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Abstract

Background:

Inherited variants have been shown to contribute to cancer risk, disease progression, and

response to treatment. Such studies are, however, arduous to conduct, requiring large sample

sizes, cohorts or families, and more importantly, a long follow-up to measure a relevant outcome

such as disease onset or progression. Unless collected for a dedicated study, germline DNA from

blood or saliva are typically not available retrospectively, in contrast to surgical tissue specimens

which are systematically archived.

Results:

We evaluated the feasibility of using DNA extracted from low amounts of fixed-formalin

paraffin-embedded (FFPE) tumor tissue to obtain accurate germline genetic profiles. Using

matching blood and archival tissue DNA from 10 individuals, we benchmarked low-coverage

whole-genome sequencing (lc-WGS) combined with genotype imputation and measured

genome-wide concordance of genotypes, polygenic risk scores (PRS), and HLA haplotypes.

Concordance between blood and tissue was high (r2>0.94) for common genome-wide single

nucleotide polymorphisms (SNPs) and across 22 disease-related PRS (mean r=0.93). HLA

haplotypes imputed from tissue DNA were 96.7% (Class I genes) and 82.5% (Class II genes)

concordant with deep targeted sequencing of HLA from blood DNA. Using the validated

methodology, we estimated breast cancer PRS in 36 patients diagnosed with breast ductal

carcinoma in situ (11.7 years median follow-up time) including 22 who were diagnosed with

breast cancer subsequent event (BSCE). PRS was significantly associated with BCSE (HR=2.5,

95%CI: 1.4–4.5) and the top decile patients were modeled to have a 24% chance of BCSE at 10
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years, hence suggesting the addition of PRS could improve prognostic models which are

currently inadequate.

Conclusions:

The abundance and broad availability of archival tissue specimens in oncology clinics,

paired with the effectiveness of germline profiling using lc-WGS and imputation, represents an

alternative cost and resource-effective alternative in the design of long-term disease progression

studies.
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Low-coverage whole-genome sequencing; Breast cancer; Ductal carcinoma in situ; Polygenic

risk score; Pre-cancer; Genotyping
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Introduction

The study of the contribution of germline genetic variation to disease risk or treatment

outcome typically requires blood or saliva samples as a source of constitutive DNA. Depending

on the phenotype studied, such samples may not be banked and readily available. Samples may

have to be prospectively collected, which hinders studies requiring long-term follow-up or

obtained after contacting potential subjects of interest, which can be logistically and ethically

challenging or impossible if a patient has relocated or died. In cancer research, there is a growing

interest in directly profiling tumor tissue to obtain germline measures such as ancestry, polygenic

risk, and HLA-typing [1]. Array-based genotyping followed by imputation from a reference

population has been a standard method to genotype genome-wide SNPs in the human genome,

but its compatibility with DNA obtained from archival tissue specimens remains to be

established [2,3]. The approach can be challenging when the amount of tissue available for

research is limited, which is often the case with surgical excisions of premalignant lesions or

with most needle biopsies.

Recently low-coverage whole-genome sequencing (lc-WGS) has emerged as an attractive

alternative to single nucleotide polymorphism (SNP) array by offering higher throughput at a

reduced cost, reduced DNA input, and improved genotyping accuracy [4–6]. In fact, recent

studies have shown the feasibility of using frozen tissue for germline profiling by imputing

genotypes from off-target reads repurposed from tumor-targeted panel sequencing data,

effectively equivalent to ultra-low coverage (less than 0.1x) whole-genome sequencing [1]. It is

therefore likely that, in the absence of available targeted sequencing data, lc-WGS can be
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performed with DNA of lower quality and quantity to enable the imputation of germline variants

from archival tissue specimens.

If accurate, such an approach could have important implications for the study of the

contribution of inherited risk factors to the progression of pre-malignant disease. For many

cancer types, the widespread adoption of cancer screening has led to an increase in the detection

of pre-malignant lesions. Despite such efforts, screening has had limited impact on overall

survival [7]. Clinical guidelines vary widely from watchful waiting or biopsy as for prostatic

intraepithelial neoplasia to surgery and adjuvant treatment as for ductal carcinoma in situ (DCIS)

of the breast [8,9]. In absence of reliable progression risk biomarkers and models, these

interventions may have deleterious consequences at the two clinical extremes: delay in

life-saving treatment or complications from overtreatment. DCIS is the most common breast

cancer-related diagnosis, comprising ~20% of annual cases in the U.S. [10]. In breast disease,

factors that impact the risk of breast cancer subsequent event (BCSE), defined as an in situ or

invasive breast cancer neoplasm developed at least 6 months after treatment of a DCIS diagnosis,

include age, size, grade of the lesion, hormone receptor status, and molecular profile. Their

combined effect in risk models such as the University of Southern California / Van Nuys

Prognostic Index has not resulted in any reliable BCSE risk prediction model and additional,

more in-depth molecular and histological characterization is needed [11–16].

Given the independence between DCIS and associated BCSE in upwards of 20% of cases

as evidenced by molecular studies comparing genomic profiles of initial DCIS and subsequent

ipsilateral BCSE, systemic risk factors need to be considered in addition to those related to the

index lesion [17]. While penetrant germline pathogenic variants exist and represent strong risk
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factors in breast cancer susceptibility genes such as BRCA1, BRCA2, CHEK2, PALB2, and

PMS2, they are only present in 1.5% of all women [18]. Meanwhile, population-based

genome-wide association studies (GWAS), have identified multiple common variants associated

with lifetime risk of invasive breast cancer (IBC) [2,19]. The same SNPs have also been

associated with risk of DCIS demonstrating the shared genetic susceptibility for IBC and DCIS

[20]. It is however unclear if these SNPs are also associated with DCIS progression. Polygenic

risk scores (PRS) derived from the allelic burden of risk-associated SNPs are now being added to

common breast cancer risk models, significantly improving their performance, with individuals

in the top percentile having a 3-5 fold increase in lifetime risk relative to women with risk scores

in the middle quintile of those studied [21,22]. It is thus possible that DCIS patients with

elevated breast cancer PRS are also at higher risk of BCSE and the addition of PRS could

improve DCIS prognostic models akin to lifetime breast cancer risk models. Since BCSE can

occur years after the initial DCIS diagnosis and is uncommon - observed in 10 to 25% of patients

after 10 years, depending on treatment and known risk factors - a retrospective study is much

more feasible for the purposes of validation [23,24]. Formalin-fixed paraffin-embedded (FFPE)

tissue (referred to as archival tissue) from the DCIS biopsy or resection are therefore the only

source of genetic material available and their validity for genome-wide genotyping of germline

variants would be critical to the feasibility of such study.

Here we evaluate the validity of repurposing archival tissue specimens for germline

genetic studies. We performed lc-WGS and imputed genotypes for 10 pairs of matching blood

and tumor tissue samples to benchmark the accuracy for calling genome-wide genotypes, HLA

haplotypes, and for implementing PRS. The reported results indicate the high accuracy of
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germline genotypes and haplotypes obtained from archival tissue DNA. Using this methodology

we estimate breast cancer PRS in 36 DCIS patients and demonstrate its association with BCSE.

Results

Concordance of lc-WGS imputed genotypes between blood DNA and FFPE tissue DNA.

In order to establish the analytical validity of FFPE tissue DNA for germline genotyping

and genotype imputation from lc-WGS, we selected 10 subjects including from European,

African, and Asian ancestries with matching FFPE tissue and whole blood. The archival tissue

blocks were between 3 and 9 years old and yielded between 5 and 176 ng of DNA, which was

then prepared for sequencing with a low-input protocol (see Methods). Mean coverage depth was

0.92x (range 0.68-1.41x) and 0.7x (range 0.44-0.97) for blood and tissue, respectively.

Genotypes were imputed using a Gibbs sampling method specifically designed for lc-WGS,

which leverages haplotype reference panel information (1000G 30x NYGC reference panel -

N=3,202 individuals; see Methods) [5,25]. Overall genotypes were imputed for 61,715,567 SNPs

in each of the 20 samples, of which 43,274,690 (70.1%) were considered high quality (Impute

INFO score >0.80) [26]. Genotype concordance between blood and tissue increased with the

minor allele frequency (MAF) of the variant in the global population. For SNPs with MAF of 0.1

or more, the aggregate r2 was greater than 91% for all SNPs, and greater than 94% for

high-quality SNPs (Figure 1a). The concordance between blood and tissue was not lower for the

two individuals who were non-white (Figure S1). In contrast, the concordance was lower (87% at

SNPs with MAF greater or equal to 0.1) when the sequencing coverage depth of the tissue DNA

was lower (Figure S2). Overall, the strongest discordance between blood and tissue was
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observed for SNPs at MAF lower than 0.01 which are typically imputed with decreased accuracy

irrespective of the sample type [27].

The presence of somatic mutations and copy number alterations (CNA) in DNA from

malignant cells has the potential to decrease local imputation accuracy. In particular, CNA may

play a larger role than somatic mutations, as recently reported [1]. We estimated the effect of

CNA status on the genotype concordance between blood and tissue across SNPs located in DNA

regions that are copy neutral, in a copy gain, or in a copy loss. The studied DNA samples had, on

average, 15% of the genome (range 0 to 65%) involved in CNA while no CNA was detected in

the blood (see Methods, Table S1). Common SNPs (MAF≥0.1) located in copy neutral or copy

gain regions had a remarkable blood-tissue genotype concordance r2 higher than 95%, while

those in regions of copy number loss showed lower concordance r2 of 83% (Figure 1b). The

decreased imputation accuracy in areas of copy number loss can likely be explained by the

decrease in allele-specific coverage depth, resulting in missed heterozygotes or a sparser scaffold

for imputation.

We conclude that tissue-derived genome-wide genotypes faithfully represent germline

profiles obtained from blood, especially at SNPs frequent in the population (MAF≥0.1).

Discrepancies between tissue and blood can be explained by decreased coverage depth caused by

technical (insufficient sequencing) or genetic (copy number loss) limitations and mainly

affecting rare SNPs (MAF<0.01). These lower frequency SNPs are less likely to reach statistical

significance in GWAS studies unless they have extreme effect size and therefore are rarely

incorporated into PRS models. Taken together, the results suggest the feasibility of using archival

tissues as a source of constitutive DNA in genetic studies relying on common SNPs.
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Concordance of tissue-derived PRS.

We next sought to further validate the performance of tissue-based genome-wide

genotyping to accurately estimate PRS in individuals. Germline variants can be used to estimate

disease risk in individuals by summing the effects of previously identified risk alleles carried by

an individual into a personalized PRS. The clinical utility of PRS is currently being evaluated in

multiple settings, including breast cancer screening and surveillance, where elevated PRS can be

included in lifetime risk models [28]. The ability to accurately estimate PRS retrospectively,

using archival tissue DNA, would greatly improve the ability to conduct large retrospective

studies with long-term outcomes. We investigated multiple PRS derived from GWAS of

susceptibility to 16 cancer types, and 6 non-cancer phenotypes [29–31]. We computed a tissue

and blood-derived PRS for 10 individuals (see Methods) using the imputed genotypes from

lc-WGS sequencing data described above. Overall 93% (2,744 of 2,962) of PRS

single-nucleotide variant sites were successfully imputed, 84% of which were high quality (Table

S2). In each of the 16 cancer types, the tissue-derived PRS closely matched the blood-derived

PRS, evidenced by high correlation coefficients (r≥0.9) in 12/16 of the PRS (Figure 2a). We saw

similar results when evaluating PRS for non-cancer phenotypes, with 4/6 being highly correlated

(r≥0.9) (Figure 2b). Differences between PRS in blood and tissue were associated with decreased

tumor genome coverage (r=-0.26, p=0.02), but not with copy number loss (Figure S3). Overall

we report that archival tissue DNA profiled with lc-WGS resulted in a reliable PRS estimate in

an individual and preserved relative ranks in a cohort enabling studies such as the use case

presented below.
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Contribution of breast polygenic risk scores to DCIS prognosis.

We next demonstrated the utility of lc-WGS to investigate the contribution of breast

cancer PRS to predict breast cancer subsequent events (BCSE - in situ or invasive, irrespective of

laterality) after a DCIS diagnosis using a retrospective study design (Figure 3a). We assembled a

cohort of patients diagnosed with pure DCIS (N=25 cases) who were then diagnosed with a

BCSE at least 6 months after the DCIS diagnosis. We then complemented this cohort with a set

of patients (N=25 controls) diagnosed with pure DCIS who did not develop a BCSE for at least 5

years. A median of 51.2 ng (range 6.6-300) of DNA was extracted from the primary DCIS FFPE

specimen archived between 6 and 25 years (Table S3). The extracted DNA was sequenced to an

average coverage depth of 0.89x (range 0.2-1.8x) (see Methods). Fourteen out of 50 (28%)

samples yielded insufficient coverage (N=5) or had evidence of contamination with another

patient (N=9) and were excluded, leaving 22 cases and 14 controls for analysis (Table 1). The

median time to BCSE was 6.2 years (min: 1.4, max: 10.9), and patients without BCSE had a

median time to follow-up of 11.7 years (min: 6.7, max: 19.6). Cases and controls were

approximately matched for age, ancestry, DCIS size, grade, and ER status (Table S4). We then

performed imputation as described earlier which resulted in high-quality genotypes at a total of

27,605,021 SNP loci.

In order to evaluate the relationship between breast cancer PRS and DCIS prognosis, we

curated 6 previously established breast cancer PRS, measuring risk for both overall and ER+

breast cancer, consisting of 859 total and 674 unique sites (see Methods, Table S2)

[22,29,32–34]. We computed PRS for each patient, and compared groups with and without

BCSE (Figure 3b) (see Methods). Patients with BCSE showed near significant elevated values
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across all 6 PRS (mean 1.4x fold increase, minimum p=0.06). We next measured the prognostic

value of PRS in a multivariate Cox proportional hazard model to account for other risk factors

previously associated with DCIS progression such as age, DCIS size, histological grade, and

ancestry. We found that three of the breast cancer PRS had a significant (q<0.01) impact on

BCSE risk, with the most impactful overall and ER+ breast cancer PRS hazard ratios of 2.5

(95%CI: 1.4–4.5, q=0.008) and 2.01 (1.3–3.1, q=0.007) respectively (Figure 3c, Figure S4).

Adding PRS to the model improved the discrimination between patients with and without BCSE

raising the mean C-index from 0.66 to 0.71 (Figure 3d). In contrast, none of the six non-cancer

PRS contributed significantly to the BCSE prognosis, indicating that the effects observed are

likely specific to the underlying genetic risk specific to breast cancer (Figure 3e). We estimate

that 10 years post-DCIS diagnosis, approximately 24% of patients with the highest decile of

breast PRS will have a BCSE, as opposed to approximately 3% of patients with PRS in the

lowest decile (Figure 3f). Even with this limited dataset, there is a suggestive contribution of

pre-established breast cancer PRS in DCIS prognosis, though this will require validation in a

larger independent cohort. Independent of its possible clinical significance, and acknowledging

the need for additional validation of the results, the presented use case demonstrates the

feasibility of using DNA from tissues archived for decades to associate germline genetic factors

with long-term patient outcomes and gain new insight into disease etiology and progression.

Imputation of HLA-gene alleles from lc-WGS.

In addition to SNP genotyping, we next investigated whether lc-WGS of archival tissue

could be used to determine the haplotypes of the various HLA genes. HLA genes are some of the

most polymorphic genes in the human genome and the major histocompatibility complex plays a
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critical role in antigen presentation to the immune system, particularly in tumorigenesis [35–37].

Using samples collected from 14 patients, including 10 patients with both blood and tissue DNA

available, we compared HLA-alleles imputed from genome-wide genotypes obtained from

lc-WGS against the results of clinical-grade deep targeted sequencing of the HLA locus from

matching blood DNA samples (referred to as gold standard - see Methods). Alleles for Class I

(HLA-A, B, C genes) and Class II (DRB1, DQB1 genes) were imputed using QUILT-HLA

against the 1000G reference panel [6]. Overall 4 field allele calls from blood DNA were 92.8%

(78/84) and 80.4% (45/56) concordant with the gold standard for Class I and Class II genes

respectively (Figure 4a). At a lower 2 field resolution, the concordance was 97% for Class I and

91% for Class II (Figure S5). The decreased accuracy for HLA Class II, particularly for DRB1

likely reflects the increased diversity of these loci in comparison to Class I as well as the

presence of pseudo-genes which may introduce ambiguity in the alignment of short sequence

reads [38].

In order to evaluate the effect of DNA source on HLA-typing accuracy, we compared

tissue-derived HLA types to the gold standard. We found 4 field allele calls from tissue were

96.7% (58/60) and 82.5% (33/40) concordant with the gold standard blood HLA-typing, for

Class I and Class II respectively (Figure 4b). In 49/50 comparisons between blood and tissue,

tissue-derived samples provided as accurate calls, suggesting that the DNA source did not have

an impact on imputation quality (Figure 4c). Overall, HLA-types that did not match the gold

standard had worse imputation quality as reflected by their lower posterior probabilities (Figure

4d). The high accuracy of HLA-typing from lc-WGS as well as the consistent results between

blood and tissue-based DNA demonstrates that remarkably, imputed HLA-types from lc-WGS
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on archival tissue are comparable against deep targeted HLA sequencing on blood, with a

fraction of the required DNA input and a streamlined protocol.

Discussion

Here we rethink the traditional design of germline genetic studies by answering the

question, when typical DNA sources such as blood, saliva or urine are unavailable, can we

extract the same information from archival tissue specimens? Often collected for histological

examination and diagnosis and then stored indefinitely, these samples offer an abundant source

of genetic material from patients with potentially long clinical follow-up. By using lc-WGS and

recent advances in genotype imputation, we compared the concordance of germline genotypes

obtained from blood DNA and archival tissue DNA in 10 different individuals. Archival tissue

faithfully represented the germline profile of common SNPs obtained from blood both at the

genome-wide level and across well-established PRS. Beyond concordance at the SNP-level, we

also demonstrated accurate genotyping at highly polymorphic HLA alleles. To our knowledge,

we present the first evidence that HLA-typing using lc-WGS from archival tissue is as accurate

as true clinical-grade HLA-typing. Our results support the future utilization of archival tissue to

construct large retrospective studies to characterize the role of germline variants in disease

etiology, progression, and treatment.

The use of archival tissue as a source of constitutive DNA will enable a wealth of

retrospective studies by repurposing specimens archived by most clinical sites to help address the

genetic underpinnings of disease with long-outcome, such as the progression of pre-malignant
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lesions as presented here. Such studies would either require long follow up after the initial

sample collection, or a massive and costly effort to retrospectively collect blood or saliva

samples. In contrast, provided the subjects have been offered diagnostic biopsies, or surgical

treatment, the course of their clinical care or study participation, their left-over specimen can be

used to enable post-hoc genetic analysis. Of course, such studies would require approval of the

Institutional Review Boards (IRB) and, since 2015, informed consent needs to be explicit about

the use of specimens and data for genetic research and the risk for privacy it entails [39].

Commonly, IRBs waive the requirement for consent from patients deceased or lost to follow-up,

however, such data needs to be distributed with caution and typically protected by a Data Access

Policies the researcher has to comply with. As such, while our approach can enable large

retrospective genetic studies where informed consent may be waived, the eligibility of each

patient, and the overall data sharing policy need to be carefully considered.

Our report includes the application of the approach to interrogate the contribution of

genetic factors to breast DCIS progression. The relatively good outcome of the disease poorly

justified a thorough collection of risk variables, especially those related to inherited risk.

However, overtreatment of DCIS, and its harms, is being increasingly acknowledged and

systematic reviews of clinicopathological factors have not resulted in reliable models of

progression [11,12,40]. Most epidemiological studies need to be large due to the slow

progression and rarity of poor outcomes and rely exclusively on medical chart review [24,41,42].

As such, additional factors that are hard or impossible to collect from the charts such as

mammography or magnetic resonance imaging, digital pathology, or germline inherited factors

have not been as thoroughly and systematically investigated. We made the narrow hypothesis
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that lifetime breast cancer susceptibility - which can be seen as progression from normal to

malignant epithelium - and progression of DCIS share the same genetic risk factors. We tested

this hypothesis by measuring breast PRS in a small cohort of carefully selected DCIS subjects

using our approach. Given the effect size of PRS contribution to breast cancer (HR=1.61), we

anticipated that a balanced cohort of 36 patients would be sufficient to measure an effect size of

HR=1.6 or greater representative of the contribution of other risk factors to DCIS progression

[22,43,44]. Thanks to the accurate PRS estimate obtained from left-over surgical specimens, we

were able to see that germline variation likely contributed significantly to the DCIS progression

to an extent similar or greater to previously investigated risk factors such as grade, age, and Her2

overexpression [40]. Such findings would clearly need to be validated in a larger cohort, where a

more comprehensive set of covariates would be accounted for, including treatment. Subsequent

larger studies would also be important to evaluate competing risk models for subsequent in situ

versus invasive disease, or laterality of the event, where PRS may contribute more in particular

contexts. The modest cost and relative experimental simplicity of our approach, accompanied by

a state-of-the-art imputation strategy can likely be scaled up provided diagnostic sections or

left-over specimens can be found. Several large DCIS cohorts are generating mutational profiles,

including some with lc-WGS and associated with clinical outcomes, which would be particularly

suitable for validation in the future [17,45].

In the study of malignant progression as well as the onset and progression of multiple

other diseases, the overactivity or inactivity of the immune system represents a key factor. A

large contribution of variation in immune traits is inherited and yet the role of this contribution in

disease progression is poorly understood [46,47]. In particular, the genetic diversity of the MHC,

15

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 5, 2022. ; https://doi.org/10.1101/2022.03.31.22273116doi: medRxiv preprint 

https://paperpile.com/c/KhWfyq/isMnK+BLHf+Dcc5
https://paperpile.com/c/KhWfyq/NRLJ
https://paperpile.com/c/KhWfyq/NY3X+USVER
https://paperpile.com/c/KhWfyq/CV6A+E0gY
https://doi.org/10.1101/2022.03.31.22273116
http://creativecommons.org/licenses/by-nc/4.0/


one of the most polymorphic regions of the genome, is a real challenge to study the role of the

adaptive immune system. In the context of tumorigenesis, the failure of the major

histocompatibility complex (MHC) to present antigens to the immune system is being

increasingly recognized as contributing to cancer immune evasion and failure to respond to

immune checkpoint inhibitors [48–50]. The determination of the HLA haplotypes, encoding the

MHC is typically limited to the setting of organ or bone marrow transplants and not typically

performed in other epidemiological studies. Recent reports however show the importance of the

HLA-type in understanding the exposed mutanome, and its consideration can have important

predictive value in the context of immunotherapies [35,36,51]. But with a lack of systemic

HLA-typing or absence of genetic material to do so, such studies are hard to replicate or

scale-up. To address this, we demonstrated that we can assign 4 field alleles to HLA-A, B, C, and

DRB1, DQB1 genes by reference informed imputation of lc-WGS data [6]. These imputed

HLA-types had comparable accuracy to deep targeted sequencing of the HLA locus with a

fraction of the required DNA input (5 vs 40,000 ng) and with a simplified protocol (no need for

targeted capture). The improvement in both sample requirement and throughput to HLA-typing

supports the evaluation in lc-WGS with imputation in replacing current clinical standard tests.

While offering many benefits, there are still some limitations to lc-WGS paired with

imputation for germline profiling of archival tissue. Similar to previous reports benchmarking

lc-WGS imputation, error increases with decreasing minor allele frequency [5,6]. This would

preclude the use of this strategy for the identification of rare variants of high penetrance

associated with familiar risk (BRCA, Lynch, or Li-Fraumeni syndromes). Similarly, genotypes

from rare risk-associated SNPs or HLA-types only found in small populations would be more
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likely missed by this approach. In the future, the availability of even larger and more diverse

reference populations may help mitigate this effect. For the purposes of this study we utilized the

unrestricted 1000G reference panel (N=3,202 haplotypes), however larger extensive, though

restricted, panels such as Haplotype Reference Consortium (HRC) (N=64,976) or TopMed

(N=53,831) exist [25,52,53]. Low coverage depth represents an additional limitation of our

approach. While a restricted number of reads sequenced from a WGS library can result in

decreased imputation accuracy, another source of tumor-specific decreased coverage is somatic

copy number alterations (CNA). We observed that regions in a copy number loss resulted in

decreased imputation accuracy. Similar observations were recently reported in a study

performing germline imputation from discarded reads from targeted-sequencing tumor-derived

tissue [1]. Here the choice of the tissue source, or the possibility to dissect normal histological

regions, can help mitigate these effects. Indeed the use of adjacent normal tissue, pre-malignant

or low-grade lesions or even lymphocytic aggregates, or lymph node specimens would enrich for

diploid cells resulting in fewer inaccurate genomic regions. In contrast, imputation in high-grade

lesions or invasive tumors with prominent aneuploidy needs to be carefully considered and may

be mitigated in the largest dataset where available CNA profiles could be used as prior

information in the imputation strategy.

Conclusion

In conclusion, our study demonstrates that archival tumor tissue is an appropriate DNA

source to measure germline genetic variation in lieu of normal tissue or blood. By shallow

sequencing of the genome, and imputing missing sequences using haplotypes from thousands of
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individuals, the resulting genotypes, particularly for common SNPs and HLA alleles between

blood and archival tissue were quite comparable. Especially in the study of slow progressing or

rare diseases which may have been logistically unrealistic due to a long time to events and large

sample numbers required, this framework has the potential to enable very large retrospective

genetic studies, driving both basic research and translational discoveries.

Materials and Methods

Patient selection.

For the tissue-blood benchmarking study, a total of N=14 Lung adenocarcinoma cancer

patients with available tumor tissue and matching buffy coat in N=10 were selected from the

Moores Cancer Center Tissue and Technology Shared Resource (BTTSR).

For the DCIS PRS study, a total of 50 patients were originally selected from the UC San

Diego ATHENA DCIS registry - a retrospective registry approved by the UCSD and UCSF IRB.

Case patients with BCSE were first selected on the basis of time to BCSE, surgery type, care

location, and availability of archival tissue blocks. Control patients were then selected from

patients without BCSE, with long follow-up time and matching cases for risk factors including

age at DCIS, ancestry, DCIS grade, DCIS size, treatment type, ER, and Her2 status when

available (Table 1).

Sample Preparation.

Blood DNA was extracted from 50 µL of buffy-coat using DNAeasy blood and tissue kit

(Qiagen). Tissue blocks were sectioned in 5 µm scrolls and 3 to 5 scrolls were used to extract
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DNA with Covaris FFPE truXTRAC FFPE tNA kit using M220 Covaris Focused UltraSonicator

(Covaris). DNA was quantified using Qubit dsDNA HS Assay Kit (Thermo Fisher Scientific).

Low-coverage whole genome sequencing (lc-WGS).

Between 5-300ng of DNA was used as input for the library preparation using NEB Ultra

II FS library preparation kit (New England Biolabs), which combines enzymatic fragmentation

with end-repair and A-tailing in the same tube. Ligated and purified libraries were amplified

using KAPA HiFi HotStart Real-time PCR 2X Master Mix (KAPA Biosystems). Samples were

amplified with 5 μL of KAPA P5 and KAPA P7 primers. The reactions were denatured for

45 seconds (sec) at 98 °C and amplified 13–15 cycles for 15 sec at 98 °C, for 30 sec at 65 °C, and

for 30 sec at 72 °C, followed by final extension for 1 min at 72 °C. Samples were amplified until

they reached Fluorescent Standard 3, cycles being dependent on input DNA quantity and quality.

PCR reactions were then purified using 1x AMPure XP bead clean-up and eluted into 20 μL of

nuclease-free water. The amplified and purified libraries were analyzed using the Agilent 4200

Tapestation (D1000 ScreenTape) and quantified by fluorescence (Qubit dsDNA HS assay).

Sample libraries with distinct indices were pooled in equimolar amounts, then sequenced to a

target coverage of 0.5x, using paired-end 2x100bp reads on a NovaSeq 6000 (Illumina).

Sequencing read processing and sample quality control.

Sequencing libraries were deconvoluted using bcl2fastq [54]. Adapter sequences were

trimmed from the raw fastq files using atropos (v1.1.31) [55]. The trimmed reads were then

aligned to GRCh38 using bwa-mem (v0.7.17) [56]. Duplicate reads were then marked using

biobambam (v2.0.87)[57]. Overall genome-wide coverage was measured using mosdepth

(v0.2.6), and contamination was measured using verifyBamID2 (v1.0.6) [58,59]. For the DCIS,
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samples with less than 0.45x coverage or were estimated to be >5% contaminated were removed

from downstream analyses.

Imputation of genotypes from lc-WGS.

Genome-wide genotypes were imputed using lc-WGS specific method GLIMPSE

(v1.1.1) with the hg38 version of 1000G 30x NYGC reference panel (N=3,202 individuals)

[5,25] Phasing and imputation were performed directly on BAM files in individual chunks of

each chromosome using “GLIMPSE_phase”, and then the imputed variants were subsequently

ligated together for each chromosome using “GLIMPSE_ligate”. We note that short insertions

and deletions were excluded from any analysis as these are currently unreliable from lc-WGS

and not currently imputed by the strategy implemented [1].

Measuring imputation concordance.

Imputation concordance between samples was summarized using squared Pearson

correlation values obtained from the bcftools “stats” function (v1.9), which captures the

correlation between allele dosages of variants in each minor allele frequency (MAF) bin [60].

Variants across all the autosomes were used in genome-wide benchmarking performance and all

chromosomes for PRS evaluations.

Copy number analysis.

Copy number alterations (CNAs) were called using CNVkit (v0.9.9) in “wgs” mode,

average bin size was set at 100,000 bp [61]. A set of unrelated normal tissues sequenced with the

same protocol were used to generate a panel of normals used during CNA calling. Any bins with

a log2 copy ratio lower than -15, were considered artifacts and removed. Breakpoints between
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copy number segments were determined using the circular binary segmentation algorithm

(p < 10−4). Copy number genomic burden was computed as the sum of sizes of segments in a

gain (log2(ratio) > 0.3) or loss (log2(ratio) < − 0.3) over the sum of the sizes of all segments.

Clinical standard HLA genotyping.

Reference HLA genotyping was performed on approximately 40 μg genomic DNA

extracted from buffy-coat aliquots. Samples were prepared using targeted hybrid-capture with

AlloSeq Tx17 reagents (CareDx). Samples were pooled and sequenced in 2x150 bp read-length

on iSeq 100 instruments (Illumina). Sequence data was analyzed using Assign (v1.0.2) software

(CareDx) and IMGT-HLA reference database (v3.43.0.1) [62].

Measuring PRS.

Polygenic risk scores (PRS) were computed using the following equation:

PRS = 𝛽i𝑥i Equation 1.
𝑖=1

𝑛

∑

Equation 1. PRS is computed as a function of 𝛽i which is the per-allele log odds ratio, or beta

coefficient for the risk SNP allele i, and 𝑥i is the dosage of the risk allele i {0,1,2}, and n is the

total number of SNPs composing the PRS. PRS scores were then scaled using z-score

transformation. PRS sites and effect weights were all obtained from the Polygenic Score (PGS)

Catalog [63]. The catalog numbers and descriptions of each PRS are listed in Table S2.

Cox proportional hazard model construction for breast PRS.

Cox proportional hazard models were constructed non-parametrically, using Breslow’s

method with robust estimates in lifelines survival analysis package in Python [64]. A separate
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model was constructed for each of the six evaluated breast PRS, in order to measure the effect on

risk of BCSE, by PRS, DCIS nuclear grade, age of the patient at diagnosis, the size of the lesion,

and whether the ancestry of the individual was European or not. Each covariate was tested for

violation of the proportional hazards assumption. The 5 samples missing lesion size, were

excluded from the model. In the 6 DCIS samples missing grade, grade was assigned on the basis

of the tertiles of copy number burden distribution observed in the cohort since grade and copy

number burden are highly correlated [14].

Multiple hypothesis correction for non-independent PRS.

In order to perform multiple hypothesis correction on multiple non-independent PRS,

such as the breast PRS, we implemented the Li and Ji method in R package meff to estimate for

the effective number of tests performed [65,66]. The effective number of tests was then used to

generate Bonferroni corrected p-values, labeled as q-values.

Ethics approval and consent to participate
The lung cancer patients were consented to the UC San Diego Biorepository and Tissue

Technology Shared Resource, as a biorepository approved by the UC San Diego Institutional

Review Board (protocols 090401 and 181755). The breast precancer patients were included in

the ATHENA DCIS registry, a retrospective study approved by the UC San Diego Institutional

Review Board (protocol 171481), which provided a waiver of consent.

Consent for publication
Not applicable.

22

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 5, 2022. ; https://doi.org/10.1101/2022.03.31.22273116doi: medRxiv preprint 

https://paperpile.com/c/KhWfyq/d4UW
https://paperpile.com/c/KhWfyq/erFep+cLCFM
https://doi.org/10.1101/2022.03.31.22273116
http://creativecommons.org/licenses/by-nc/4.0/


Availability of data and materials
Raw sequencing data pending deposition in dbGAP.

Competing interests
O.H. is an employee of Zentalis Pharmaceuticals.

Funding
This work is supported by funding from the National Institute of Health (U01CA196406,

U01CA196406, U01CA196383, T32GM008806, T15LM011271), and an award from the Cancer

Cell Mapping Initiative (U54 CA209891), shared resources from the National Cancer Institute

Cancer Center Support Grant (P30CA023100), The Mark Foundation for Cancer Research grant

#18-022-ELA to HC and the California Tobacco-Related Disease Research Program pre-doctoral

fellowship to DN (28DT-0011). The funding bodies had no role in the design of the study;

collection, analysis, and interpretation of data; or in the writing of the manuscript.

Authors' contributions
D.N., L.B., M.P. performed the analysis, J.S., C.C., G.P.M., D.N. generated the data,

N.Q.L., T.J.O., G.Y.L., F.H. collected the specimen and reviewed the clinical data. O.H., H.C.

directed the study. O.H, D.N. wrote the manuscript. All authors reviewed and approved the

manuscript.

Acknowledgments
We thank Adam Maihofer for his statistical advice, Sharmeela Kaushal, Valeria Estrada,

Kimberly Mcintyre, and the staff of the Moores Cancer Center Biorepository and Tissue

23

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 5, 2022. ; https://doi.org/10.1101/2022.03.31.22273116doi: medRxiv preprint 

https://doi.org/10.1101/2022.03.31.22273116
http://creativecommons.org/licenses/by-nc/4.0/


Technology Shared Resources for the samples collection and processing. We are grateful to

Kristen Jepsen and Huazhen Yao from the IGM genomics center for their technical expertise and

sample genotyping and sequencing. We also kindly thank CareDx for providing the reagents for

the targeted HLA sequencing.

24

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 5, 2022. ; https://doi.org/10.1101/2022.03.31.22273116doi: medRxiv preprint 

https://doi.org/10.1101/2022.03.31.22273116
http://creativecommons.org/licenses/by-nc/4.0/


Figures

Figure 1. Assessment of genome-wide concordance of lc-WGS imputed genotypes in tissue

versus blood of N=10 patients. (a,b) Genome-wide concordance (Pearson correlation

coefficient squared - y-axis) of allele dosages across all genotyped SNPs between blood and

tissue as a function of their minor allele frequency (MAF, x-axis). Concordance was calculated

for each individual and each filtering category including genotype imputation quality (a) with all

genotypes shown in light green and high-quality genotypes (INFO>80) in dark green, and copy

number status of high-quality genotypes in tissue (b), from SNPs located in a region that was

copy neutral (orange), gain (red) or loss (blue). For any given bin corresponding to a patient,

MAF and filtering category had to have a minimum of 1,000 SNPs to be included. Error

estimates from 95% confidence intervals computed from 1,000 bootstrapping iterations are

indicated as shaded areas.
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Figure 2. Blood versus tissue-derived PRS. (a) Cancer and (b) non-cancer PRS computed from

imputed genotypes from lc-WGS of blood (x-axis) and tissue (y-axis) of the same patient.

Spearman correlation coefficient, r, was measured between blood and tissue PRS values across

N=10 patients, for each normalized PRS. T1D: Type 1 diabetes, T2D: Type 2 diabetes, HDL:

High-density lipoprotein, CVD: Cardiovascular disease, BMI: Body mass index, UC: Ulcerative

colitis.
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Figure 3. Breast cancer polygenic risk score in DCIS patients with and without a breast

cancer subsequent event. (a) Schematic overview of the study design. Treatment consisted of

surgery and   adjuvant radiation or endocrine therapy. (b) Comparison of breast cancer PRS score

distribution between patients with (red) or without (black) a breast cancer subsequent event

(BCSE). Dashed vertical lines represent mean normalized PRS values for each respective group.

Groups were compared with two-sided Mann-Whitney U test, and FDR corrected q-values were

computed using Bonferroni corrected p-values for the effective number of tests. Distributions

were generated using kernel density estimates of histograms. (c) Forest plot representation of

hazard ratios (square) and 95% confidence intervals (error-bars), for each tested breast cancer

PRS, obtained from a Cox Proportional-Hazard model accounting for DCIS size, grade, and age,

the ancestry of the patient (Figure S4). The dotted line represents a log hazard ratio of 1, or

having no effect on the outcome. The q-values represent Bonferroni corrected p-values for the

effective number of tests. Significant hazard ratios (q<0.05) are indicated in bold text. (d)

Evaluation of discrimination of Cox proportional hazard model for BCSE vs no BCSE outcome

using Harrel’s C-index (y-axis) for models only using available risk factors versus available risk

factors and breast cancer PRS, colored by the significance of hazard ratios for breast PRS

(q<0.05, light green). (e) Same as (c) but for non-cancer PRS. (f) Cox proportional hazard

estimate of breast cancer subsequent event (BCSE) - free survival for two overall and ER+ breast

cancer PRS over time in years. Curves are obtained by varying PRS (solid colored lines from

blue as lowest and red as highest PRS percentile), as compared to each model baseline (dashed

line) while keeping all other covariates the same. Each case and control was weighted by the

epidemiological incidence of BCSE treated with surgery and endocrine therapy (15% at 10
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years) [24].
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Figure 4. Assessment of 4 field HLA-typing accuracy from lc-WGS. (a,b) Number of

concordant HLA alleles (0: white, 1: grey:, 2: black) between haplotypes from the clinical gold

standard and those imputed using QUILT-HLA for class I (A, B, C) and class II (DQB1 and

DRB1) HLA genes (rows) using (a) blood DNA of 14 patients or (b) tissue DNA of 10 patients

(columns). (c) Fraction of HLA alleles correctly imputed (y-axis), versus the sample source of

the DNA (x-axis), colored by the HLA gene. (d) Imputation posterior probability from

QUILT-HLA for each HLA gene (color) and sample (dot), compared between samples with

perfect HLA-gene concordance (both alleles match) versus those with errors.
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Tables

Table 1. Clinical characteristics of the DCIS cohort.

Patient BCSE? Race Ethnicity
Age range

at
diagnosis

Type of
surgery

Pathologic
size (cm)

Nuclear
grade

ER Status
(0/1)

Days to
BCSE or

last
followup

OXPA003 Yes White Non-Hispanic 41-50 Lumpectomy 0.8 1 + 2554

OXPA028 Yes White Non-Hispanic 51-60 Mastectomy 0.5 1 + 1012

OXPA033 Yes White Non-Hispanic 71-80 Lumpectomy NA 1 + 1024

OXPA036 Yes White Non-Hispanic 51-60 Lumpectomy NA 1 + 2296

OXPA161 Yes White Non-Hispanic 61-70 Mastectomy 0.4 1 + 3752

OXPA166 Yes White Non-Hispanic 51-60 Lumpectomy 0.7 1 + 7037

OXPA020 Yes White Non-Hispanic 51-60 Lumpectomy NA 1 NA 5967

OXPA021 Yes White Non-Hispanic 41-50 Lumpectomy 0.9 1 NA 2398

OXPA527 Yes White Hispanic 41-50 Lumpectomy 0.7 1 NA 2203

OXPA002 Yes Asian Non-Hispanic 41-50 Lumpectomy 1.4 2 + 2492

OXPA006 Yes White Non-Hispanic 61-70 Lumpectomy 1 2 + 3022

OXPA032 Yes Asian Non-Hispanic 41-50 Lumpectomy 2.5 2 + 502

OXPA044 Yes White Non-Hispanic 51-60 Lumpectomy 0.9 2 + 2147

OXPA064 Yes White Non-Hispanic 71-80 Lumpectomy 0.4 2 + 553

OXPA179 Yes White Hispanic 71-80 Lumpectomy 1.2 2 NA 3077

OXPA147 Yes White Non-Hispanic 61-70 Lumpectomy 1.1 3 + 1981

OXPA185 Yes White Non-Hispanic 41-50 Lumpectomy 0.3 3 + 497

OXPA150 Yes White Non-Hispanic 51-60 Lumpectomy 0.4 NA + 2402

OXPA153 Yes White Non-Hispanic 61-70 Lumpectomy 0.5 NA + 3970

OXPA246 Yes White Non-Hispanic 71-80 Lumpectomy 0.5 NA + 1179

OXPA267 Yes White Non-Hispanic 61-70 Mastectomy NA NA + 3083

OXPA151 Yes White Non-Hispanic 71-80 Lumpectomy NA NA NA 1029

OXPA644 No White Non-Hispanic 51-60 Lumpectomy 1.1 1 - 2456

OXPA347 No White Non-Hispanic 81-90 Lumpectomy 5 1 + 3894

OXPA508 No White Non-Hispanic 51-60 Lumpectomy 0.9 1 + 2570

OXPA172 No White Non-Hispanic 71-80 Lumpectomy 1.8 1 NA 6903

OXPA295 No White Non-Hispanic 51-60 Lumpectomy 1.2 1 NA 4903

OXPA092 No White Non-Hispanic 51-60 Lumpectomy 0.5 2 + 3822

OXPA156 No White Hispanic 41-50 Lumpectomy 0.5 2 + 7170

OXPA392 No White Non-Hispanic 51-60 Lumpectomy 0.6 2 + 3709

OXPA445 No White Non-Hispanic 51-60 Lumpectomy 1.3 2 + 3594
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OXPA501 No Asian Non-Hispanic 41-50 Lumpectomy 1.2 2 + 3044

OXPA530 No White Hispanic 61-70 Lumpectomy 1.5 2 + 3167

OXPA540 No Asian Non-Hispanic 41-50 Lumpectomy 1.8 2 + 2941

OXPA182 No White Non-Hispanic 51-60 Lumpectomy 0.5 3 NA 4543

OXPA146 No White Non-Hispanic 41-50 Lumpectomy 1 NA + 7067
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Supplemental Tables and Figures

Figure S1. Effect of patient ancestry on lc-WGS imputation concordance between blood

and tissue. Comparison of concordance between blood and tissue-based on ancestry background

of the patient, with White ancestry in light green and Black or Asian ancestry in dark green.

Pearson correlation squared (r2) is for all aggregated SNPs within a MAF bin. When available,

95% confidence intervals are shaded around the line based on 1000 bootstrap iterations.
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Figure S2. Effect of coverage-related features on lc-WGS imputation concordance between

blood and tissue. (a,b) Comparison of concordance as measured by squared Pearson correlation

(y-axis) between blood and tissue as a function of MAF (x-axis) based on mean sequencing

genome coverage depth of blood (a) or tissue (b).
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Figure S3. Effect of coverage-related features on the error in non-cancer PRS calculation.

(a-b) PRS error (y-axis), as measured by the absolute difference between blood and tissue PRS

across all non-cancer PRS, as a function of (a) fraction of genome in a copy number loss or (b)

mean tissue/tumor genome coverage (x-axis). The 95% confidence intervals are shaded around

the line based on 1000 bootstrap iterations. Spearman correlation coefficient, r, and

corresponding p-value are indicated as text in the upper right.
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Figure S4. Cox proportional hazard models measuring BCSE outcome in DCIS patients for

6 breast cancer PRS. Forest plot representation of hazard ratios (square) and 95% confidence

intervals (error-bars), for each normalized breast cancer PRS and covariates for DCIS BCSE risk

including DCIS nuclear grade (Grade), age of the patient at diagnosis (Age), the size of the DCIS

lesion (Size), and whether the ancestry of the individual was European (EUR). The dotted line

represents a hazard ratio of 1, indicating no effect on BCSE risk, >1 indicating increased, and <1

indicating decreased risk.
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Figure S5. Assessment of 2 field HLA-typing accuracy from lc-WGS. Number of concordant

HLA alleles (0: white, 1: grey:, 2: black) between haplotypes from the clinical gold standard and

those imputed using QUILT-HLA for class I (A, B, C) and class II (DQB1 and DRB1) HLA

genes (rows) using blood DNA of 14 patients.
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Table S1. Description of the studied samples.

Patient DNA
source Ancestry Input DNA

(ng) Coverage CNA
burden

Age of
block (yr)1 Analysis2

OXPC002 Blood White 68.4 1.11 0.00 - H

OXPC003 Blood White 31.8 1.41 0.00 - GPH

OXPC003 Tissue White 28.4 0.69 0.00 7 GPH

OXPC004 Blood White 32.1 0.84 0.00 - GPH

OXPC004 Tissue White 5.5 0.44 0.15 7 GPH

OXPC005 Blood White 53.1 0.79 0.00 5 GPH

OXPC005 Tissue White 21.8 0.97 0.48 - GPH

OXPC006 Blood White 48.9 0.95 0.00 - H

OXPC007 Blood White 54.6 0.87 0.00 - GPH

OXPC007 Tissue White 35.1 0.46 0.08 6 GPH

OXPC008 Blood White 45.3 0.89 0.00 - H

OXPC009 Blood White 12.2 1.10 0.00 - GPH

OXPC009 Tissue White 11.0 0.84 0.01 5 GPH

OXPC010 Blood
Black or
African

American
16.9 0.85 0.00 - GPH

OXPC010 Tissue
Black or
African

American
176.4 0.84 0.01 5 GPH

OXPC011 Blood White 53.4 0.89 0.00 - GPH

OXPC011 Tissue White 20.4 0.52 0.65 5 GPH

OXPC012 Blood White 66.0 0.71 0.00 - H

OXPC014 Blood White 12.1 0.68 0.00 - GPH

OXPC014 Tissue White 15.0 0.68 0.11 3 GPH

OXPC017 Blood White 24.2 0.71 0.00 - GPH

OXPC017 Tissue White 30.6 0.79 0.01 3 GPH

OXPC018 Blood Asian 14.8 1.01 0.00 - GPH

OXPC018 Tissue Asian 25.3 0.74 0.00 8 GPH

1. Age of block inferred as the difference in years from DNA extraction (2021) to the year of the diagnosis.
2. Analysis type sample was used in, which was one of:

GPH: Genome wide, PRS and HLA
H: HLA only (for samples without both tissue and blood)
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Table S2. PRS description.

Phenotype # Variants # SNPs # SNPs
imputed

# SNPs
high-quality PGSID Publication source

Bladder cancer 15 15 14 13 PGS000071 https://doi.org/10.1038/s41467-021-21288-z

Breast cancer
(Graff et al., 2021) 187 172 167 153 PGS000072 https://doi.org/10.1038/s41467-021-21288-z

Cervical cancer 10 9 9 9 PGS000073 https://doi.org/10.1038/s41467-021-21288-z

Colorectal cancer 103 103 101 90 PGS000074 https://doi.org/10.1038/s41467-021-21288-z

Endometrial cancer 9 9 9 9 PGS000075 https://doi.org/10.1038/s41467-021-21288-z

Kidney cancer 19 19 16 16 PGS000076 https://doi.org/10.1038/s41467-021-21288-z

Lymphocytic leukemia 75 75 69 65 PGS000077 https://doi.org/10.1038/s41467-021-21288-z

Lung cancer 109 109 100 85 PGS000078 https://doi.org/10.1038/s41467-021-21288-z

Melanoma 24 24 22 21 PGS000079 https://doi.org/10.1038/s41467-021-21288-z

Non-Hodgkin's lymphoma 19 18 17 16 PGS000080 https://doi.org/10.1038/s41467-021-21288-z

Oral cavity and pharyngeal
cancers 14 13 8 8 PGS000081 https://doi.org/10.1038/s41467-021-21288-z

Ovarian cancer 36 32 30 27 PGS000082 https://doi.org/10.1038/s41467-021-21288-z

Pancreatic cancer 22 22 22 18 PGS000083 https://doi.org/10.1038/s41467-021-21288-z

Prostate cancer 161 152 146 136 PGS000084 https://doi.org/10.1038/s41467-021-21288-z

Testicular cancer 52 52 49 45 PGS000086 https://doi.org/10.1038/s41467-021-21288-z

Thyroid cancer 12 11 11 10 PGS000087 https://doi.org/10.1038/s41467-021-21288-z

Type 1 Diabetes (T1D) 825 825 818 747 PGS001817 https://doi.org/10.1016/j.ajhg.2021.11.008

Type 2 Diabetes (T2D) 384 384 378 321 PGS000832 https://doi.org/10.1038/s41588-021-00948-2

High lipoprotein density (HLD) 303 302 265 241 PGS000845 https://doi.org/10.1038/s41588-021-00948-2

Body mass index (BMI) 122 122 122 117 PGS000841 https://doi.org/10.1038/s41588-021-00948-2

Cardiovascular disease (CVD) 330 329 224 212 PGS000863 https://doi.org/10.1038/s41588-021-00948-2

Ulcerative colitis (UC) 179 165 147 132 PGS001306 https://doi.org/10.1101/2021.09.02.21262942

Breast cancer
(Kuchenbaecker et al., 2017) 88 86 56 51 PGS000045 https://doi.org/10.1093/jnci/djw302

Breast cancer
(Michailidou et al., 2017) 85 85 84 65 PGS000538 https://doi.org/10.1038/nature24284

Breast cancer ER+
(Michailidou et al., 2017) 174 174 170 125 PGS000530 https://doi.org/10.1038/nature24284

Breast cancer
(Mavaddat et al., 2015) 77 77 74 67 PGS000001 https://doi.org/10.1093/jnci/djv036

Breast cancer
(Mavaddat et al., 2018) 313 265 256 230 PGS000004 https://doi.org/10.1016/j.ajhg.2018.11.002
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Table S3. DCIS cohort technical characteristic description.

Patient Input DNA (ng) Mean coverage CNA burden Age of block (yr)1 Passed QC?
OXPA002 68.4 0.93 0.05 18 Yes
OXPA003 19.6 1.07 0.04 21 Yes
OXPA006 106.8 0.96 0.06 14 Yes
OXPA020 69.6 1.07 0.02 22 Yes
OXPA021 99 1.11 0.03 21 Yes
OXPA028 29.64 0.84 0.05 16 Yes
OXPA032 38.4 1.09 0.04 15 Yes
OXPA033 300 0.96 0.08 15 Yes
OXPA036 12.7 0.88 0.07 14 Yes
OXPA044 65.4 1.10 0.03 11 Yes
OXPA064 15 1.12 0.04 7 Yes
OXPA092 10.3 0.49 0.02 14 Yes
OXPA146 24.06 0.81 0.08 25 Yes
OXPA147 300 0.74 0.04 25 Yes
OXPA150 30.9 0.92 0.04 24 Yes
OXPA151 64.8 0.79 0.37 24 Yes
OXPA153 201 0.96 0.05 24 Yes
OXPA156 19.9 0.83 0.03 24 Yes
OXPA161 15.4 0.95 0.04 24 Yes
OXPA166 300 0.91 0.04 24 Yes
OXPA172 28.02 1.16 0.03 23 Yes
OXPA179 102 0.79 0.04 23 Yes
OXPA182 31.2 0.83 0.28 23 Yes
OXPA185 52.2 0.89 0.04 23 Yes
OXPA246 109.2 1.16 0.04 20 Yes
OXPA267 204 1.01 0.07 19 Yes
OXPA295 25 1.65 0.02 18 Yes
OXPA347 40.2 1.79 0.05 16 Yes
OXPA392 6.6 1.36 0.04 15 Yes
OXPA445 7.5 1.12 0.02 14 Yes
OXPA501 119.4 0.93 0.04 13 Yes
OXPA508 25.5 0.67 0.05 13 Yes
OXPA527 48.9 0.68 0.10 13 Yes
OXPA530 14.4 0.74 0.30 13 Yes
OXPA540 72.6 0.96 0.05 12 Yes
OXPA644 30.9 0.59 0.04 10 Yes
OXPA007 82 0.15 N/A 11 No (Low cov.)
OXPA035 17.5 0.31 N/A 14 No (Low cov.)
OXPA619 35.2 0.31 N/A 11 No (Low cov.)
OXPA066 300 0.34 N/A 7 No (Low cov.)
OXPB024 53.7 0.47 N/A 6 No (Low cov.)
OXPA025 300 0.49 N/A 17 No (Contam.)
OXPA574 50.1 0.80 N/A 12 No (Contam.)
OXPA005 18.6 0.81 N/A 15 No (Contam.)
OXPA269 11.9 0.91 N/A 19 No (Contam.)
OXPA165 81.6 0.92 N/A 24 No (Contam.)
OXPA040 300 0.93 N/A 13 No (Contam.)
OXPA169 300 0.97 N/A 24 No (Contam.)
OXPB009 224.4 0.99 N/A 7 No (Contam.)
OXPA029 170.4 1.04 N/A 16 No (Contam.)
1. Age of block inferred as the difference in years from DNA extraction (2021) to the year of the diagnosis.
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Table S4. DCIS cohort covariate association with patient outcome.

Clinical feature
No BCSE2

(N=14)
BCSE
(N=22) Significance3

Grade1

Low 36% (5) 41% (9)

p=0.59Intermediate 50% (7) 27% (6)

High 7% (1) 9% (2)

ER status1
+ 71% (10) 77% (17)

p=0.39
- 7% (1) 0% (0)

Ethnicity1
Hispanic 14% (2) 9% (2)

p=0.63
Non-Hispanic 86% (12) 91% (20)

Race
Asian 14% (2) 9% (2)

p=0.63
White 86% (12) 91% (20)

Pathologic size (cm)1 1.35 0.85 p=0.05

Age at diagnosis (yrs) 56.3 60.1 p=0.27

1. Missing values not represented here, but can be found in Table S2.
2. BCSE: Breast cancer subsequent event.
3. P-values were computed using Fisher Exact test for ER status, Race, Ethnicity and Chi-square test for

Grade. For continuous features, size and age, Mann-Whitney U test was used to compare groups.
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