Decontamination of Geobacillus Stearothermophilus Using the Arca 1

Aerosolized Hydrogen Peroxide Decontamination System 2

- 3 Loren Mead^{1,2*}, Tanner Mathison¹, Anne Marie Richards¹,
- 4
- 5 ¹Abaton, Washington, D.C. 20003
- 6 ²Department of Emergency Medicine, University of Texas Health Science Center at Houston, Houston, TX
- 7 77030
- 8
- 9 *Corresponding author
- E-mail: lmead@abaton.care 10

12 Abstract

13 Introduction:

- 14 In response to the limited supply of personal protective equipment during the pandemic caused by
- 15 SARS-CoV-2, recent studies demonstrate that gaseous H_2O_2 is an effective decontaminant of N95
- 16 filtering facepiece respirators to enable reuse of these items in a clinical setting. This paper evaluates
- 17 the efficacy of the Arca Aerosolized Hydrogen Peroxide Decontamination System (Arca), a novel
- 18 aerosolized H_2O_2 decontamination system, using biologic indicator testing.

19 Materials and Methods:

20 The Arca produces and circulates H_2O_2 aerosol inside of a sealed stainless steel chamber. The Arca's

21 decontamination efficacy was evaluated in 8 decontamination trials with 2 H2O2 concentrations (3%

and 12%) and 4 decontamination cycle durations (45, 60, 90, and 120 minutes). Efficacy was evaluated

- by testing: 1) the concentration in parts per million (ppm) of H_2O_2 produced inside the chamber and the
- concentration in ppm of H_2O_2 vented from the chamber, and 2) the decontamination of Mesa Biologic
- 25 Indicator filter strips (BI) inoculated with Geobacillus Stearothermophilus. Control tests were conducted

by submerging BI strips in 3mL of 3% and $12\% H_2O_2$ for 120 minutes (negative controls) and by not

exposing one BI strip to H_2O_2 (positive control).

28 Results

Greater than 5000 ppm of H_2O_2 was detected on the concentration strips inside the chamber for each of the eight decontamination trials. No vented H_2O_2 was detected on the external concentration strips after any decontamination trial. No growth was observed for any of the negative controls after seven days. The positive control was positive for growth.

33 Conclusion

- 34 The Arca Aerosolized Hydrogen Peroxide Decontamination System is effective at decontaminating
- bacterial *G. Stearothermophilus* at a cycle time of 45 minutes utilizing 6mL of $3\% H_2O_2$ solution.
- 36

37 Introduction

38 The SARS-CoV-2 coronavirus (COVID-19) pandemic has caused a worldwide shortage in personal 39 protective equipment (PPE) including N95 filtering facepiece respirator (FFR) and surgical masks. Both 40 mask types have been shown to dramatically reduce the rate of infection by airborne viruses such as 41 influenza, but the masks are designed for single use before disposal(1). Due to a shortage of FFRs and 42 the critical role FFRs play in protecting health care workers at the outset of the COVID-19 pandemic, the 43 Center for Disease Control recommended limited reuse of decontaminated FFRs to extend supplies of 44 PPE(1)(2). The Occupational Safety and Health Administration has similarly produced guidelines for the 45 limited reuse of FFRs(3).

Aerosolized or vaporized hydrogen peroxide (H_2O_2) is an established reactant for decontaminating surfaces inoculated with resistant bacterial and viral pathogens(4). Recent studies demonstrate that H_2 O_2 delivered in an aerosol or vapor as low as 500 ppm has been shown to achieve 1000 times reductions in viral organism activity on inoculated FFRs while maintaining adequate mask fitment through multiple decontamination cycles(5)(6)(7)(8). Previous work has demonstrated that scalable, proof-of-concept H_2 O_2 decontamination systems could achieve adequate minimum concentrations reported in the literature to eradicate Coronavirus and other pathogens(9)(10).

To mitigate infection risk with reuse of FFRs, the Food and Drug Administration granted emergency use
 authorizations (EUAs) to several commercially available hydrogen peroxide FFR decontamination
 procedures(11). However, the commercially available methods of FFR decontamination are costly and

56	limited in availability(12)(13)(14). The H_2O_2 decontamination methods which received an EUA include
57	those listed in Table 1. The number of maximum decontamination cycles per FFR varies by method with
58	a range of two to 20 cycles(15). The price per institution for these systems can exceed \$50,000 (Table 1).
59	Low-resource institutions are often unable to access these services and purchase adequate supplies of
60	PPE(16). Therefore, the development of a smaller-scale, less costly decontamination devices is
61	warranted.
62	
62	This study seeks to evaluate the efficacy of a low-cost design engineered for use in low-resource settings
63	This study seeks to evaluate the efficacy of a low-cost design engineered for use in low-resource settings to expand the supply of decontaminated PPE for safe re-use by frontline workers. Our objectives were
63 64	This study seeks to evaluate the efficacy of a low-cost design engineered for use in low-resource settings to expand the supply of decontaminated PPE for safe re-use by frontline workers. Our objectives were to test the device's efficacy at different H_2O_2 concentrations and Arca device cycle durations by
63 64 65	This study seeks to evaluate the efficacy of a low-cost design engineered for use in low-resource settings to expand the supply of decontaminated PPE for safe re-use by frontline workers. Our objectives were to test the device's efficacy at different H_2O_2 concentrations and Arca device cycle durations by evaluating: 1) the concentration in parts per million (ppm) of H_2O_2 produced inside the chamber and
63 64 65 66	This study seeks to evaluate the efficacy of a low-cost design engineered for use in low-resource settings to expand the supply of decontaminated PPE for safe re-use by frontline workers. Our objectives were to test the device's efficacy at different H_2O_2 concentrations and Arca device cycle durations by evaluating: 1) the concentration in parts per million (ppm) of H_2O_2 produced inside the chamber and the concentration in ppm of H_2O_2 vented from the chamber, and 2) the decontamination of Mesa
62 63 64 65 66 67	This study seeks to evaluate the efficacy of a low-cost design engineered for use in low-resource settings to expand the supply of decontaminated PPE for safe re-use by frontline workers. Our objectives were to test the device's efficacy at different H_2O_2 concentrations and Arca device cycle durations by evaluating: 1) the concentration in parts per million (ppm) of H_2O_2 produced inside the chamber and the concentration in ppm of H_2O_2 vented from the chamber, and 2) the decontamination of Mesa Biologic Indicator filter strips (BI) inoculated with 10 ⁶ Geobacillus Stearothermophilus.

- 68
- 69

Table 1: Value Comparison of 2 2 Decontamination Systems with EUAs

Decontamination System	Estimated Annual Cost to	Maximum Decontamination Cycles
	Institution	per FFR
Bioquell Technology System	\$53,000(17)	4
Battelle Critical Care	\$0ª	20
Decontamination System		
STERRAD Sterilization System	\$149,000(18)	2

Sterilucent HC 80TT Vaporized Hydrogen Peroxide Sterilizer	Not Reported	10
Stryker STERIZONE VP4 Sterilizer	Not Reported	2
for N95 Respirator Decontamination		
Stryker Sustainability Solutions VHP N95 Respirator	Not Reported	3
Decontamination System		
Duke Decontamination System	Not Reported	10
Technical Safety Services (TSS) 20- CS Decontamination System	Not Reported	20
Michigan State University Decontamination System	Not Reported	3
Roxby Development Zoe-Ann Decontamination System	Not Reported	4

70

^aBattelle was awarded a federal contract for subsidized N95 decontamination with costs upwards of \$1

71 million per system(19)

72

73 Materials and Methods

The Arca Aerosolized Hydrogen Peroxide Decontamination System (Arca) produces H_2O_2 inside of a

rs sealed stainless steel chamber and circulates the aerosol with four CG IP67 personal computing fans.

76	The Arca uses a Venturi tube design to generate an aerosol: an air compressor forces high velocity air
77	through a tube where the cross-sectional area is reduced with the result of lowering the air pressure (Fig
78	1). The design lowers the pressure to below 2300 Pa, the vaporization pressure of 10% H_2O_2 in water
79	solution(20). The H_2O_2 is fed to the low pressure opening of the tube, where the low pressure induces
80	partially vaporization, forming small droplets of solution (i.e. an aerosol). A catch is included at the low
81	pressure point to trap large droplets and recirculate them back to the low-pressure area. FFRs are
82	placed on a wire mesh rack inside the chamber and exposed to the H_2O_2 for decontamination (Fig 2).
83	Circulated H_2O_2 aerosol is removed from the chamber interior using a Speedair 4ZL07 condenser unit to
84	avoid operator exposure when removing decontaminated FFRs (Fig 3). The device's manufacturing and
85	component costs totaled less than \$2,000.
86	Figure 1. nebulizer Venturi tube design(21)
87	Figure 2. Arca interior demonstrating mesh rack, circulating fans, and Venturi tube nozzle
88	Figure 3. Arca exterior showing nebulizer (top), condenser unit (bottom), and electronics housing (left)
89	The Arca's decontamination efficacy was evaluated by a testing protocol exposing biologic indicator
90	filter strips (BIs) inoculated with 10 ⁶ G. Stearothermophilus. We performed a total of 8 trials varying the
91	H2O2 concentration (3% and 12%) and decontamination cycle duration (45, 60, 90, and 120 minutes).
92	Decontamination efficacy was evaluated by H_2O_2 concentration and biologic testing within the device
93	chamber and venting system.
94	Concentration testing was performed using Bartovartion Very High Level Peroxide Test Strips, which
95	change color to indicate exposure to H_2O_2 at concentrations from 0 to 5000 ppm(22). For each trial, one
96	BI was secured with Scotch Magic [™] Tape to an FFR located centrally inside the chamber. An additional
97	concentration strip was placed on the exterior of the door and evaluated for vented H_2O_2 from the

98 chamber after each cycle was completed and the door to the chamber opened. All cycles were

- 99 performed in a well-ventilated area.
- Additionally, one BI was submerged in 3 mL of 3% and one in 3 mL of 12% H_2O_2 for 120 minutes each to
- serve as negative controls. One BI was not exposed to H_2O_2 to serve as a positive control.
- 102 The BIs were handled using sterile technique and after testing were shipped in sealed plastic bags to
- 103 STERIS labs. The BIs were incubated in 10 mL of Tryptic Soy Broth at 55-60 degrees Celsius for seven
- 104 days. The cultures were evaluated daily and interpreted as "No growth" only if the medium remained
- 105 clear without color change or turbidity after seven days(23).

106

107 Results

108 Concentration Testing

- 109 The concentration strips for all decontamination cycles showed internal concentrations of H_2O_2
- 110 exceeding 5000 ppm. The exterior concentration strips monitoring for vented H_2O_2 all showed
- 111 undetectable levels of H_2O_2 (Tables 2 and 3).
- 112

Table 2. Concentration Strip Results for $3\% H_2O_2$ Solution Testing

	45 Minutes Cycle	60 Minutes Cycle	90 Minutes Cycle	120 Minutes Cycle
Internal Strip	>5000 ppm	>5000 ppm	>5000 ppm	>5000 ppm
Exterior Strip	No color change	No color change	No color change	No color change

113

114

Table 3. Concentration Strip Results for $12\% H_2O_2$ Solution Testing

	45 Minutes Cycle	60 Minutes Cycle	90 Minutes Cycle	120 Minutes Cycle
Internal Strip	>5000 ppm	>5000 ppm	>5000 ppm	>5000 ppm
Exterior Strip	No color change	No color change	No color change	No color change

115

116 Decontamination Testing

- All BIs exposed to H_2O_2 had no growth at seven days of incubation (Tables 4 and 5). The positive control
- 118 that was not exposed to H_2O_2 demonstrated bacterial growth.
- 119

Table 4. BI Growth at 7 Days Following Exposure to $3\% H_2O_2$ Solution

Trial	l 120 Minutes 45 Mir		60 Minutes	90 Minutes	120 Minutes
	Submersion	Cycle	Cycle	Cycle	Cycle
Growth Result	No growth	No growth	No growth	No growth	No growth

120

121

Table 5. BI Growth at 7 Days Following Exposure to $12\% H_2 O_2$ Solution

Trial	Frial120 Minutes45 Minutes		60 Minutes	90 Minutes	120 Minutes	
	Submersion	Cycle	Cycle	Cycle	Cycle	
Growth Result	No growth	No growth	No growth	No growth	No growth	

123 Discussion

124 The limited supply of FFRs during the SARS-Cov-2 pandemic endangers health care and other frontline

- 125 workers. While the FDA and CDC have encouraged the decontamination of FFRs for reuse, existing
- 126 decontamination systems are inaccessible in low-resource settings. Development of systems designed
- 127 for deployment in low-resource settings will increase the supply of PPE for at-risk personnel.
- 128 This study attempted to evaluate a novel device's ability to eradicate bacterial pathogens from the
- surface of an FFR without exposing users to unsafe levels of H_2O_2 . Our testing demonstrates that the
- 130 novel Arca device can decontaminate bacterial pathogens without exposing users to high concentrations
- 131 of H_2O_2 . These results are consistent with the literature on existing gaseous H_2O_2 technologies. The
- 132 eradication of bacteria achieved at every trial suggests that the Arca could achieve adequate
- decontamination with a lower concentration H_2O_2 solution, a shorter cycle duration, or a smaller
- volume of H_2O_2 . Based on previously reported H_2O_2 testing, the bactericidal properties of the device
- 135 suggest virucidal efficacy as well⁽⁹⁾(24).
- 136 The Arca's production cost at less than \$2,000 per unit is significantly lower than that of existing
- 137 commercially available solutions. At scale, this manufacturing cost should decrease. Future iterations of
- 138 the device could reduce costs further by using more off-the-shelf components in its manufacturing
- 139 process. The decreased cost of the Arca improves its accessibility in low-resource settings compared
- 140 with existing FFR decontamination systems.

141 Limitations

- 142 Testing was performed under optimal conditions using a single FFR. Real world use may lead to
- 143 decreased efficacy due to variations in power supply to the Arca, increased pathogen burden, or greater

144 surf	ce area of multi	ple FFRs. Addition	ally, while	e bacteria are	e considered	more resistant	to H	202	than
----------	------------------	--------------------	-------------	----------------	--------------	----------------	------	-----	------

145 viruses, the eradication of this study's BIs may not be generalizable to all mutations of SARS-CoV-2.

146 Future Directions

- 147 Experimental derivation of the absolute minimum cycle duration, volume of H_2O_2 , and percent H_2O_2
- solution to achieve decontamination will allow for greater throughput of the Arca device. Testing in a
- 149 BSL-3 lab will evaluate the Arca's efficacy at decontamination of SARS-CoV-2 and other pathogens
- 150 directly inoculated on PPE.
- 151 Fitment testing of FFRs after decontamination will allow for experimental derivation of the maximum
- decontamination cycles per FFR. Additional testing of other PPE and various equipment may expand the
- use cases for the Arca.
- 154 Additionally, "real world" field testing will help to determine any potential causes of diminished aerosol
- 155 concentration, inadequate decontamination, or non-optimal user experience.

156 Conclusion

- 157 The Arca Aerosolized Hydrogen Peroxide Decontamination System can safely decontaminate FFRs
- inoculated with bacteria using a minimum cycle time of 45 minutes with 6 mL of H_2O_2 solution.

159

160 Acknowledgements

161 We would like to acknowledge the tireless work of our systems engineers, Garry Osborne and Keith

- 162 Crowder, as well as our head of business development, Michael Mazza. Without their constant support,
- the Arca would have been neither built nor tested. Our acknowledgements would not be complete
- 164 without thanking Dr. Sarah Huepenbecker for her sage advice and emotional support.

166 Works Cited

- Apr 03 RR|, 2012. Lab study supports use of N95 respirators for flu protection [Internet]. CIDRAP.
 [cited 2020 Jun 14]. Available from: https://www.cidrap.umn.edu/news-perspective/2012/04/lab study-supports-use-n95-respirators-flu-protection
- Recommended Guidance for Extended Use and Limited Reuse of N95 Filtering Facepiece Respirators in Healthcare Settings | NIOSH | CDC [Internet]. 2020 [cited 2020 Jun 28]. Available from: https://www.cdc.gov/niosh/topics/hcwcontrols/recommendedguidanceextuse.html
- Enforcement Guidance for Respiratory Protection and the N95 Shortage Due to the Coronavirus Disease 2019 (COVID-19) Pandemic | Occupational Safety and Health Administration [Internet].
 [cited 2021 Jan 11]. Available from: https://www.osha.gov/memos/2020-04-03/enforcementguidance-respiratory-protection-and-n95-shortage-due-coronavirus
- Chemical Disinfectants | Disinfection & Sterilization Guidelines | Guidelines Library | Infection
 Control | CDC [Internet]. 2019 [cited 2021 Jan 11]. Available from:
- 179 https://www.cdc.gov/infectioncontrol/guidelines/disinfection/disinfection-
- 180 methods/chemical.html
- Technical Report for Hydrogen Peroxide Methods for Decontaminating N95 Respirators [Internet].
 [cited 2020 Jun 28]. Available from:
- 183https://static1.squarespace.com/static/5e8126f89327941b9453eeef/t/5ed525e43bb86f3745a1de184d6/1591027172069/2020-05-29_N95DECON_HydrogenPeroxide_V2-1_TechnicalReport_FINAL.pdf
- Viscusi DJ, Bergman MS, Eimer BC, Shaffer RE. Evaluation of Five Decontamination Methods for
 Filtering Facepiece Respirators. Ann Occup Hyg. 2009 Nov;53(8):815–27.
- Polkinghorne A, Branley J. Evidence for decontamination of single-use filtering facepiece respirators.
 J Hosp Infect [Internet]. 2020 May 27 [cited 2020 Jun 30]; Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7251398/
- Schwartz A, Stiegel M, Greeson N, Vogel A, Thomann W, Brown M, et al. Decontamination and Reuse of N95 Respirators with Hydrogen Peroxide Vapor to Address Worldwide Personal Protective Equipment Shortages During the SARS-CoV-2 (COVID-19) Pandemic. Appl Biosaf. 2020 Jun;25(2):67–70.
- Cheng VCC, Wong S-C, Kwan GSW, Hui W-T, Yuen K-Y. Disinfection of N95 respirators by ionized hydrogen peroxide during pandemic coronavirus disease 2019 (COVID-19) due to SARS-CoV-2. J Hosp Infect. 2020 Jun 1;105(2):358–9.
- Grossman J, Pierce A, Mody J, Gagne J, Sykora C, Sayood S, et al. Institution of a Novel Process for
 N95 Respirator Disinfection with Vaporized Hydrogen Peroxide in the Setting of the COVID-19
 Pandemic at a Large Academic Medical Center. J Am Coll Surg. 2020 Aug 1;231(2):275–80.
- 11. Health C for D and R. Emergency Use Authorizations. FDA [Internet]. 2020 Jun 7 [cited 2020 Jun 7];
 Available from: https://www.fda.gov/medical-devices/emergency-situations-medical-devices/emergency-use-authorizations

203	 Battelle CCDS for COVID19 - Satellite Locations [Internet]. Battelle. [cited 2020 Jun 28]. Available
204	from: https://www.battelle.org/inb/battelle-ccds-for-covid19-satellite-locations
205	 SteraMist [Internet]. Engineering For Change. [cited 2020 Jun 28]. Available from:
206	https://www.engineeringforchange.org/solutions/product/steramist/
207	 DOD Contract for 60 N95 Critical Care Decontamination Units: \$415M Contract, Each Unit Can
208	[Internet]. U.S. DEPARTMENT OF DEFENSE. [cited 2020 Jun 30]. Available from:
209	https://www.defense.gov/Newsroom/Releases/Release/Article/2148352/dod-contract-for-60-
210	n95-critical-care-decontamination-units-415m-contract-each/
211	 Guide to decontamination methods for filtering facepiece respirators [Internet]. [cited 2021 Jan 11].
212	Available from: https://www.vizientinc.com/covid-19/covid-19-ffr-decontamination-
213	methods#summary
214	 McMahon DE, Peters GA, Ivers LC, Freeman EE. Global resource shortages during COVID-19: Bad
215	news for low-income countries. PLoS Negl Trop Dis. 2020 Jul 6;14(7):e0008412.
216	17. Portable Ambulance Decontamination Systems Market Survey Report. :24.
217	 McCreanor V, Graves N. An economic analysis of the benefits of sterilizing medical instruments in
218	low-temperature systems instead of steam. Am J Infect Control. 2017 Jul 1;45(7):756–60.
219	 Battelle under fire for decontamination system performance [Internet]. MassDevice. 2020 [cited
220	2021 Jan 11]. Available from: https://www.massdevice.com/battelle-under-fire-for-
221	decontamination-system-performance/
222	20. Vapor Pressures USP Technologies [Internet]. [cited 2022 Mar 26]. Available from:
223	https://www.h2o2.com/technical-library/physical-chemical-properties/physical-
224	properties/default.aspx?pid=25&name=Vapor-Pressures
225 226	 O'Callaghan C, Barry PW. The science of nebulised drug delivery. Thorax. 1997 Apr 1;52(Supplement 2):S31–44.
227	 Very High Level Peroxide Test Strips, 0-5000 ppm [Vial of 50 Strips] Bartovation Test Strips
228	[Internet]. [cited 2020 Jun 30]. Available from: https://bartovation.com/product/disinfectants-
229	sanitizers/peroxide/high-level-peroxide-500-5000ppm-for-concentrated-h2o2-solutions-50-strips/
230	23. Spore Strip Steam - Technical Report.pdf [Internet]. [cited 2021 Jan 11]. Available from:
231	https://info.mesalabs.com/hubfs/1.%20Sterilization%20and%20Disinfection%20Control/Website/
232	Technical%20Reports/Spore%20Strip%20Steam%20-%20Technical%20Report.pdf
233	 Tuladhar E, Terpstra P, Koopmans M, Duizer E. Virucidal efficacy of hydrogen peroxide vapour
234	disinfection. J Hosp Infect. 2012 Feb 1;80(2):110–5.

Figure 1

Figure 2

Figure 3