directly projected in subsequent COVID-19 waves in the Netherlands,
or for that matter, to any waves in other countries or other variants and diseases. Nevertheless, there are
several merits of this study for a broader context to mention. First, the policy relevance of our study
is that we highlight the potential of subnational interventions. The Netherlands has a high population
density and is highly interlinked in terms of mobility, but even there a subnational approach would have
benefited the intervention strategy — which does create high expectations of similar approaches in other
countries. Second, on a meta-level, the results yield an important message to policymaking to rethink
institutional structures in epidemic situations and to at least consider the potential benefits. The results
feed the more general discussion on the balance of societal impact of lockdowns and pressure on the
health system. Third, in terms of methodology, the main merit of our approach lies in the fact that
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it captures the local context by coupling empirical data sources on demography, mobility, and spatial
clustering of the population and link this to disease transmission. This makes the approach itself, rather
than the specific numbers, exportable to other settings. Additionally, we show how to decouple individual
interventions in Fig. 3, which is made possible by capturing the local context: mobility reduction and
behavioral changes cannot be separated if mobility and behavior are not explicitly modeled. (Even though
we note that even at our high resolution level, there are limits to which such interventions can be fully
distinguished, as mentioned above.) In Appendix 2.3, we have also added fictitious scenarios on closing
municipality borders, closing schools earlier and initializing the disease in Amsterdam — all of which can
be studied when a framework like this is in place. Building on these points, we believe this paper adds to
the discussion on intervention approaches in any future epidemic beyond the case study.

Methods
This section is devoted to discuss a few of the core concepts of the methods. For a detailed step-by-step
explanation, see Appendix 1.1-1.8.

Agents and their mobility patterns
The basis for the mobility patterns is anonymized mobile phone signal data gathered by a commercial
data provider, resulting in numbers of daily travels by people living in municipality i to municipality j,
split into frequent, regular and incidental movements. Additionally, the demographic data provided by
Statistics Netherlands (CBS) allowed us to distinguish 170,721 agents (with roughly 17 million residents,
this means that each agent represents about 100 of them) with demographic details (Appendix 1.1). For
each agent, we determine movements by drawing from mobility distributions computed from the mobile
phone signal data, in which we distinguish frequent from incidental and regular movements by making
assumptions about the reasons of moving (work and school versus other activity). More specifically, the
generated mobility distributions are Dirichlet distributions, using the (normalized) movements data as
shape parameters. From these distributions, we independently draw fractions of the day spent in each
municipality (i.e., resulting in 380 fractions for each of the 380 municipalities), that are subsequently
converted into integer hours spent in municipalities. More detailed information on the computing of the
agents’ movements can be found in Appendix 1.2 and Appendix 1.3.

Pathogen transmission
Transmission from susceptible (S) to exposed (E) in this stochastic SEIR-based model is based on a
“force of infection” λ, which is translated to an hourly infection probability. The idea behind λ exerted on
a susceptible agent is that each demographic category contributes to the chance of transmission of the
pathogen to this agent, weighted by the expected mixing between the agent and this category, as well as
on the fraction infected in this category. The full equation for λ for people from demographic group g in
municipality m at time t, involving a summation over all demographic groups g′ adding to the force of
infection, is as follows.

λ(g,m, t) = h(g)︸︷︷︸
Susceptibility of g

· βt · s̄(t)︸ ︷︷ ︸
Phase & daily cycle

·
∑

Group g′

ng,g′ · I(g′,m, t)

N(g′,m, t)︸ ︷︷ ︸
Mixing with groups g′

. (1)

The first part on the right hand side of the equation involves a parameter h(g) that reflects the
susceptibility of an agent belonging to demographic group g to the disease (see Appendix 1.1). The second
part (βt · s̄(t)) contains the behavioral parameter βt (such as wearing face masks and maintaining social
distance) depending on the phase of the wave (leading to β1-β4, see Appendix 1 – tab. 1) and a daily
cycle parameter s̄(t) (see Appendix 1.6); e.g., ensuring that agents barely have any contacts in the middle
of the night. The third part involves the mixing with the eleven different demographic groups: ng,g′ is the
expected number of contacts that group g has with group g′, based on the mixing matrix that reflects

the situation (i.e., ‘home’, ‘school’, ‘work’ or ‘other’). The fraction
I(g′,m, t)

N(g′,m, t)
is the fraction of the total

number (N) of agents belonging to group g′ in municipality m that are infectious (I).
The time scales of transitions from exposed (E) to infected (I) and from infected (I) to recovered (R)

– expressed in an incubation and an infection time scale, respectively – differ per case and are drawn from
Weibull distributions with mean time scales of 4.6 and 5 days, respectively [18] (Appendix 1.5).
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Phase Start End Travel Mixing Behavior Schools
1 Feb 27 Mar 11 - - β1 = 0.135 Open
2 Mar 12 Mar 22 -31.7% Reduced as per Apr 2020 β2 = 0.11 Closed halfway∗

3 Mar 23 May 10 -42.4% Reduced as per Apr 2020 β3 = 0.09 Closed∗

4 May 11 Jun 1 -20.1% Reduced as per Jun 2020 β4 = 0.11 Open

Table 1: Overview of how the four phases in the first wave of COVID-19 in the Netherlands are implemented in our analysis.
∗Schools were closed in the period March 16 – May 10, which is also what we use in our analysis.

National-level interventions
The first COVID-19 wave in the Netherlands lasted over the period February 27 (first reported case)
to June 1, 2020. Based on the interventions that took place, we split this period into four phases, for
which we analyze the epidemiological impacts of changes in mobility, mixing, behavior and school closure.
Details about these phases are shown in Tab. 1.

In our analysis, we capture these changes in the following manner. First, we reduce inter-municipality
mobility as reported by Google [34] in the four phases of the first wave in the Netherlands. The dominant
contribution to this travel reduction, by far, was due to a working-from-home policy recommended by
the Dutch government; we implement it in our analysis by placing the reported percentage of agents,
randomly drawn from the working categories, at home. Secondly, we address changes in mixing patterns
by determining percentage changes in the mixing among different age groups from Dutch survey data [17]
in the months February, April and June 2020, and applying these changes element-wise to the mixing
matrices used in our analysis. Thirdly, we represent behavioral changes by variations in βt in Eq. (1) across
the four phases of the first wave. Fourth and finally, we implement school closing by placing school-going
agents (i.e., primary school children, secondary school children and students) as well as the parents of
primary school children at home, both in terms of the home locations of the agents and in terms of its
implications on mixing (see Appendix 1.5).
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1 Analysis framework components
This Appendix is devoted to explaining the eight steps in Fig. 1 in greater detail.

We start with 170,721 agents divided into 11 demographic groups. Following the demographic
population distribution data obtained from the Central Bureau of Statistics (CBS) of the Netherlands, we
assign them proportionately to (i.e., as living in) one of the 380 municipalities in the country. This defines
the “home municipality” and the demographic group for each agent. Based upon this, and using mobility
data accumulated by a commercial data provider from mobile phone signals in 2018, we stochastically
infer every agent’s movements throughout the country (steps 1-4 in Fig. 1). Once we have determined the
locations of every agent on an hourly basis in this manner, we simulate an individual-(agent-)based SEIR
model (steps 5-8 in Fig. 1).

1.1 Agents and demographic groups [Step 1]
Step 1 concerns the definition of the agents and their attributes. By choosing to represent the Dutch
population by 170,721 agents, we essentially adopt 1:100 population scale, meaning that each agent in the
model represents 100 people in the population. According to CBS, the Dutch population in 2019 was
17,256,870. While this means that we should ideally have a total of 172,569 agents in our analysis, we end
up with 170,721 agents because of rounding, since we need an integer number of agents living in each
municipality.

The characteristics of agents are set using real demographic data, but not directly one-to-one at
an individual level (’micro-level’), because this would not conform to the standards for protection of
sensitive data imposed by the legal requirements around the use of CBS data. First, micro-level data
are aggregated to a municipal level through automated procedures internal to CBS and not accessible
to outside researchers. For research purposes instead a distribution function is then provided for any
given characteristic or attribute. Subsequently, using a Monte Carlo process, as many samples can be
drawn from this distribution as necessary to provide the required synthetic population of agents for that
municipality.

In the Netherlands, municipalities are merged or land areas are reassigned between them on a fairly
regular basis, with the aim of making local governance more effective. Most years, the exact subdivision
of the country into municipalities therefore changes a little bit. Year-to-year changes of municipality
divisions are minor and only affect small municipalities. This does mean that the mobility data and the
demographic data, which are collected in different years, need to be transformed slightly, so that they can
be made to correspond to identical geographical divisions. Because the mobility data (see Appendix 1.2)
was using the municipality division of 2018, we projected the demographic data from 2019 onto the
municipalities as they were in 2018. (Note that in turn, purely for plotting purposes (e.g. for the maps
in Fig. 1), the municipality borders and shape files of 2020 are taken, requiring an additional projection
when visualizing the results.)

For every municipality, we split the agents living therein into eleven demographic categories, keeping
track of, e.g., whether they go to school or not, study, or their employment status. Data on whether agents
go to school or their employment status etc. are obtained from tax records and education institutional
registers, also provided by CBS. Distinguishing criteria other than age provides additional information
on how the agents move across municipalities (frequent movements or otherwise) and mix [10]. For our
analysis, this information allows us to more explicitly target the right agents for implementing intervention
measures (see Appendix 1.7-1.8).

Relevant information on each demographic group is displayed in Appendix 1 – tab. 1. The Middle-age
working category is by far the largest. Note that these fractions are not constant across municipalities:
some Dutch municipalities, especially those in the north and east of the country, have higher-than-average
amounts of elderly and fewer children, and the opposite holds for larger cities in the west.

1.2 Mobility across municipality borders [Step 2]
Given the distribution of the agents and the demographic categories across the Netherlands, we need an
empirical basis for normal (i.e., pre-pandemic) inter-municipality mobility patterns of the agents. The
data is provided by a commercial data provider ‘Mezuro’ (henceforth called “Mezuro data” and is further
elaborated on in Appendix 3.2) over the period of March 1, 2019 up to and including March 14, 2019.
Specifically, the data comprises of a matrix Mij showing how many (daily average) visits there were from
people living in municipality i to municipality j. The data does not contain information on movements
within a given municipality. Neither does it provide information on sequence of movements — for example
when a person living in Amsterdam travels to Rotterdam and afterwards travels to Utrecht, Mezuro data
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Group Criteria Attributes
Age (y) Work School National total Av. time in home Daytime mixing Nighttime mixing

(fraction) municipality
Pre-school children 0-4 - - 851880 (4.9%) 6% Home (Other) Home (Other)

Primary school children 5-11 - Yes 1295380 (7.5%) 6% School Home (Other)
Secondary school children 12-16 - Yes 991290 (5.7%) 6% School Home (Other)

Students 17-24 - Yes 1086240 (6.2%) 26% School+Work Home (Other)
Non-studying adolescents 17-24 - - 632530 (3.6%) 26% Work Home (Other)

Middle-age working 25-54 Yes - 5530360 (31.8%) 26% Work Home (Other)
Middle-age unemployed 25-54 - - 1231780 (7.1%) 6% Home (Other) Home (Other)

Higher-age working 55-67 Yes - 1623040 (9.3%) 26% Work Home (Other)
Higher-age unemployed 55-67 - - 1109170 (6.4%) 6% Home (Other) Home (Other)

Elderly 68-80 - - 2102530 (12.2%) 6% Home (Other) Home (Other)
Eldest 80+ - - 802670 (4.6%) 6% Home (Other) Home (Other)

Appendix 1 – table 1: The eleven demographic groups and attributes relevant to our analysis. The mixing situations in the last
two columns point towards the matrices chosen to simulate the mixing (see Appendix A.4): without brackets if the agent is in the
home municipality, in brackets if the agent is in a different municipality.

registers it as if there is a movement of an Amsterdam inhabitant to Rotterdam, and a separate movement
of an Amsterdam inhabitant to Utrecht (i.e., the in-between stop of this person at Rotterdam is not
registered). In the Mezuro data, there is no information on the duration of anyone’s stay in any given
municipality, nor is there any information about demographic aspects of people’s mobility.

The daily average visits in Mij are however split into three categories: ‘frequent’, ‘regular’ and
‘incidental’ (for more information, see Appendix 3.2). We use this information to crudely infer which
mobility data to use for which demographic category: We apply frequent and regular movements to
working and school-going agents, while we apply incidental movements to all other agents. In other words,
we use two mobility matrices: (Mfreq) describing regular and frequent movements, and (Minc) describing
incidental movements, both averaged over the 14 days in the period March 1 – March 14, 2019.

1.3 Agent movements [Step 3]
The third step of the model concerns linking the mobility data to the movements of individual agents in the
model. The movements are determined per agent. Each agent belongs to a particular demographic group
g and lives in a municipality m. Given demographic group g, we use either Mfreq or Minc, as mentioned
above. In the following, we use M to denote the choice of one of these matrices. The municipality m
points us to the particular row Mm to use from the mobility matrix, containing the number of movements
from m to other municipalities. We use this information to create the scale parameters for the Dirichlet
distribution, from which fractions of the day are drawn that the agent (living in m, belonging to g) spent
in each municipality. We do this as follows.

First, we have to normalize these movements in a proper manner. To account for the fact that
people living in some municipalities have above-average amount of movements, we do not normalize the
movements Mm by the total (i.e., resulting in a row-sum of 1), but by the amount of people living in m,
effectively obtaining the amount of movements to each other municipality per inhabitant of m. However,
because we aim to use these elements to eventually draw fractions of the day spent in each municipality,
we also need to set how much time is spent in the home municipality itself, as the data only contains
movements between municipalities. We assume that working people and students spend approximately
25% of their time, and not-working people spend approximately 5% of their time in other municipalities.
Using the average row sums divided by the populations as mentioned above, this results in values of 1 and
1.5, respectively, for weighting the time spent in the home municipality. Summarized, this boils down to
the following expression of the m′th scale parameters δ of the Dirichlet distribution, for people living in
municipality m, belonging to working people and students:

δ(m,m′) =

{Mfreq,mm′

P (m) · 2.5∑
i δ(m,i) if m ̸= m′

1 · 2.5∑
i δ(m,i) if m = m′ (2)

where P (m) is the population of municipality m. And analogously for other demographic groups:

δ(m,m′) =

{Minc,mm′

P (m) · 2.5∑
i δ(m,i) if m ̸= m′

1.5 · 2.5∑
i δ(m,i) if m = m′ (3)

The factor 2.5∑
i δ(m,i) sets the total sum of the Dirichlet parameters to 2.5, to set the variability between

draws from the resulting distribution to be constant. Histograms of the row sums of the mobility matrices,
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divided by the municipality population sizes are shown in Appendix 1 – fig. 1. The resulting Dirichlet
distribution is used to draw fractions of the day that a person belonging to the respective demographic
group and living in the respective municipality spends in each municipality — meaning that, per person,
380 fractions are drawn, one for each municipality. Because of the definition of the shape parameters, the
largest fraction is usually his/her home municipality. These fractions are converted to integer-hours by
multiplying with 24 and rounding down (leftover hours are spent in home municipalities).

Appendix 1 – figure 1: Histograms showing the row sums of (a) matrix Mfreq and (b) matrix Minc divided by the population
sizes belonging to those rows.

To convert this list into an actual schedule of this person on this particular day, the order of these
visits should be decided. The time spent in the home municipality is cut in two and the halves are placed
at the beginning and ending of the day, marking staying at home overnight. For example, given that p
spends 14 hours of the day in their home municipality, then p is assumed to spend the hours 00:00-07:00
and 17:00-24:00 in this municipality. Duplicate hours spent in other municipalities are concatenated
and these concatenated periods are place in the leftover hours in a random order. This leads to daily
‘schedules’ such as visualized in the bottom panel of Step 3 in Fig. 1. The motivation for working on an
hourly resolution stems from the fact that sequence of movements are highly important for epidemiological
spreading: the fact that people meet during the day in municipality A for a short while can make a large
difference already.

We repeat this procedure seven times to end up with a weekly schedule. This ultimately results in a
movement pattern that varies from day to day, but is the same for each day of the week (e.g., Monday
in week 1 are equal to Mondays in other weeks). The resulting fraction of people in other (not-home)
municipalities is shown in Appendix 1 – fig. 2 for different moments of the day, having an average of 16.6%
of the time spent in other municipalities.

We check the approximate validity of this pattern by comparing these results to survey data from
Dutch governmental research agencies. In particular, from a regular survey done by the Sociaal Cultureel
Planburea (SCP), we know that people (12 years old and older) in 2016 spent on average 20.5 hours on
paid work, 3.3 on schooling and 42.1 on recreation [35] per week. Also, 38% of the people lives in the
municipality that they work in [36], i.e., 62% has to travel to another municipality for work. This means
that 20.5

7·24 · 62% = 7.6% of the total time of a day is on average spent in other municipalities because of
work — the division by 7 · 24 is to convert from week to daily numbers. Furthermore, we know that
48% of students do not live in dorms [37], which we can use to approximate how many students have to
travel between municipalities for their schooling. Analogous to working time, we reason that an additional
fraction of time spent outside of the home municipality due to schooling is 3.3

7·24 · 48% = 0.94%, assuming
that students living in dorms outside of their school municipality and the fact that youth between 12 and
18 do not live in dorms partially counterbalance. Concerning recreation, we assume 10% of recreation being
outside of the home municipality, which results in yet another additional fraction of 42.1

7·24 · 20% = 5.0%.
Summing them results in 13.5%. This is less than the observed 16.6% (gray line in Appendix 1 – fig. 2),
but there are many large uncertainties in these calculations (e.g., the time spending survey [35] is only
based on people of 12 years and older), but we use them to have an approximate validation.

Another validation to be made concerns the factor 2.5 in Eqs. (2) and (3), which is the total sum
of the parameters of the Dirichlet distributions. Statistically, the total sum of the scale parameters in
a Dirichlet distribution indicates the variability across draws. Therefore, we need to make sure that
the variability we set here makes sense. We do this by calculating the fraction of the day spent in the
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Appendix 1 – figure 2: Percentage of people outside of their home municipality (black). At the bottom, in colors, daily-averaged
estimates of time spent outside the home municipality are displayed, due to the activities of work (green), recreation (yellow) and
school (red).

home municipality of people, and visualize the between-people variability in this metric. The results are
shown in Appendix 1 – fig. 3. In the left panel, the near-separation is noticeable between groups that
had increased cross-municipality movement (i.e., home-scale parameter of 1 in the Dirichlet distribution;
students and working people) and those that did not (i.e., parameter of 1.5; other groups). Also, we see
that in many groups (also in the ‘All’ category), the distributions of how long people are in their own
municipality varies, and the tails overlap. The differences across the municipalities in the right column
are explained by differences in their mobility-to-population ratio (illustrated in the row sums in Appendix
1 – fig. 1) and demographic differences. Even though we do not have observed data to compare these
numbers, they do not seem to be unrealistic: large cities such as Utrecht, Amsterdam and Rotterdam
involve people that are probably working there, and may indeed therefore have a higher fraction of time
spent in their home municipality.

Appendix 1 – figure 3: Variability in the fraction of time spent in the home municipality. Panel (a): across different demographic
groups. Panel (b): across a selection of municipalities.

1.4 Mixing [Step 4]
From steps 1-3, we know which people are in the same municipality at which moment of time. In step 4,
we determine the mixing of different demographic groups within a municipality, assuming proportionate
mixing. We base this on two factors: a demographic stratification in the mixing, and a distinction of
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four different mixing situations. We follow the POLYMOD study [9, 10] by distinguishing four unique
situations: ‘home’, ‘school’, ‘work’ and ‘other’. From Prem et al. (2017), we downloaded the average
contact rate matrices, and converted them from their 16 demographic groups to our 11 demographic
groups [9].

Which of the four situations applies to a person, is determined by time of day, whether the person is
in his/her home municipality, and the demographic category the person belongs to. The exact mixing
matrices used are shown in Appendix 1 – tab. 1, under ‘Daytime mixing’ (corresponding to time between
8 and 18) and ‘Nighttime mixing’ (other times of day). For the Students group, we make an exception
by not taking one specific mixing matrix, but averaging the ‘work’ and ‘school’ mixing matrices during
daytime.

1.5 Hospital admissions and model initialization [Step 5]
Hospital admissions

The hospital admission data is obtained from the Nationale Intensive Care Evaluatie (NICE) registration,
which is the official institution for hospital reports. In particular, the data can be found under https://
data.rivm.nl/meta/srv/dut/catalog.search#/metadata/4f4ad069-8f24-4fe8-b2a7-533ef27a899f?
tab=relations, which are daily numbers per municipality. In particular, this means that all model results
had to be translated into daily numbers (summing over a moving window of 24 time steps).

We proceed by discussing the translation between infection cases and hospital admissions, which
is required for both the initialization and calibration. Following Vlas et al. (2021) we use a time lag
between becoming symptomatic (in model terms: infectious I) and a potential hospital admission of being
Weibull-distributed with mean 14 and scale parameter 10 [18]. The probability of hospital admission phos,
given that a person becomes infectious is not equal for all people: elderly are more susceptible to being
hospitalized than young children, for example. In Appendix 1 – tab. 2, we show phos across the various
demographic groups. These probabilities are determined as follows. Using the seropositivity data during
the Dutch first wave [6] and knowing how many people there are in each age group (see Appendix 1.1),
we can estimate the cumulative amount of infection cases per group. Combining this with cumulative
hospital admission data per age group, we can divide the two to get the hospitalization probability per
age group, which can be translated to the 11 demographic categories we use. These probabilities phos per
demographic category are shown in Appendix 1 – tab. 2. The Weibull-distributed temporal translation
and demography-stratified probability of hospitalization are done when translating the model results into
hospital admissions, for example in the red curve in Fig. 2(a).

Demographic group phos h(g)
Pre-school children 0 1.0

Primary school children 0 2.0
Secondary school children 0.0018 3.051

Students 0.0006 5.751
Non-studying adolescents 0.0006 5.751

Middle-age working 0.0081 3.6
Middle-age unemployed 0.0081 3.6

Higher-age working 0.0276 5.0
Higher-age unemployed 0.0276 5.0

Elderly 0.0494 5.3
Eldest 0.0641 7.2

Appendix 1 – table 2: Probability of hospital admission phos and susceptibility parameter h(g).

Model initialization

The model is initialized with an estimated amount of infectious cases in the period up to March 1, 2020.
Initializing with fewer cases (i.e., up to before March 1) would increase the sparsity of initial cases, which
especially when working on a 1:100 resolution may result in high stochasticity (e.g., when in some crucial
municipalities the disease suddenly dies out). Taking a longer initialization input (i.e., up to later than
March 1) would limit our ability to test intervention measures in Phase 1. This had to be derived from
hospital admissions, because the testing capacity was so low in this period that the tested infection cases
cannot be used to estimate the real number of infections.

While the conversion of model output to hospital admissions is done using a Weibull distributed
time lag, we do the initialization simpler. We start with hospital admission data in the observed data
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(i.e., it is the other way around), which are specified per municipality. We use a flat percentage phos,0,
which is the weighted average of all hospital admission probabilities in Appendix 1 – tab. 2, weighted
by the respective category size, and we translate these numbers back 14 days into the past (instead of
fully Weibull-distributed). The respective affected agents are randomly drawn (within each specified
municipality) based on the resulting numbers. These were assigned the disease stage ‘infectious’ I, while
the rest of the population was assigned ‘susceptible’ S. We aim to approximate in the initialization the
amount of infection cases up to March 1, which means we have to take hospital admission data up to
March 15.

1.6 Disease transmission and force of infection [Step 6]
The transmission dynamics and force of infection λ are already discussed in the Methods section. This
section focuses on the susceptibility parameter and the daily cycle, both part of the equation for λ. The
first part of the equation involves a parameter h(g) that reflects the susceptibility to the disease, based
on the demographic group g. The age-specific susceptibility parameter shown in Appendix 1 – tab. 2 is
based on estimations of previous work [38], table A3. The second part [βt · s̄(t)] contains a parameter βt

that involves behavioral aspects like wearing face masks and keeping social distance — this parameter
is used for distinguishing four phases in the epidemic as described later. The parameter s̄(t) = s(t)∑

t s(t)

(where t ∈ [0, 23] in hours) is what we refer to as the ‘daily cycle parameter’, reflecting the fact that people
hardly mix during the night, and more throughout the day (see for values of s(t) per hour in Appendix 1 –
tab. 3).

Hour of day (t) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
s(t) 1 1 1 1 1 1 0.75 0.5 0.25 0 0 0 0 0 0 0 0 0 0 0.2 0.4 0.6 0.8 1

Appendix 1 – table 3: Daily cycle parameter s(t), from which we obtain s̄(t).

1.7 Intervention data sources [Step 7]
There are four factors that we apply to mimic intervention measures, spread across four phases, summarized
in Tab. 1 in the main text. The first are behavioral changes such as wearing face masks and social
distancing, represented by the values of βt, varying across the four phases, yielding β1-β4. We use the βt’s
as calibration parameters, see Appendix 1.8.

Other simulated intervention measures were related to mobility, e.g. restricting various events and
applying a working-from-home policy, which were all informed by data. The reduction in inter-municipality
travel was quantified using Google Mobility data, which describe how mobility changed across this period
across six categories (shown in Appendix 1 – fig. 4). Using the average of three of these categories —
transit stations, workplaces and retail & recreation, chosen because these reflect inter-municipality travel
best — and averaging the mobility changes within each phase, we end up with three scalar percentages
for phases 2, 3 and 4, representing a mobility reduction. These percentages are implemented by randomly
selecting the respective percentage of the population among the employed demographic categories, and
placing them at home.

Across the first wave of COVID-19, people also started mixing differently. This is explicitly measured
in the Netherlands using surveys in the PIENTER study [6]. There, three survey studies are done: one in
February 2020, one in April 2020 and one in June 2020. We only use this data in terms of their percentage
changes: that of April with respect to February, and that of June with respect to February. The authors
did not distinguish the same four unique mixing situations (home, work, school and other) as we use here,
so we translate their (age-stratified) mixing changes into a single 11-by-11 matrix representing percentage
changes in the contact rates between the demographic categories, and apply these percentage changes
to all four mixing matrices in the same manner. In particular, the mixing changes in phase 2 and 3 are
determined by the percentage mixing changes from the April surveys with respect to February surveys,
and analogously, the changes in phase 4 are determined from the June surveys. See Appendix 1 – fig. 5.

A final important relevant factor to address among the changes and interventions during the first wave,
was the closing of schools. The specific school closure dates were March 16, 2020 - May 10, 2020, which
are directly used in the model, which in particular means that the schools get closed halfway through
phase 2. School closure is implemented by two aspects. First, during daytime, all agents belonging to
the demographic categories Primary school children, Secondary school children and Students are placed
at their home municipality, and we now utilize the ‘home’ mixing matrix instead of the ‘school’ mixing
matrix to determine their mixing. Second we incorporate the effect of parents of primary school children
being forced to stay at home because their children are not going to school anymore. This means that,
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Appendix 1 – figure 4: Percentage mobility changes with respect to the baseline, provided by Google Mobility data. Six categories
are distinguished, in different colors. For the purpose of measuring how inter-municipality travel reduced, we use the average of the
categories ‘Transit Stations’, ‘Workplaces’ and ‘Retail and Recreation’. For each color, the raw data (thin lines) and 14-day running
averaged data (thicker lines) are shown.

also during daytime, we place 12% of the Middle-age working people in their home municipality and set
their mixing to ‘home’. These are chosen separate from people working at home due to the mobility
changes, to prevent double-counting.

The 12% is calculated as follows. In the Netherlands, 84% of people around 45 have children [39].
Applying the assumption that agents in the Middle-age working group (25-54 years) have equal amount of
children, we deduce that the ages of those children are uniformly distributed between −6.6 and 22.4 years
old (from which you clearly see why we only use the Middle-age working category), using the average age
of new mothers, which is 31.6 [40]. Using the Dutch primary-school ages of 4-12 years, this means that
8/(22.4 + 6.6) = 28% of these children are at primary schools. Assuming a rough estimate of 50% of those
parents actually staying home (the rest having babysitters, family members or other means of taking care
of their children), we end up with 0.84 · 0.28 · 0.50 = 0.12, which is 12%.

1.8 Connecting model runs to real dates and calibration [Step 8]
Even though the model is initialized with an approximation of the infection cases up to March 1, each
simulation requires a spinup to start mimicking the observed data well. This initial evolution is different
for each simulation, and therefore we have to link each simulation separately to real dates. In other words,
the model output has to be calibrated to actual dates. For this, we use the onset of phase 2 as a reference
point. In particular, in each time step of the model simulation, we calculate the total amount of I and
R agents. If this crosses the threshold of 1.8% of the population, phase 2 starts, meaning that this is
March 12. Once this is done, the calibration using the βt values could be done. The primary calibration
is performed with β1, to follow the initial increase in hospital admissions in Fig. 2, as well as the observed
doubling time. For β2-β4, we mainly focus on following to the observed hospital admission levels, as well
as the qualitative fact that governmental policy on this was issued from phase 2 and on, being more
strictly adhered to in phase 3, and loosened in phase 4. In other words: βt should decrease a bit in phase
2, even further in phase 3, and increase again in phase 4.

1.9 Subnational interventions
The subnational interventions tested in this study are analogous to national interventions in terms of
timing and content, but whether they are in place is decided based on the local prevalence of infection: if
the prevalence at a time t has exceeded a threshold fraction of the municipality’s population (i.e., 3%, 1%,
0.33% or 0.1% as used in Fig. 4), then at time t exactly those interventions that were applied nationally
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Appendix 1 – figure 5: Changes applied to the model mixing matrices, calculated from survey mixing matrices in the PIENTER
study [6]. Top panels: daily contacts in absolute numbers, stratified by age as depicted in the reference study (left), April 2020
surveys (middle) and June 2020 surveys (right). Bottom panels: element-wise reductions in contact numbers relative to the
reference. These reduction percentages are converted to the demographic groups we use in this study and applied throughout the
phases.

are applied to the municipality. This leads to a proper comparison between the subnational and the
national approaches.

Implementation-wise, the above means that changes to mixing and behavior (in the form of βt

variations) are applied to people present (at any time) in the particular municipality, while the closure of
schools and mobility reductions are applied to inhabitants of the municipality.
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2 Additional model results

2.1 Explanation colors in Fig. 1
In Fig. 1, step 2, the green colors in the map and widths of the lines are both showing the same data, i.e.,
the total amount of visitors from Amsterdam to other municipalities on March 1, 2019, as marked by
the mobility data (see Appendix 1.2). Several high-visited municipalities are highlighted by using black
contours. In Fig. 1, step 5, the total number of hospital admissions are shown between February 27 and
March 15 in blue shades. Several municipalities with high hospital admission counts are highlighted using
black contours. This information is used for the initialization, as mentioned in Appendix 1.5.

2.2 Seroposivity across demographic groups
Appendix 2 – fig. 1 shows national seropositivity levels across the 11 demographic categories in different
sets of national interventions. Although we add observed seropositivity (in black) to this panel, it is
important to note that these values are highly uncertain because of a variety of biases involved in the data
collection [6]. We add them to do a comparison of the general tendency across the demographic groups,
which is higher seropositivity for adolescents, lower for older people and very low for the youngest — a
tendency also found in the model output of the reference (green). Comparing the four scenarios reveals
the same hierarchy as in panel (a), with a disproportionately high level of seropositivity for non-studying
adolescents and middle-age working agents when travel reductions are omitted (red).

Appendix 2 – figure 1: Comparison of disease prevalence across the eleven demographic groups (horizontal), expressed in %
seropositivity (vertical) in different national administered intervention measures. Observed data are shown in black, the reference in
green, and the impacts of (i) no behavioral changes like wearing masks, enhanced hygiene and social distancing in blue, (ii) no
mobility reduction in red and (iii) no closing of schools in yellow. Bandwidths indicate the minima and maxima around the mean of
a simulation ensemble of 40 realizations.
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2.3 Other scenarios
The analysis framework can be used not only to evaluate subnational approaches when keeping the type
of interventions synchronous to the (real) national interventions. In Appendix 2 – fig. 2, we show a few
potential other scenarios (in gray and purple). In grey, we show what happens if municipality borders are
closed upon initializing lockdown (i), and in purple, we show we show what happens if school are closed
from the start of the simulation (ii). In scenario (i) (grey), when a threshold of local disease prevalence of
1.8% is reached, no agents can move in or out of the municipality anymore. Specifically, this means that
agents living in the municipality will not move to other municipalities anymore, and agents that would
normally move towards the specific municipality (e.g., to work), would stay in their home municipality,
instead. Mixing, behavioral and school changes are similar to the Reference scenario (i.e., issued on a
national level). Note that the threshold of 1.8% can be varied, analogous to the 3%, 1%, 0.33% and 0.1%
levels of subnational interventions in Fig. 4 in the main text. In scenario (ii) (purple), the simulations
indicate that early school closure indeed reduces the amount of cumulative hospital admissions: on average
by 13%.

Finally, we add a third potential other scenario, in brown, in which all initial cases (normally spread in
the south of the country) are found in the municipality of Amsterdam. Being the capital, this is a highly
populous and interconnected area and the resulting disease spread is faster. It obtains numbers in the
order of the scenario without mobility reductions (red), both in total hospital admissions (left) as well as
in spatial spread (right).

Appendix 2 – figure 2: Same as Fig. 3 of the main text, but including three additional scenarios, in which municipality borders
are fully closed upon initializing lockdown (gray), when schools are closed at the start of the simulation (purple), and when the
outbreak starts in Amsterdam rather than as it was in reality (brown), respectively.
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2.4 Variability in geographic evolution within the ensembles
In Fig. 3, we show the geographical distribution of the percentage of infected and recovered on May 25 for
20 individual runs of the Reference scenario (i.e., the green lines in Figs. 3 and 4 of the main text).

Appendix 2 – figure 3: Percentage of affected municipality population (i.e., infected or recovered) on May 25 using the Reference
scenario, for 20 unique runs (out of an ensemble of 40). Each column represents identical mobility seeds.
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3 Parametrization and uncertainty

3.1 Sensitivity to population scale
While we have demographic and mobility information at the individual person scale, the mobility data
has to be aggregated in order to simulate mobility changes and to account (in a mean-field manner)
for uncertainties regarding projecting mobility information from a year earlier to a pandemic situation.
In other words, with the data available, we cannot work on an agent to individual-person resolution.
In addition, we need to balance with computational speed — currently, a single run with subnational
interventions takes approximately 20 hours of local CPU time. Hence, we decided to work on a 1:100
level. To show the impact of this choice, with respect to, for example, a 1:75 resolution and a 1:500
resolution, we show these respective resolutions in Appendix 3 – fig. 1. In the 1:500 case, the resolution
is too low, making the distribution of people at initialization and throughout the infection-transmission
process too sparse — yielding a lower infection spread for similar parametrization of the β parameters
and initialization. However, when having reached sufficient population resolution (both 1:100 and 1:75),
the results equilibrate onto similar levels and do not differ in terms of the overall cumulative hospital
admissions (left), as well as in the spatial spread (right).

Appendix 3 – figure 1: Same as Fig. 3 of the main text, but only including a comparison between the reference population
resolution (1:100, green), an increased population resolution (1:75, red) and a reduced population resolution (1:500, orange).

3.2 The mobility data and its limitations
The mobility data is collected by commercial data provider Mezuro (https://www.mezuro.com/). Impor-
tantly, we note that the data was not collected specifically for this research. The regular clients of Mezuro
are municipalities that aim to have more insight in the local tourism. Mezuro infers, at any moment in
time, the position of mobile phone users by determining signal towers they are closest to. The accuracy
of their methodology on a ZIP code basis has been compared and validated with GPS data, meaning
that the quality of the data on a municipality level is clearly sufficient. The mobile phones tracked in
this research belong to the “Vodaphone” network, and by upscaling, Mezuro infers numbers for the full
country. The data comprises two weeks in 2019 (March 1 - March 14). Unfortunately, neither do we own
the data nor the data collection, and therefore cannot expand the dataset beyond these two weeks.

By means of unique (anonymous) identifiers, they are able to quantify movements from one region
(ZIP code or municipality) to another. In particular, they infer different types of visitors (frequent, regular
and incidental) based on the movement patterns. Total numbers of moving from one municipality to
another at an hourly resolution is what is provided to us. In other words, the data comprises three M by
M origin-destination matrices (frequent, regular and incidental), where M is the total number of Dutch
municipalities. The ‘origin’ here is the home municipality, which is inferred from the statistics of the
mobile phone users in a much longer time span. The values range from 34 to 54265 total visitors in a
given hour from a given municipality to a given other municipality.

While the mobility data contains valuable information, its application in our model framework clearly
involves a number of uncertainties. First, the aforementioned limited time span of the database (two weeks)
and the fact that it contains data of 2019 (instead of 2020, which is our focus) require the assumption that
the mobility patterns found in the 2019 data are also applicable in 2020. Lacking another data source,
this assumption seems reasonable under the condition that can suitably apply scaling to the data and
ex-post limit mobility in certain subnational areas to account for changes that scale linearly with regular
(‘2019’) mobility patterns. More advanced changes in mobility, e.g. demographically stratified mobility
changes, we do not have data on and therefore are not able to account for (apart from parents staying
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at home for their children, see Appendix 1.7). Second, the data contains aggregate movements at the
municipality level and we had to infer how that translates to movements of individual agents - where,
for epidemiological purposes, sequences of movements are notably important. This cannot be resolved
explicitly with the data at hand and we had to rely on our calibration on this point. Third, all mobility
and transmission in this model is domestic. International travel and transmission is not accounted for.
We note that international travel was severely limited in the first COVID-19 wave in the Netherlands and
neighboring countries, but realize that this is another source of uncertainty.
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