1 Title

- 2 Trio-based whole exome sequencing in patients with suspected sporadic inborn errors of immunity: a
- 3 retrospective cohort study

4 Authors

- 5 Anne Hebert¹, Annet Simons¹, Janneke H.M. Schuurs-Hoeijmakers¹, Hans J.P.M. Koenen², Evelien
- 6 Zonneveld-Huijssoon³, Stefanie S.V. Henriet⁴, Ellen J.H. Schatorjé⁵, Esther P.A.H. Hoppenreijs⁵, Erika K.S.M.
- 7 Leenders¹, Etienne J.M. Janssen⁶, Gijs W.E. Santen⁷, Sonja A. de Munnik¹, Simon V. van Reijmersdal¹, Esther
- 8 van Rijssen², Simone Kersten¹, Mihai G. Netea^{8,9}, Ruben L. Smeets^{2,10}, Frank L. van de Veerdonk⁸, Alexander
- 9 Hoischen^{1,8}, Caspar I. van der Made^{1,8}

10 Affiliations

- ¹ Department of Human Genetics, Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University
- 12 Medical Center, Nijmegen, The Netherlands
- 13 ² Department of Laboratory Medicine, Laboratory for Medical Immunology, Radboud University Medical Center,
- 14 Nijmegen, The Netherlands
- ³ Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The
 Netherlands
- ⁴ Department of Pediatric Infectious Diseases and Immunology, Amalia Children's Hospital, Radboud Center for
- 18 Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands
- ⁵ Department of Pediatric Rheumatology and Immunology, Amalia Children's Hospital, Radboud University Medical
- 20 Center, Nijmegen, The Netherlands
- ⁶ Department of Clinical Genetics, Maastricht University Medical Center+, Maastricht, The Netherlands
- 22 Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
- 23 ⁷ Center for Human and Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
- ⁸ Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical
- 25 Center, Nijmegen, The Netherlands
- ⁹ Department for Immunology and Metabolism, Life and Medical Sciences Institute (LIMES), University of Bonn,
- 27 Bonn, Germany
- ¹⁰ Department of Laboratory Medicine, Laboratory for Diagnostics, Radboud University Medical Center, Nijmegen,
- 29 The Netherlands

30 Corresponding author

- 31 Name: Alexander Hoischen, Ph.D.
- 32 Address: Department of Internal Medicine and Department of Human Genetics, Radboud Center for Infectious
- 33 Diseases (RCI), Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center,
- 34 Nijmegen 6525GA, The Netherlands.
- 35 Tel.nr.: +3124-3619639
- 36 Email: alexander.hoischen@radboudumc.nl

37 Keywords

38 Trio-based whole exome sequencing, inborn errors of immunity, de novo variants

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

1 Abstract

- 2 Background
- 3 De novo variants (DNVs) are currently not routinely evaluated as part of diagnostic whole exome sequencing
- 4 (WES) analysis in patients with suspected inborn errors of immunity (IEI).
- 5 <u>Methods</u>
- 6 This study explored the potential added value of systematic assessment of DNVs in a retrospective cohort of
- 7 123 patients with a suspected sporadic IEI who underwent patient-parent trio-based WES.
- 8 <u>Results</u>
- 9 A likely molecular diagnosis for (part) of the immunological phenotype was achieved in 12 patients with the
- 10 diagnostic in silico IEI WES gene panel. Exome-wide evaluation of rare, non-synonymous DNVs affecting
- 11 coding or splice site regions led to the identification of 14 candidate DNVs in genes with an annotated immune
- 12 function. DNVs were identified in IEI genes (NLRP3 and RELA) and potentially novel candidate genes,
- 13 including PSMB10, DDX1, KMT2C and FBXW11. The FBXW11 canonical splice site DNV, in a patient with
- 14 autoinflammatory disease, was shown to lead to defective RNA splicing, increased NF-kB p65 signalling, and
- 15 elevated IL-1 β production in primary immune cells.

16 Conclusions

- This retrospective cohort study advocates the implementation of trio-based sequencing in routine diagnostics
 of patients with sporadic IEI. Furthermore, we have provided functional evidence supporting a causal role for
 FBXW11 loss-of-function mutations in autoinflammatory disease.
- 20 Funding
- This research was supported by grants from the European Union, ZonMW and the Radboud Institute forMolecular Life Sciences.
- 23

1 Introduction

2 Although we inherit the vast majority of genomic variants from our parents, a small fraction of variants arises 3 de novo during parental gametogenesis or after zygosis (1). The biological rate at which these variants develop 4 in humans translates to an average of 50 to 100 de novo single nucleotide variants (SNVs) per genome per 5 generation, usually only one or two of which affect coding regions (1, 2). De novo variants (DNVs) are often 6 very rare or unique (absent from population databases) and have a higher a priori chance to be pathogenic 7 than inherited variants (3, 4). In contrast to inherited variants, DNVs emerge between two generations and are 8 subjected to limited evolutionary selection pressure that would normally purify damaging mutations (1). DNVs 9 affecting nucleotides or genes that have been targeted by strong purifying selection can therefore be highly 10 damaging to their respective non-redundant biological functions, as has been shown for genes involved in 11 innate immunity, an ancient host defence mechanism that developed under constant environmental selection 12 pressure by microorganisms (4, 5).

Therefore, DNVs are important candidates to pursue, particularly as a cause for rare sporadic diseases (2, 4, 6). The presence of such candidate DNVs can currently be assessed by trio-based sequencing, in which the patient is sequenced together with the (healthy) parents (1). Most experience with systematic assessment of DNVs has been gained in the field of developmental disorders, in which DNVs are evaluated diagnostically and have been shown to constitute up to 50% of disease-causing mutations (6-8). However, the contribution of DNVs in the pathogenesis of other disorders, such as inborn errors of immunity (IEI), is less clear.

19 DNVs as the underlying cause in IEI patients have been widely reported in literature, but most of these 20 mutations have been predominantly determined to have originated *de novo* through subsequent segregation 21 analysis and not by systematic trio-based sequencing (9-13). IEI can present at different stages of life with a 22 variable phenotype ranging from recurrent, life-threatening infections to immune dysregulation and cancer (10, 23 14). Particularly in IEI patients with early-onset and severe complex phenotypes, there is an increased chance 24 to identify an underlying causative DNV (4, 15). Moreover, post-zygotically or somatically arising DNVs are 25 recognized as an important underlying cause for IEI patients with autoinflammatory disease (16-24). The 26 potentially added value of systematic DNV assessment in suspected IEI patients is supported by the findings 27 of an international cohort study, which reported that patient-parent trio sequencing resulted in a diagnosis in 28 44% of cases, compared to 36% by single whole exome sequencing (WES) (9). However, trio-based 29 sequencing has not yet been implemented as part of the routine diagnostic procedure of IEI patients.

The current study has aimed to further explore the potential added value of systematic assessment of candidate DNVs in a retrospective cohort of 123 sporadic, suspected IEI patients that underwent trio-based

32 WES.

1 Methods

2 Patients and samples

3 This retrospective cohort study was conducted on cases encountered in Genome Diagnostics between May 4 2013 and November 2021 at the Department of Human Genetics in the Radboud University Medical Center 5 (RUMC). In some these cases, a patient-parent trio design was requested by the referring clinician. Patient-6 parent trios were selected for exome-wide *de novo* variant (DNV) analysis when fulfilling the following criteria: 7 1) the patient's phenotype was sporadic, 2) the clinical description was suspect for an inborn error of immunity 8 (IEI), and 3) the in silico IEI whole exome sequencing (WES) panel was requested and analysed. The in silico 9 IEI gene panel of the RUMC is periodically updated after literature review and currently encompasses 456 10 genes (version DG3.1.0 (25)). During the study period, the in silico IEI WES panel was analysed in 146 patient-11 parent trios, of which 123 trios met the inclusion criteria (Figure 1).

As described previously (10), patients and their parents provided written informed consent for *in silico* IEI WES gene panel analysis with or without exome-wide variant analysis in line with the diagnostic procedure and clinical question, as approved by the local ethics committee (medisch-ethische toetsingscommissie Oost-Nederland). This research is in compliance with the principles of the Declaration of Helsinki (26).

For the exome-wide DNV analysis in this study, WES data of all subjects was pseudonymised. This entailed that patient DNA numbers were enciphered at random to ascending numbers for our study by a Genome Diagnostics member from the department of Human Genetics in the RUMC and clinical descriptions were condensed. Prior to this study, one patient was published as a clinical case report by D'hauw *et al.*, 19 patient-parent trios were included in the IEI cohort of Arts *et al.*, and one trio was part of a study by Konrad *et al.* (Figure 1 – table supplement 1) (10, 27, 28).

22 Diagnostic whole exome sequencing

23 WES was performed as described previously with minor modifications (29). In brief, genomic DNA samples 24 isolated from whole blood were processed at either the Beijing Genomics Institute (BGI) Europe (BGI Europe, 25 Copenhagen, Denmark) or the in-house sequencing facility. All samples were enriched for exonic DNA using 26 Agilent (Agilent Technologies, Santa Clara, CA, United States) or Twist (Twist Bioscience, San Francisco, CA, 27 United States) exome kits. DNA samples at BGI were sequenced on Illumina HiSeq4000 (Illumina Sequencing, 28 San Diego, CA, United States) or DNBseg (MGI Tech, Shenzhen, China). In-house DNA samples were 29 sequenced on Illumina NovaSeg6000 (Illumina Sequencing). Sequencing was performed with 2x100 base pair 30 (DNBseq) or 2x150 base pair (HiSeq4000 and NovaSeq6000) paired-end sequencing reads. The average

1 median sequence coverage was 124x with an average of 96% target coverage greater than 20x (Figure 1 –

2 table supplement 1).

3 Downstream processing was performed by an automated data analysis pipeline, including mapping of 4 sequencing reads to the GRCh37/hg19 reference genome with the Burrows-Wheeler Aligner algorithm and 5 Genome Analysis Toolkit variant calling and additional custom-made annotation (30, 31). The DeNovoCheck 6 tool is part of the custom-made annotation and was used to align variants called in each member of the patient-7 parent trios, providing an indication whether variants were inherited or *de novo* (29). Subsequently, all single 8 nucleotide variants (SNVs) or small insertion-deletions (indels) were annotated by a custom, in-house 9 annotation pipeline. Copy number variants (CNVs) were assessed by the copy number inference from exome 10 reads (CoNIFER) method, as of 2018. (32).

11 Subsequently, variants in genes included in the *in silico* IEI panel were filtered to retain both inherited 12 and de novo coding, non-synonymous variants with population frequencies below 1% in our in-house database or population databases (GnomAD and dbSNP) (33, 34). Variant prioritisation was performed by clinical 13 14 laboratory geneticists of the Department of Human Genetics at the RUMC. SNVs, small indels or CNVs that 15 may (partially) be related to the phenotype were classified (five-tier classification) and reported according to 16 guidelines of the Association for Clinical Genetic Science and the American College of Medical Genetics and 17 Genomics (ACMG) (35, 36) (Table 2A). Variants that were denoted or classified as carriership of a variant in 18 a known recessive disease gene, known risk factors or variants of uncertain significance or (likely) pathogenic 19 variants in disease genes other than those associated with IEI, and candidate variants identified after exome-20 wide variant analysis were additionally reported and are listed in Table 1A - table supplement 1.

21 De novo variant analysis

22 As part of this study, an additional exome-wide re-analysis directed towards the identification of DNVs in 123 23 patient-parent trios was performed. For this, a standardised variant filtering strategy was applied using R Studio 24 version 3.6.2. Variants were filtered to retain rare (<0.1% allele frequency in our in-house database and the 25 population databases from Exome Aggregation Consortium (ExAC), Genome Aggregation Database 26 (GnomAD) and dbSNP as well as <0.5% in the Genome of the Netherlands (GoNL) database), coding, non-27 synonymous possible DNVs, as annotated by the DeNovoCheck tool (Figure 1) (29, 33, 34, 37, 38). Quality 28 control steps excluded variants with <5 variation reads, <20% variant allele frequency or low coverage DNVs. 29 Subsequently, synonymous SNVs and small indels were excluded from the analysis. The remaining DNVs 30 were considered candidate DNVs and are listed in Figure 1 - table supplement 2. These candidate DNVs were 31 prioritised and systematically evaluated using variant and gene level metrics, containing database allele

frequencies (including DNV counts in other datasets via denovo-db), nucleotide conservation, pathogenicity prediction scores, functional information and possible involvement in the immune system based on mouse knockout models, pathway-based annotation (i.e., Gene Ontology terms), and literature studies (33, 39-41). In addition, splice site DNVs were analysed using the Alamut Visual Software version 2.13 (SOPHiA GENETICS, Saint Sulpice, Switzerland), which provides splicing prediction tools including SpliceSiteFinder-like, MaxEntScan, NNSPLICE, GeneSplicer and ESE tools.

7 FBXW11 functional validation experiments

8 Epstein–Barr virus (EBV)-B cell lines

9 Venous blood was drawn from patient 53 and collected in lithium heparin tubes. Epstein-Barr virus (EBV)-10 transformed B cell lines were created following established procedures (42). EBV-transformed lymphoblastoid 11 cell lines (EBV-LCLs) from the patient and a healthy control were grown at 37°C and 7.5% CO₂ in RPMI 1640 12 medium (Dutch Modification, Gibco; Thermo Fisher Scientific, Inc., Waltham, MA, United States) containing 13 15% foetal calf serum (FCS; Sigma-Aldrich, St Louis, MO, United States), 1% 10.000U/µl penicillin and 10.000 µg/µl streptomycin (Sigma-Aldrich), and 2% HEPES (Sigma-Aldrich). The EBV-LCLs were cultured at 14 15 a concentration of 10x10⁶ in 150cm² culture flasks (Corning, Corning, NY, United States) and treated with or 16 without cycloheximide at 0.1% (20mL/20mL medium; Sigma-Aldrich) for four hours. Cell pellets were then spun 17 down, washed with PBS, snap-frozen in liquid nitrogen and stored at -80°C.

18 RNA splicing effect

19 RNA was isolated from the EBV-B cell pellets using the RNeasy Mini isolation kit (Qiagen, Hilden, Germany) 20 according the manufacturer's instructions. All obtained RNA was used for cDNA synthesis with the iScript™ 21 cDNA Synthesis Kit (Bio-Rad, Hercules, CA, United States). A primer set was designed (Primer3web, version 22 4.1.0) to span exon 11 to 13 of FBXW11, with the following sequences: Forward 5'-GAGAGCCGGAATCAGAGGTG-3'; Reverse 5'-GAATTGGTCCGATGCATCCG-3'. Subsequently, RT-PCR 23 24 was performed using the AmpliTaq Gold[™] 360 Master Mix (Life Technologies, Carlsbad, CA, United States). 25 The amplified PCR products and Orange G ladder were electrophoresed on a 2% agarose gel with GelRed, 26 and the resulting bands were cut out and analysed with Sanger sequencing.

27 Ex vivo peripheral mononuclear blood cell (PBMC) experiments

Venous blood was drawn and collected in EDTA tubes. Immune cell isolation was conducted as described elsewhere (43). In brief, PBMCs were obtained from blood by differential density centrifugation, diluted 1:1 in pyrogen-free saline over Cytiva Ficoll-Paque Plus (Sigma-Aldrich). Cells were washed twice in saline and

suspended in cell culture medium (Roswell Park Memorial Institute (RPMI) 1640, Gibco) supplemented with 1 2 gentamicin, 10 mg/mL; L-glutamine, 10 mM; and pyruvate, 10mM. Ex vivo PBMC stimulations were performed 3 with 5×10⁵ cells/well in round-bottom 96-well plates (Greiner Bio-One, Kremsmünster, Austria) for 24 hours in 4 the presence of 10% human pool serum at 37°C and 5% carbon dioxide. For cytokine production 5 measurements, cells were treated with Candida albicans yeast (1×10⁶/mL), lipopolysaccharide (LPS, 10 ng/mL), Staphylococcus aureus (heat-killed, 1×10⁶/mL) or TLR3 ligand Poly I:C (10 µg/mL) or left untreated in 6 7 regular RPMI medium. After the incubation period and centrifugation, supernatants were collected and stored 8 at -20°C until the measurement using enzyme-linked immunosorbent assay (ELISA).

9 For flow cytometry experiments, PBMCs were cultured in U-bottom plates at a final concentration of
1×10⁶ cells in 200µL per well containing culture medium supplemented with 5% FCS (Sigma-Aldrich) at 37°C
and 5% carbon dioxide. Subsequently, cells were stimulated with phorbol 12-myristate 13-acetate (PMA,
12.5 ng/mL, Sigma-Aldrich) and ionomycin (500 ng/mL, Sigma-Aldrich) in duplicate for 30 minutes.

13 Flow cytometry

PBMC suspensions were transferred to a V-bottom plate while pooling the duplicates. Following centrifugation 14 15 for 2.5 minutes, cell surface markers were stained in the dark for 30 minutes at 4°C with a monoclonal antibody 16 mix containing anti-CD3-ECD (1:25; Beckman Coulter, Brea, CA, United States), anti-CD4-BV510 (1:50; BD 17 Bioscience, Franklin Lakes, NJ, United States), anti-CD8-APC Alexa Fluor[™] 700 (1:400; Beckman Coulter), 18 and anti-CD14-FITC (1:50; Dako; Agilent Technologies). Subsequently, cells were washed twice with flow 19 cytometry buffer (FCM buffer, 0.2% BSA in PBS) and fixed (BD Biosciences Cytofix, 554655) for 10 minutes 20 at 37°C. Next, cells were washed and permeabilised with perm buffer IV (1:10 diluted with PBS, BD 21 Biosciences Phosflow, 560746) for 20 minutes on ice in the dark. Cells were then stained intracellularly with 22 anti-NF-kB p65 (pS529)-PE antibody (1:50; eBioscience; Thermo Fisher Scientific, Inc., Waltham, MA, United 23 States) for 20 minutes at 4°C. After washing the cells twice in FCM-buffer, the suspensions were measured 24 on a Beckman Coulter Navios EX Flow Cytometer using Navios System Software. Cell immunophenotypes 25 were analysed using Kaluza Analysis Software version 2.1 (Beckman Coulter). The mean fluorescent 26 intensities (MFIs) were calculated using the median pNF-kB p65 expression levels within the gated immune 27 cell populations of interest.

28 Cytokine measurements

29 Levels of cytokines IL-1 β , IL-6 and TNF α were determined in supernatants of stimulated PBMC cultures 30 according to the instructions of the manufacturer (Duoset ELISA; R&D Systems, Minneapolis, MN, United 31 States).

1 Results

2 <u>Cohort characteristics</u>

3 This retrospective cohort study systematically re-analysed patient-parent trio whole exome sequencing (WES) 4 data of 123 patients with suspected inborn errors of immunity (IEI) with the aim to identify (likely) pathogenic 5 de novo single nucleotide variants (SNVs) or small insertion-deletions (indels) (Figure 1). Included IEI patients 6 had a median age of 9 years (IQR 2-17) and two-thirds of the cases were below 18 years of age (Table 1A). 7 The sex distribution among patients was roughly equal. Classification of IEI phenotypes according to the 8 International Union of Immunological Societies (IUIS) indicated that most cases presented with 9 autoinflammatory syndromes, followed by immune dysregulation and combined, predominantly syndromal 10 immunodeficiencies (14). Eight patients remained unclassified due to limited clinical data.

Figure 1. Schematic overview of patient inclusion, *de novo* variant filtering strategy and variant evaluation. Of the 146 eligible patient-parent trios, 123 trios met the inclusion criteria for this IEI cohort study. Whole exome sequencing data from these patient-parent trios was subjected to standardised variant filtering to retain candidate *de novo* variants. Subsequently, non-synonymous DNVs were systematically evaluated at variant and gene level for their potential involvement in the patient's immunological phenotype.

6 Figure 1 - table supplements 1-3, and figure supplement 1.

7 Abbreviations: IEI = inborn errors of immunity dbSNP = Single Nucleotide Polymorphism Database.

8 ExAC = Exome Aggregation Consortium. GnomAD = Genome Aggregation Database. AF = allele frequency.

9 GoNL = Genome of the Netherlands.

1 Table 1A. Patient cohort characteristics. Demographic and phenotypic characteristics of the 123 patients

2 included in this cohort of inborn errors of immunity.

Characteristic	Total N=123
Demographics	
Age ^a , median (IQR) y	9 (2-17)
<18y, %	67.4
>18y, %	33.6
Sex ratio, M:F	50.4:49.6
Distribution of clinical phenotypes ^b	
Severe combined immunodeficiency, n (%)	9 (7.3)
Suspected SCID (low TRECs), n	5
Other, n	4
Combined immunodeficiency, n (%)	22 (17.9)
Syndromal, n	20
Non-syndromal, n	2
Primary antibody deficiency, n (%)	14 (11.4)
CVID, n	14
Agammaglobulinemia, n	0
Other, n	0
Immune dysregulation, n (%)	20 (16.3)
HLH/EBV, n	5
Autoimmunity, n	15
Autoinflammatory syndrome, n (%)	22 (17.9)
Periodic fever syndrome, n	19
Interferonopathy, n	0
Other, n	3
Phagocyte defect, n (%)	5 (4.1)
Functional defect, n	1
Neutropenia/other, n	4
Innate/intrinsic immune defect, n (%)	16 (13.0)
Bacterial/parasitic, n	2
MSMD/Viral, n	7
Other, n	7
Complement deficiencies, n (%)	0 (0.0)
Bone marrow failure, n (%)	10 (8.1)
Phenocopies of PIDs, n (%)	0 (0.0)
Unclassified, n (%)	5 (4.1)

3 ^a Age at the time of genetic testing is indicated here, since the age of onset has not been documented for all

4 cases.

^b Categorization of phenotypes is based on the IUIS classification of 2019 (14).

6 Abbreviations: IQR = interquartile range; SCID = severe combined immunodeficiency; TREC = T cell receptor

- 7 excision circle; CVID = common variable immunodeficiency; HLH = haemophagocytic lymphohistiocytosis;
- 8 EBV = Epstein-Barr virus; MSMD = Mendelian susceptibility to mycobacterial disease; PID = primary
- 9 immunodeficiency.

1 <u>Genetic variants reported after routine diagnostic whole exome sequencing analysis</u>

Following routine diagnostic WES, potential disease-causing SNVs and/or copy number variants (CNVs) were reported in 36 index patients (Table 1B). Twenty-four patients were carriers of recessive disease alleles, previously characterised risk factors, variants of uncertain significance (VUS) or (likely) pathogenic variants affecting established disease genes other than those associated with IEI (Table 1B). Of note, three of these patients carried *de novo* CNVs (patient 21, 69 and 115).

In 12 patients, (likely) pathogenic SNVs were identified in known IEI genes that (partially) explain the
patient's immunological phenotype (Table 1B, details shown in Table 2A). While the majority of variants was
inherited, one patient with Muckle-Wells syndrome (patient 59) carried a *de novo* missense variant in *NLRP3*(NM_001079821.2:c.1049C>T p.(Thr350Met)). This variant has previously been described in patients with
Muckle-Wells syndrome (44, 45). Consequently, the *NLRP3 de novo* variant (DNV) was classified as
pathogenic (35, 36).
Overall, routine diagnostic WES analysis provided a likely molecular diagnosis for (part) of the

14 phenotype in 19 patients (15.4%) (Table 1B, Table 2A).

15 **Table 1B. Genetic findings after routine diagnostic panel analysis.** Genetic variants reported after routine

16 diagnostic whole exome sequencing analysis of the 123 patients included in this cohort of inborn errors of

17 immunity. *Table 1B – table supplement 2.*

Total cases in which a genetic variant was reported, n (%)	36 (29.3)
Likely pathogenic mutation, n (%)	19 (15.4)
Within IEI gene panel, n (%)	12 (9.8)
Beyond IEI gene panel, n (%)	7 (5.7)
Other variants, n (%)	17 (13.8)
Risk factor, n (%)	6 (4.9)
Carriership recessive allele, n (%)	7 (5.7)
Variant of unknown significance, n (%)	9 (7.3)

18 Rare, non-synonymous de novo variants in novel IEI candidate genes

19 Next, exome-wide re-analysis was performed on WES data of all 123 sporadic IEI cases and their parents to 20 systematically identify and interpret DNVs in novel IEI genes. Automated DNV filtering retained a total of 187 21 candidate DNVs that were rare and located in either exonic or splice site regions (the complete list can be 22 found in Figure 1 – table supplement 2). The total number of candidate DNVs among patients ranged between 23 zero and six (Figure 1 - figure supplement 1). Moreover, the average number of candidate DNVs was 24 comparable to recent literature (Figure 1 - table supplement 3). Of these candidate DNVs, 136 were non-25 synonymous and therefore more likely to exert an effect on protein function (Figure 1 – figure supplement 1). 26 Two pairs of patients carried candidate DNVs in the same gene, GIGYF1 (patients 49 and 83) and MAP3K10

(patients 98 and 118). However, these patients did not share phenotypic features and the function of the
 proteins encoded by these genes could not be linked to the respective patient phenotype.

Subsequently, all non-synonymous candidate DNVs were systematically evaluated based on information on variant and gene level, leading to the selection of 14 candidate DNVs potentially causing IEI (Table 2A and B), including the above-mentioned variant in the known IEI gene *NLRP3*. The 13 novel IEI candidate DNVs were found in patients with different IEI phenotypes, although three subtypes reoccurred: predominantly antibody deficiency (hypogammaglobulinemia), autoinflammatory disorder and bone marrow failure. Candidate DNVs that were considered most promising based on variant and gene level metrics are presented in more detail in the following paragraphs.

10 In a patient with an autoinflammatory phenotype characterised by mucocutaneous ulceration of mouth 11 and genital area (patient 119, Table 2B), a DNV was located in the canonical splice acceptor site preceding 12 exon 10 of RELA (NM_021975.3:c.959-1G>A). The guanine to adenine change was predicted to compromise 13 the splice acceptor site by transferring it to the first guanine of exon 10, leading to an out-of-frame exon. The 14 resulting frameshift was therefore assumed to cause a reduction in functional ReIA protein by nonsense-15 mediated decay. RelA is also known as p65 and is critically involved in nuclear factor kappa-light-chain-16 enhancer of activated B cells (NF-kB) heterodimer formation and consequent activation of NF-kB-mediated 17 proinflammatory signalling. RelA haploinsufficiency has been reported as a cause of chronic mucocutaneous 18 ulceration and familial Behçet's disease (46, 47). Badran et al. reported a family of four affected family 19 members with mucocutaneous ulceration harbouring a mutation in the canonical donor splice site of exon 6 20 (NM 021975:c.559+1G>A), likely leading to a premature stop codon and haploinsufficiency (46). Both, the 21 phenotype and proposed mutational mechanism in our patient, match this description. Although RELA has 22 already been reported as an IEI gene in a previous IUIS classification (48), it was not yet listed in the IEI in 23 silico gene panel of our Department of Human Genetics (25), because evidence was considered insufficient 24 at the time. Based on these arguments, this DNV has only now been classified as pathogenic, which could 25 carry implications for therapy with anti-tumour necrosis factor alpha (TNF α) inhibitors (47).

In addition, a private *de novo* missense variant in *PSMB10* was observed in a patient with clinically diagnosed Omenn syndrome with severe combined immunodeficiency (SCID), ectodermal dysplasia, alopecia, hypodontia and anonychia (patient 1, Table 2B). The clinical phenotype of this patient has been previously reported (28). The DNV was predicted to be pathogenic based on the majority of variant and gene level metrics. In additional data that was available from a previously performed single nucleotide polymorphism (SNP) micro-array, it was shown that the genomic location of *PSMB10* was spanned by a partial somatic

12

1 Table 2A. Patients with previously reported single nucleotide variants, small insertion-deletions, or copy number variants that may (partially) explain the

2 patient's immunological phenotype. Listed variants were identified prior to this cohort study in the scope of routine diagnostic inborn errors of immunity gene panel

3 analysis of each patient included in this cohort.

Patient Nr	Sex	Age range at sampling	Phenotype (IUIS classification)	Variant	Mutational mechanism	ACMG classification	ClinVar accession	Comments
10	F	0.5	Immune dysregulation,	AP3B1 Chr5(GRCh37):g.77563371del NM_003664.4:c.177del p.(Lys59fs)		Pathogenic	VCV000224763	- Hormonsky Pudlak syndroma 2 (OMIM #608222)
10	I	0-3	HLH/EBV	AP3B1 Chr5(GRCh37):g.77423980_77423983del NM_003664.4:c.1839_1842del p.(Asp613fs)	AR (CII) LOI	Pathogenic	VCV000224764	
10	E	11 15		FAS Chr10(GRCh37):g.90774167_90774186dup NM_000043.6:c.968_987dup p.(Glu330fs)	AD (htz) LoF	Pathogenic	VCV000016509	Autoimmune lymphoproliferative syndrome, type IA (OMIM #601859)
12	I	11-15	CID, syndromai	seq[GRCh37] del(16)(p11.2p11.2) NC_000016.9:g.(29469093_29624260)_(30199846_30208282)del	AD (htz) LoF	Pathogenic	-	16p11.2 deletion syndrome (OMIM #611913)
26	F	0-5	Bone marrow failure	DHFR Chr5(GRCh37):g.79950248C>T NM_000791.3:c.61G>A p.(Gly21Arg)	AR (hmz) LoF	Likely pathogenic	-	Megaloblastic anaemia due to dihydrofolate reductase deficiency (OMIM #613839) Affected sibling carries equal variant
59	М	6-10	Autoinflammatory disorder	NLRP3 Chr1(GRCh37):g.247587794C>T NM_001079821.2:c.1049C>T p.(Thr350Met)	AD (htz) LoF	Pathogenic	-	Muckle-Wells syndrome (OMIM #191900) De novo SNV
61	М	0-5	CID, syndromal	MKL1 Chr22(GRCh37):g.40815086dup NM_020831.4:c.1356dup p.(Val453Argfs)	AR (hmz) LoF	Likely pathogenic	-	Immunodeficiency 66 (OMIM #618847) Affected sibling carries equal variant
77	F	0-5	CID, syndromal	ALOXE3 Chr17(GRCh37):g.8006708G>A NM_021628.2:c.1889C>T p.(Pro630Leu)	AR (hmz) LoF	Pathogenic	-	Congenital ichthyosis 3 (OMIM #606545)
91	F	0-5	Suspected SCID (low TRECs)	FOXN1 Chr17(GRCh37):g.26857765A>G NM_003593.2:c.831-2A>G p.?	AD (htz) LoF	Likely pathogenic	-	T-cell lymphopenia, infantile, with or without nail dystrophy (OMIM #618806)
102	F	11 15	Immune dysregulation,	CD55 Chr1(GRCh37):g.207497984dup NM_001300902.1:c.367dup p.(Thr123fs)	AR (hmz) LoF	Pathogenic	-	Complement hyperactivation, angiopathic thrombosis, and protein-losing enteropathy (OMIM #226300)
102	Г	11-15	others	PET117 Chr20(GRCh37):g.18122927C>T NM_001164811.1:c.172C>T p.(Gln58*)	AR (hmz) LoF	Likely pathogenic	VCV000981504	Mitochondrial complex IV deficiency, nuclear type 19 (OMIM #619063)
105	М	31-35	Defects in intrinsic and innate immunity, MSMD and viral infection	TLR7 ChrX(GRCh37):g.12905756_12905759del NM_016562.3:c.2129_2132del p.(Gln710fs)	XLR (hemi) LoF	Pathogenic	VCV000977232	Immunodeficiency 74, COVID19-related (OMIM #301051) Affected sibling carries equal variant
114	М	6-10	Immune dysregulation, autoimmunity and others	LRBA Chr4(GRCh37):g.151835415del NM_006726.4:c.1093del p.(Tyr365fs)	AR (hmz) LoF	Pathogenic	-	Common variable immunodeficiency 8 (OMIM #614700)
120	М	11-15	Congenital defect of phagocyte, functional defects	NCF1 Chr7(GRCh37):g.74191615_74191616del NM_000265.5:c.75_76del p.(Tyr26fs)	AR (hmz) LoF	Pathogenic	VCV000002249	Chronic granulomatous disease 1 (OMIM #233700)
122	М	0-5	Suspected SCID (low TRECs)	FOXN1 Chr17(GRCh37):g.26851540del NM_003593.2.1:c.143del p.(Cys48fs)	AD (htz) LoF	Pathogenic	-	T-cell lymphopenia, infantile, with or without nail dystrophy (OMIM #618806)

4 Abbreviations: IUIS = International Union of Immunological societies; ACMG = American College of Medical Genetics and Genomics; HLH = haemophagocytic

5 lymphohistiocytosis; EBV = Epstein-Barr virus; OMIM = Online Mendelian Inheritance in Man; (S)CID = (severe) combined immunodeficiency; TREC = T cell receptor

6 excision circle; MSMD = Mendelian susceptibility to mycobacterial disease; AR = autosomal recessive; AD = autosomal dominant; XLR = X-linked recessive; ch =

7 compound heterozygous; htz = heterozygous; hmz = homozygous; hemi = hemizygous; LoF = loss-of-function; SNV = single nucleotide variant.

Table 2B. Identification of 13 heterozygous, rare and non-synonymous candidate *de novo* variants with immunological implication. The 136 non-synonymous
candidate *de novo* variants were systematically evaluated based on the potential to be damaging to gene function and the involvement in the patient's immunological
defect. For this, variant and gene level metrics, containing database allele frequencies (including denovo-db), nucleotide conservation, pathogenicity prediction scores,
functional information and possible involvement in the immune system based on mouse knockout models, pathway-based annotation (i.e., Gene Ontology terms) and
literature studies were summarised (33, 39-41).

Patient Nr	Sex	Age c range a samplin	t Phenotype (IUIS classification) g	De novo variant	GnomAD AF	in-house AF	PhyloP	CADD	VarMap	MetaDome	Coding DNV in denovo-db (respective protein effect)	LOEUF	Function	Literature	Comments
Missen	se SN	IVs													
1	М	11-15	SCID	PSMB10 Chr16(GRCh37): g.67968809C>T NM_002801.3: c.601G>A p.(Gly201Arg)	0	0	5	32	Likely deleterious	Neutral	-	1.37	Immuno- and thymoproteasome subunit	Homozygous <i>Psmb10</i> variant in mice causes SCID and systemic autoinflammation (49). Homozygous <i>PSMB10</i> variant in humans cause PRAAS, no immunodeficiency (50).	Revertant somatic mosaicism (VAF: 39.7%). Additional inherited SNV and partial somatic UPD16 (Table 1B – table supplement 1).
9	М	6-10	Predominantly antibody deficiency, hypogamma- globulinemia	RPL27A Chr11(GRCh37): g.8707228T>C NM_000990.4: c.322T>C p.(Tyr108His)	0.00001	0.0041	7.4	27.4	Likely deleterious	Intolerant	-	0.39	Ribosomal subunit	Ribosomopathies may include immunological defects (51).	
27	М	11-15	Autoinflammatory disorder	TAOK2 Chr16(GRCh37): g.29997683C>T NM_016151.3: c.2090C>T p.(Ala697Val)	0	0	4.8	22.5	Possibly deleterious	Slightly intolerant	6 (4 mis)	0.24	Serine/threonine- protein kinase (p38 MAPK pathway)	Homozygous <i>TAOK2</i> variant causes abnormal T cell activation in two patients with inflammatory bowel disease (52).	
28	F	16-20	Predominantly antibody deficiency, hypogamma- globulinemia	KCTD9 Chr8(GRCh37): g.25292997C>T NM_017634.3: c.695G>A p.(Arg232His)	0	0.0082	5.8	32	Likely deleterious	Intolerant	-	0.52	Substrate-specific adapter	Involved in NK cell activation (53).	

52	М	11-15	Predominantly antibody deficiency, hypogamma- globulinemia	SCRIB Chr8(GRCh37): g.144874432C>T NM_182706.4: c.4472G>A p.(Arg1491GIn)	0	0	4.2	29.9	Possibly deleterious	Intolerant	5 (4 mis)	0.31	Scaffold protein	Involved in uropod and immunological synapse formation, and ROS production by antigen-presenting cells (54).	
58	F	21-25	Unclassified	CTCF Chr16(GRCh37): g.67645905G>T NM_006565.4: c.833G>T p.(Arg278Leu)	0	0	9.7	24.7	Possibly deleterious	Highly intolerant	12 (11 mis)	0.15	Transcriptional insulator	CTCF variants cause neurodevelopmental disorders, sometimes associated with recurrent infections and minor facial dysmorphisms (27).	Published (27).
75	F	6-10	Bone marrow failure	FUBP1 Chr1(GRCh37): g.78435621A>C NM_001303433.1:c.1 99T>G p.(Leu67Val)	0	0	2.6	24.8	Possibly deleterious	Intolerant	1 (0 mis)	0.12	Transcriptional regulator that binds FUSE upstream of the c-myc promoter	Essential for long-term repopulating hematopoietic stem cell renewal (55). Fubp1 KO mice show cerebral hyperplasia, pulmonary hypoplasia, pale livers, hypoplastic spleen, thymus, and bone marrow, cardiac hypertrophy, placental distress, and small size (56).	
118	F	0-5	Immune dysregulation, autoimmunity and others	RUNX3 Chr1(GRCh37): g.25256227C>T NM_004350.2: c.133G>A p.(Gly45Arg)	0	0	2.39	17.97	Possibly deleterious	Slightly tolerant	1 (1 mis)	0.42	Transcriptional regulator	RUNX3 regulates CD8+ T cell thymocyte development, maturation of cytotoxic CD8+ T cells and the function of innate lymphoid cells 3 via stimulation of RORyt (57). Runx3 KO mice spontaneously develop inflammatory bowel disease and gastric lesions (58).	
Frames	hift SN	Vs													
49	Μ	26-30	Predominantly antibody deficiency, hypogamma- globulinemia	DDX1 Chr2(GRCh37): g.15769802dup NM_004939.2: c.1952dup p.(Trp652fs)	0	0	7.1	24.1	NA	Intolerant	4 (0 fs)	0.28	RNA helicase	Part of a dsRNA sensor that activates the NF-kB pathway and type I interferon responses (59).	
78	F	6-10	CID, syndromal	KMT2C Chr7(GRCh37): g.151860074del NM_170606.2: c.10588del p.(Ser3530Leufs*3)	0	0	-100	14.7	NA	Neutral	19 (4 fs)	0.12	Histone methyltransferase	<i>KMT2C de novo</i> variant causes Kleefstra syndrome 2, sometimes associated with recurrent respiratory infections (60).	

Splice	site SN	Vs													
53	F	11-15	Autoinflammatory disorder	FBXW11 Chr5(GRCh37): g.171295802T>C NM_012300.2: c.1468-2A>G p.?	0	0	7.9	34	NA	NA	2 (0 ss)	0.31	Component of SCF (SKP1-CUL1-F- box) E3 ubiquitin ligase complex	Involved in the regulation of NF- κΒ signalling (61).	
119	F	11-15	Autoinflammatory disorder	RELA Chr11(GRCh37): g.65423234C>T NM_021975.3: c.959-1G>A p.?	0	0	3.5	34	NA	NA	-	0.18	Transcription factor p65 (NF-кВ subunit)	Heterozygous <i>RELA</i> variant causes chronic mucocutaneous ulceration (46).	
Small i	n-frame	e indel													
108	М	21-25	Bone marrow failure	NSD2 Chr4(GRCh37): g.1959681_1959687 delinsTTTTCT NM_133330.2: c.2903_2909 delinsTTTTCT p.(Arg968_Arg970 delinsLeuPheLeu)	NA	NA	NA	NA	NA	-	-	0.12	Histone methyltransferase	<i>NSD2 de novo</i> LoF variant causes mild Wolf-Hirschhorn syndrome (62). Unclear role in immunity.	Postzygotic mosaicism (VAF 29%).

Abbreviations: IUIS = International Union of Immunological Societies; GnomAD = Genome Aggregation Database; AF = allele frequency; CADD = Combined Annotation Dependent Depletion; DNV = *de novo* variant; LOEUF = loss-of-function observed/expected upper bound fraction; SNV = single nucleotide variant; indel = insertion-deletion; (S)CID = severe combined immunodeficiency; NA = not applicable; mis = missense; fs = frameshift; ss = splice site; MAPK = mitogen-activated protein kinase; FUSE = far upstream element; PRAAS = proteasome-associated autoinflammatory syndrome; NK = natural killer; ROS = reactive oxygen species; KO = knockout; dsRNA = double-stranded RNA; NF- κ B = nuclear factor kappa-light-chain-enhancer of activated B cells; LoF = loss-of-function; VAF = variant allele

6 frequency; UPD16 = uniparental disomy of chromosome 16.

uniparental disomy of chromosome 16 (UPD16) (manuscript in preparation). *PSMB10* encodes the β2i-subunit 1 2 of the immuno- and thymoproteasome, and mutations leading to a loss of PSMB10 protein function have been 3 associated with severe immunological defects (49). A homozygous PSMB10 variant (p.Gly170Trp) has been 4 shown to induce SCID and systemic autoinflammation in mice, while heterozygous mice only had a T cell 5 defect (49). In addition, a 3-year-old Algerian female with autoinflammatory signs suggestive of proteasome-6 associated autoinflammatory syndrome (PRAAS) was shown to harbour a homozygous missense PSMB10 7 variant (NM_002801.3:c.41T>C p.(Phe14Ser)), leading to disturbed formation of the 20S proteasome (50). 8 Mutations in other genes encoding B subunits of the immunoproteasome, including PSMB8 and PSMB9, are 9 known autosomal recessive causes of PRAAS (50, 63, 64). Furthermore, it is interesting to consider that the 10 amino acid position of our variant is located in proximity to the position of the p.(Glv170Trp) variant in the 11 mouse orthologue (49). However, the functional consequence and pathogenic relevance of the candidate DNV 12 in *PSMB10* remain unknown; it is possible that the DNV acts through a novel autosomal dominant mutational 13 mechanism.

Furthermore, in a patient with common variable immunodeficiency (CVID) due to a B cell maturation defect, auto-immune cytopenia, polyclonal T cell large granular lymphocytes in the bone marrow, recurrent viral infections, psoriasis and alopecia areata, another candidate DNV was identified in *DDX1* (patient 49, Table 2B). This frameshift variant was predicted to cause loss of DDX1 protein function. *DDX1* encodes an RNA helicase, which is part of a double-stranded RNA sensor that activates the NF-κB pathway and type I interferon responses (59). Moreover, DDX1 is involved in the regulation of hematopoietic stem and progenitor cell homeostasis (59, 65).

21 Another frameshift DNV was carried by a patient with a syndromal combined immunodeficiency 22 characterised by recurrent ear infections, developmental delay, low-average intelligence level and facial 23 dysmorphism (patient 78, Table 2B). The variant was predicted to lead to a loss-of-function (LoF) of the KMT2C 24 protein, which acts as a histone methyltransferase. In humans, de novo LoF mutations in KMT2C are 25 associated with Kleefstra syndrome 2, a neurodevelopmental disorder (60). Two of the six individuals 26 described in that study were reported to have recurrent respiratory infections (60). The occurrence of 27 immunological symptoms in patients with mutations in chromatin-regulating genes is increasingly being 28 recognized in the field of intellectual disability (ID) (66, 67). Therefore, more in-depth characterisation of 29 patients with KMT2C mutations and predominant ID phenotypes might indicate (mild) immunological 30 phenotypes that overlap with the phenotype of our patient, in support of pathogenicity of the observed DNV.

Lastly, a DNV was identified in FBXW11, carried by a patient with an autoinflammatory disorder 1 2 characterised by recurrent periodic fever and severe headaches (patient 53, Table 2B). FBXW11 encodes a 3 component of SCF (SKP1-CUL1-F-box) E3 ubiquitin ligase complex, TrCP2, that is involved in the regulation 4 of NF-kB signalling through the ubiquitination of several of its components (61, 68). An important function of 5 both the TrCP1 and TrCP2 isoforms is the regulation of IκBα degradation, leading to subsequent activation of 6 NF-kB and release of pro-inflammatory cytokines (69, 70). The identified DNV affected the canonical splice 7 acceptor site preceding exon 12 (NM_012300.2:c.1468-2A>G). This DNV was predicted to lead to skipping of 8 exon 12 based on splicing prediction by the Alamut Visual Software and to be deleterious by all utilised in silico 9 prediction tools. The predicted RNA splicing defect leading to an in-frame, shortened RNA transcript was 10 confirmed in Epstein-Barr virus (EBV) transformed B cells from the patient (Figure 2).

11 The other candidate DNVs will not be described in detail here, as there is insufficient evidence to 12 suggest pathogenicity or a genotype-phenotype relationship. Future discovery of cases with DNVs in the 13 presented genes and overlapping clinical phenotypes could encourage further in-depth research into the 14 possible mutational mechanisms.

15 Functional validation of FBXW11 de novo variant

16 In addition to systematic DNV analysis, we have selected the candidate DNV in FBXW11 for functional 17 validation as part of this study to provide further evidence for a causal genotype-phenotype relationship (patient 18 53, Table 2B). As such, the putative effects on NF-κB signalling and the downstream production of pro-19 inflammatory cytokines were investigated in peripheral blood mononuclear cells (PBMC) extracted from the 20 patient and a healthy control. In unstimulated PBMC of the patient showed higher levels of phosphorylated 21 NF-kB p65 compared to the control. Ex vivo stimulation of these PBMC with phorbol 12-myristate 13-acetate 22 (PMA) and ionomycin for 30 minutes led to higher NF-κB activation, reflected by p65 phosphorylation 23 fluorescence intensity measured by flow cytometry, as compared to the healthy control (Figure 2, panel A). 24 The greatest difference was observed in the lymphocyte subset, particularly in CD8+ T cells (Figure 2, panel 25 A). Subsequently, the downstream production of the cytokines IL-1 β , IL-6 and TNF α was investigated. The 26 patient-derived PBMC produced more IL-1β upon in vitro stimulation with the heat-killed pathogens Candida 27 albicans and Staphylococcus aureus, the TLR4 agonist lipopolysaccharides (LPS) and the TLR3 ligand Poly I:C after 24 hours, as compared to the healthy control (Figure 2, panel B). This trend was not observed for the 28 29 production of IL-6 and TNF α (Figure 2, panel C and D). These results indicate that the *FBXW11* DNV leads to

- 1 a splicing defect with skipping of exon 12, resulting in a shorter transcript and increased NF-кB signalling and
- 2 downstream IL-1β production.

Figure 2. NF-\kappaB signalling and production of innate cytokines upon *ex vivo* **PBMC stimulation.** Panel A shows the median fluorescence intensity expression levels of pNF- κ B p65 (S529) in peripheral blood CD14+ monocytes and CD8+ T cells from a healthy control (blue) and patient 53 (red), in the absence (baseline) or presence of phorbol 12-myristate 13-acetate and ionomycin stimulation, with the absolute values indicated in the lower right corner. Panel B, C and D display the production of IL-1 β , IL-6 and TNF α , respectively, after *ex vivo* stimulation for 24 hours.

- 9 Figure 2 figure supplement 1; Figure 2B-D source data 1.
- 10

1 Discussion

2 We investigated the potential benefit of exome-wide trio-based sequencing over routine single whole exome 3 sequencing (WES) analysis in a retrospective cohort of 123 patients with sporadic, suspected inborn errors of 4 immunity (IEI). Systematic analysis of de novo single nucleotide variants (SNVs) and small insertion-deletions 5 (indels) led to the identification of 14 candidate de novo variants (DNVs), of which two were in known IEI genes 6 and classified as pathogenic (NLRP3, RELA). Of the 12 variants in potentially novel candidate genes for IEI, 7 four were considered to be most likely pathogenic (PSMB10, DDX1, KMT2C, FBXW11) based on gene and 8 variant level metrics. Additionally, we have provided functional evidence that the FBXW11 splice site DNV led 9 to skipping of exon 12 resulting in the transcription of an altered protein product and subsequent downstream 10 activation of NF-kB signalling with higher IL-1β production capacity.

11 We have performed a systematic, exome-wide DNV analysis in selected patients with sporadic, 12 suspected IEI. On average, these patients carried 0.89 non-synonymous DNVs in coding regions, a rate 13 comparable to other, larger studies, indicating that an enrichment or depletion of DNVs in IEI patients is unlikely 14 (8). Based on gene and variant level information, 14 DNVs (11.4%) were considered potential disease-causing 15 candidates. This would result in a maximum solve rate of 23.6%, when combining the candidate DNVs with 16 the 12 (likely) pathogenic inherited variants in known IEI genes and the three reported de novo copy number 17 variants (CNVs) with unknown pathogenicity. Six of the candidate DNVs (4.9%) were considered likely or 18 possibly pathogenic variants, while the consequence of the other nine DNVs (6.5%) was uncertain. Two DNVs 19 were in IEI genes (NLRP3, RELA) listed in the most recent IUIS classification and were classified as pathogenic 20 (35, 36, 48). The heterozygous NLRP3 variant in patient 59 (p.Thr350Met) with Muckle-Wells syndrome had 21 been reported in patients with an equal phenotype (44, 45). Similarly, the canonical splice site DNV affecting 22 RELA in patient 119 with mucocutaneous ulceration was predicted to lead to a loss of the splice acceptor site 23 and a subsequent frameshift, analogous to the previously demonstrated mutational mechanism for a canonical 24 donor splice site variant that led to RELA haploinsufficiency causing the same phenotype (46).

Moreover, DNVs in the potentially novel IEI genes *PSMB10*, *DDX1*, *KMT2C* and *FBXW11* were considered the most promising candidate DNVs based on the predicted variant effect and immunological function of the respective gene. The private missense DNV in *PSMB10* was found in a patient with clinically diagnosed Omenn syndrome, showing phenotypic resemblance with features reported in a mouse model that investigated the effect of a mutation proximal to that of the patient in the human homologue (49). The presumed deleterious effect was further supported by the extremely rare occurrence of revertant mosaicism in this patient (unpublished data), *i.e.*, somatic and recurrent uniparental disomy 16q overlapping the *PSMB10* locus,

suggesting a strong (cellular) effect of this variant. In addition, a de novo frameshift variant in the highly 1 2 intolerant DDX1 (pLI 0.994) was identified in a patient with hypogammaglobulinemia, hematopoietic cell 3 lineage abnormalities and recurrent infections. Although a causal genotype-phenotype relationship remains unclear, it has been reported that DDX1 plays a role in NF-κB signalling, type I interferon responses, and the 4 5 regulation of hematopoietic stem and progenitor cell homeostasis (59, 65). Furthermore, the de novo frameshift 6 variant in KMT2C was detected in a patient with combined immunodeficiency and a neurodevelopmental 7 phenotype, displaying partial phenotypic overlap with Kleefstra syndrome type 2 that has already been 8 associated with de novo mutations in KMT2C (60).

9 Another promising candidate DNV in a potentially novel IEI gene was identified in a patient with 10 periodic fever and was located in the highly conserved FBXW11 (pLI 0.976). This DNV affected the canonical 11 splice acceptor site preceding exon 12 and was shown to create a splice defect leading to exon skipping with 12 a shortened transcript that retained expression at the RNA level. Exon 12 encodes a component of the WD40 13 repeat domain, which is involved in substrate recognition (71). De novo missense and nonsense variants in 14 FBXW11 have been previously described in patients with a neurodevelopmental syndrome with abnormalities 15 of the digits, jaw and eyes (72). These variants have been shown to compromise substrate recognition or 16 binding of the Wnt and Hedgehog signalling developmental pathways. In our patient with a distinct 17 autoinflammatory phenotype, we hypothesised a specific functional effect on NF-KB signalling. FBXW11 18 encodes β-TrCP2, a component of the SCF (SKP1-CUL1-F-box) E3 ubiquitin ligase complex that mediates 19 the ubiquitination of IkB α and consequently stimulates canonical NF-kB signalling (73). It was previously shown 20 that the abundance of β -TrCP, which includes the highly homologous isoform β -TrCP1, affects the steady-21 state concentration of NF-KB and its dynamics on stimulation (73). In peripheral blood mononuclear cells 22 (PBMC) extracted from the patient, we demonstrated that the phosphorylation of the NF-KB subunit p65 was 23 constitutively higher in monocytes and CD8+ T cells as compared to a healthy control, which suggests a 24 functional effect of the FBXW11 variant. This effect is further substantiated by the observation of increased p65 phosphorylation and downstream production of IL-1β after stimulation with pathogens and a TLR3 ligand 25 26 in the patient. However, a note of caution should be made regarding n=1 studies, as we cannot exclude that 27 the difference is due to normal inter-individual biological variability. These results suggest that NF-KB signalling 28 was aberrantly increased in the patient, a mechanism that has been shown to be involved in the pathogenesis 29 of other monogenic autoinflammatory disorders known as relopathies (74). Although it is likely that the *de novo* 30 variant in *FBXW11* plays a role in the immunological phenotype, further experiments addressing the effect of

1 this DNV on IκBα degradation, substrate recognition and TrCP protein abundance should be undertaken to

2 provide conclusive evidence.

3 To our knowledge, two other cohort studies have systematically performed trio-based sequencing in 4 IEI patients as part of their study design, although patients were not pre-selected based on sporadic 5 phenotypes (9, 75). Stray-Pedersen et al. conducted a large international cohort study to investigate the 6 usefulness of WES in IEI patients from 278 families, which included 39 patient-parent trios (9). The authors 7 reported a molecular diagnosis in 40% of the patients, including 15 (13.6%) de novo mutations, of which 4 8 were identified by trio-based analysis and 11 after segregation analysis. The additional value of trio-based 9 sequencing is indicated by the higher detection rate compared to that of the single cases followed by 10 segregation analysis of candidate variants (44 versus 36%), as well as the discovery of potentially novel IEI 11 denes or expansion of the immunological phenotype. Furthermore, Simon et al. performed WES in a cohort of 12 106 IEI patients with a consanguineous background, including 26 patient-parent trios (75). A molecular 13 diagnosis was established in 70% of the patients, including 13 (17.6%) de novo mutations, although it is unclear 14 whether these variants were identified through trio-based sequencing or the segregation analysis that was 15 performed for each variant. The authors conclude that trio-based sequencing does not lead to additional 16 diagnostic benefit, although it should be argued that this is also not expected in a cohort of predominantly 17 consanguineous patients (62.2%) with a higher a priori chance of autosomal recessive disease.

18 Multiple studies have highlighted the potential benefits of routine trio-based sequencing in IEI patients 19 over single WES (3, 10, 15, 76). These advantages apply to patients with sporadic, severe phenotypes in 20 particular, as has been shown for other rare diseases such as neurodevelopmental disorders (8). Trio-based sequencing constitutes an unbiased way to identify rare, coding DNVs that are by definition strong candidate 21 22 variants. It could therefore improve candidate variant prioritisation both during in silico gene panel analysis as 23 part of routine diagnostics, as well as during exome-wide analysis in a research setting. Furthermore, targeted 24 DNV analysis could improve the detection of somatic variants, which is especially relevant in the field of 25 monogenic autoinflammatory disorders (23). Somatic variants can be successfully identified by trio-based 26 WES (77). However, this specific DNV subtype can be missed during routine analysis especially if the variant 27 allele frequency (VAF) is below the set threshold during standard variant filtering, which is not required to filter 28 out false-positive variants for a condensed set of potential DNVs. Another advantage of trio-based sequencing 29 is that it provides direct segregation of inherited variants and enables determination of autosomal recessive 30 compound heterozygosity or X-linked recessive disease as the causative disease mechanism.

22

Proposed indications for trio-based sequencing in patients with inborn errors of immunity

- 1. Clinical features with a high a priori chance for a causative pre- or post-zygotic de novo variant (DNV)
 - a. Sporadic and very rare
 - b. Early-onset (infancy/childhood)
 - c. Severe symptoms, often involving organs other than the immune system
- 2. Clinical features with a high a priori chance for a causative somatic DNV acquired during life
 - a. Late-onset (adolescence/adulthood)
 - b. Severe symptoms, often involving signs of autoinflammation, immune dysregulation and/or bone marrow abnormalities
 - c. Evidence for immune cell- or bone marrow lineage-specific dysfunction (i.e., myeloid cells (22), lymphoid cells (78))

2 Based on this study and evidence from others, including those from other rare disease fields, we 3 suggest that trio-based sequencing should be part of the routine evaluation of patients with a sporadic IEI phenotype (Box 1). An exome-wide analysis should be conducted to identify potentially novel disease genes 4 5 in cases with a negative diagnostic WES result in whom a strong clinical suspicion for an underlying monogenic 6 cause remains. Thus far, the relative proportion of DNVs among IEI patients with a genetic diagnosis, 7 estimated to be around 6-14%, seems modest compared to other rare disease fields (i.e., >80% in 8 neurodevelopmental disorders (NDDs)) (79). There are several explanations for this difference that suggest that the true contribution of DNVs is higher than currently appreciated. Most importantly, much more 9 10 experience has been gained with DNV assessment in the field of NDDs. Despite a steep increase in the total 11 diagnostic rate (6, 80, 81) and the identification of 285 developmental disorder (DD)-associated DNVs, modelling suggests that more than 1000 DD-associated genes still remain to be discovered (8). As more trio-12 13 based sequencing data will be generated from suspected IEI patients, the field should undertake larger-scale 14 analyses that leverage existing statistical models from the field of NDDs/DDs, including models for gene/exon 15 level enrichment and the identification of gain-of-function nucleotide clusters (8). Moreover, there is still a bias 16 towards autosomal recessive (AR) disease genes in the IEI field, while this imbalance is shifting with the 17 discovery of an increasing number of autosomal dominant (AD) disease genes (74). Trio-based sequencing 18 could accelerate the discovery of mutations in novel AD IEI genes.

19 Inborn errors of immunity constitute a large group of heterogeneous disorders with differences in the 20 expected contribution of DNVs. The *a priori* probability for the identification of a DNV will be highest in patients 21 with early-onset, severe phenotypes, such as the combined immunodeficiencies (CID), especially CIDs with 22 syndromic features, and patients with autoinflammatory syndromes and/or immune dysregulation with 23 autoimmunity (Box 1). Although most of the reported genes underlying CIDs follow AR inheritance patterns,

many genes following AD and X-linked (dominant) inheritance patterns have been described in recent years 1 2 (48). The genes affected in these disorders possess high intolerance for loss-of-function mutations and 3 essential biological functions. As expected, the DNVs reported in this category to date act through mechanisms 4 of haploinsufficiency (i.e. RELA, pLI 0.999), dominant-negative interference (i.e. IKZF1, pLI 0.999 (82); STAT3, 5 pLI 1.000 (83)) or complete deficiency in hemizygotic males (i.e. WAS, pLI 0.999 (84); IL2RG, pLI 0.992 (85)). 6 Some heterozygous DNVs can also cause CID through hypermorphic effects at protein level (*i.e., RAC2*, pLI 7 0.966 (86)). Trio-based sequencing should also be considered in patients with sporadic autoinflammatory 8 syndromes and/or autoimmunity, even when presenting at an adult age that could suggest somatic de novo 9 mutations. In these patients, various pathogenic DNVs in different genes have already been described, 10 originating both from the germline (PLCG2, STAT1) and soma (i.e., NLRP3, UBA1, TLR8) (13, 18, 21-24). 11 These genes do not necessarily have high constraint for loss-of-function mutations, but they possess 12 nucleotide clusters that are highly conserved and intolerant to variation, encoding protein domains with 13 important regulatory functions.

This explorative study has a number of limitations. First, the sample size precludes a reliable estimation 14 15 of the prevalence of DNVs among patients with sporadic IEIs. Furthermore, the strict diagnostic rate of both 16 inherited variants and (likely) pathogenic DNVs in our cohort is limited (n=17, 13.8%) compared to other 17 studies. It has been previously reported that the diagnostic yield of WES for IEI patients varies widely from 10-18 79% (15). The most likely explanation for a relatively low diagnostic yield in our study is the patient selection. 19 We excluded patients with suspected inherited disease but chose not to apply any other selection criteria in 20 order to study a representative cross-section of suspected IEI patients in our centre in whom WES was 21 performed. As a result, patients were included even if the a priori chance of an IEI was low but should be ruled 22 out in the differential diagnosis (i.e., new-born screening shows low T cell receptor excision circles (TRECs)). 23 Moreover, compared to other cohorts, the percentage of patients with syndromal CIDs, autoinflammatory 24 syndromes and immune dysregulation was relatively high and could influence the generalisability of our results. 25 Lastly, the functional effect of most candidate DNVs were not evaluated. As DNVs have a high chance of being 26 deleterious, functional experiments should always be attempted to validate the predicted effect. The candidate DNVs in potentially novel IEI genes were shared on GeneMatcher in order to find similar cases that could 27 28 motivate further investigation into the underlying mechanisms (1, 87).

In conclusion, we applied trio-based whole exome sequencing in a retrospective cohort of 123 patients with sporadic, suspected IEI, leading to the identification of 14 DNVs with a possible or likely chance of pathogenicity. Amongst the candidate DNVs in potentially novel IEI genes, additional functional evidence was

- 1 provided in support of a pathogenic role for the DNV in FBXW11 in a patient with an autoinflammatory
- 2 phenotype. We advocate the structural implementation of trio-based sequencing in the diagnostic evaluation
- 3 of patients with sporadic IEI. With decreasing costs of exome sequencing, this approach could improve the
- 4 diagnostic rate of IEI and advance IEI gene discovery.

5

1 Acknowledgements

2 We thank the Bioinformatics group of the Genome Diagnostics division of the department of Human Genetics 3 and the Radboud Genomics Technology Center of the Radboud University Medical Center for the sharing, 4 annotation and pseudonymisation of whole exome sequencing datasets of patients and their parents included 5 in this study. Furthermore, we acknowledge all members of the multidisciplinary immunogenetics sign-out 6 meeting of the University Medical Centers from Nijmegen and Maastricht. The authors of this review also 7 acknowledge support from several funding parties. M. G. Netea was supported by an ERC Advanced Grant 8 (No. 833247) and a Spinoza Grant of the Netherlands Organization for Scientific Support. 9 This research was also part of a Radboud Institute for Molecular Life Sciences PhD grant (to M. G. Netea). F. 10 L. van de Veerdonk was supported by a ZonMW Vidi grant and HDM-FUN EU H2020. A. Hoischen was 11 supported by the Solve-RD project of the European Union's Horizon 2020 research and innovation programme 12 (No. 779257).

13 Competing interests

14 The authors have no financial or non-financial competing interests.

15

1 References

 Acuna-Hidalgo R, Veltman JA, Hoischen A. New insights into the generation and role of de novo mutations in health and disease. Genome Biology. 2016;17(1):1-19. <u>https://doi.org/10.1186/s13059-016-1110-</u> 1

Lynch M. Rate, molecular spectrum, and consequences of human mutation. Proc Natl Acad Sci U S
 A. 2010;107(3):961-8. <u>https://doi.org/10.1073/pnas.0912629107</u>

Meyts I, Bosch B, Bolze A, Boisson B, Itan Y, Belkadi A, Pedergnana V, Moens L, Picard C, Cobat A,
 Bossuyt X, Abel L, Casanova JL. Exome and genome sequencing for inborn errors of immunity. J Allergy Clin
 Immunol. 2016;138(4):957-69. <u>https://doi.org/10.1016/j.jaci.2016.08.003</u>

10 4. Veltman JA, Brunner HG. De novo mutations in human genetic disease. Nat Rev Genet. 11 2012;13(8):565-75. <u>https://doi.org/10.1038/nrg3241</u>

 Quintana-Murci L, Clark AG. Population genetic tools for dissecting innate immunity in humans. Nat Rev Immunol. 2013;13(4):280-93. <u>https://doi.org/10.1038/nri3421</u>

Vissers LE, de Ligt J, Gilissen C, Janssen I, Steehouwer M, de Vries P, van Lier B, Arts P, Wieskamp
 N, del Rosario M, van Bon BW, Hoischen A, de Vries BB, Brunner HG, Veltman JA. A de novo paradigm for
 mental retardation. Nat Genet. 2010;42(12):1109-12. <u>https://doi.org/10.1038/ng.712</u>

Martin HC, Jones WD, McIntyre R, Sanchez-Andrade G, Sanderson M, Stephenson JD, Jones CP,
 Handsaker J, Gallone G, Bruntraeger M, McRae JF, Prigmore E, Short P, Niemi M, Kaplanis J, Radford EJ,
 Akawi N, Balasubramanian M, Dean J, Horton R, Hulbert A, Johnson DS, Johnson K, Kumar D, Lynch SA,
 Mehta SG, Morton J, Parker MJ, Splitt M, Turnpenny PD, Vasudevan PC, Wright M, Bassett A, Gerety SS,
 Wright CF, FitzPatrick DR, Firth HV, Hurles ME, Barrett JC, Deciphering Developmental Disorders S.
 Quantifying the contribution of recessive coding variation to developmental disorders. Science.
 2018;362(6419):1161-4. https://doi.org/10.1126/science.aar6731

 Kaplanis J, Samocha KE, Wiel L, Zhang Z, Arvai KJ, Eberhardt RY, Gallone G, Lelieveld SH, Martin HC, McRae JF, Short PJ, Torene RI, de Boer E, Danecek P, Gardner EJ, Huang N, Lord J, Martincorena I, Pfundt R, Reijnders MRF, Yeung A, Yntema HG, Deciphering Developmental Disorders S, Vissers L, Juusola J, Wright CF, Brunner HG, Firth HV, FitzPatrick DR, Barrett JC, Hurles ME, Gilissen C, Retterer K. Evidence for 28 genetic disorders discovered by combining healthcare and research data. Nature. 2020;586(7831):757-62. https://doi.org/10.1038/s41586-020-2832-5

30 9. Stray-Pedersen A, Sorte HS, Samarakoon P, Gambin T, Chinn IK, Coban Akdemir ZH, Erichsen HC, 31 Forbes LR, Gu S, Yuan B, Jhangiani SN, Muzny DM, Rodningen OK, Sheng Y, Nicholas SK, Noroski LM, 32 Seeborg FO, Davis CM, Canter DL, Mace EM, Vece TJ, Allen CE, Abhyankar HA, Boone PM, Beck CR, 33 Wiszniewski W, Fevang B, Aukrust P, Tjonnfjord GE, Gedde-Dahl T, Hjorth-Hansen H, Dybedal I, Nordoy I, Jorgensen SF, Abrahamsen TG, Overland T, Bechensteen AG, Skogen V, Osnes LTN, Kulseth MA, Prescott 34 35 TE, Rustad CF, Heimdal KR, Belmont JW, Rider NL, Chinen J, Cao TN, Smith EA, Caldirola MS, Bezrodnik L, 36 Lugo Reyes SO, Espinosa Rosales FJ, Guerrero-Cursaru ND, Pedroza LA, Poli CM, Franco JL, Trujillo Vargas CM, Aldave Becerra JC, Wright N, Issekutz TB, Issekutz AC, Abbott J, Caldwell JW, Bayer DK, Chan AY, Aiuti 37 A, Cancrini C, Holmberg E, West C, Burstedt M, Karaca E, Yesil G, Artac H, Bayram Y, Atik MM, Eldomery 38 MK, Ehlayel MS, Jolles S, Flato B, Bertuch AA, Hanson IC, Zhang VW, Wong LJ, Hu J, Walkiewicz M, Yang 39 40 Y, Eng CM, Boerwinkle E, Gibbs RA, Shearer WT, Lyle R, Orange JS, Lupski JR. Primary immunodeficiency 41 diseases: Genomic approaches delineate heterogeneous Mendelian disorders. J Allergy Clin Immunol. 42 2017;139(1):232-45. https://doi.org/10.1016/j.jaci.2016.05.042

43 10. Arts P, Simons A, AlZahrani MS, Yilmaz E, Alldrissi E, van Aerde KJ, Alenezi N, AlGhamdi HA, 44 AlJubab HA, Al-Hussaini AA, AlManjomi F, Alsaad AB, Alsaleem B, Andijani AA, Asery A, Ballourah W, 45 Bleeker-Rovers CP, van Deuren M, van der Flier M, Gerkes EH, Gilissen C, Habazi MK, Hehir-Kwa JY, Henriet 46 SS, Hoppenreijs EP, Hortillosa S, Kerkhofs CH, Keski-Filppula R, Lelieveld SH, Lone K, MacKenzie MA, 47 Mensenkamp AR, Moilanen J, Nelen M, Ten Oever J, Potjewijd J, van Paassen P, Schuurs-Hoeijmakers JHM, 48 Simon A, Stokowy T, van de Vorst M, Vreeburg M, Wagner A, van Well GTJ, Zafeiropoulou D, Zonneveld-49 Huijssoon E, Veltman JA, van Zelst-Stams WAG, Faqeih EA, van de Veerdonk FL, Netea MG, Hoischen A. Exome sequencing in routine diagnostics: a generic test for 254 patients with primary immunodeficiencies. 50 Genome Med. 2019;11(1):38. https://doi.org/10.1186/s13073-019-0649-3 51

Rudilla F, Franco-Jarava C, Martinez-Gallo M, Garcia-Prat M, Martin-Nalda A, Riviere J, Aguilo Cucurull A, Mongay L, Vidal F, Solanich X, Irastorza I, Santos-Perez JL, Tercedor Sanchez J, Cusco I, Serra
 G, Baz-Redon N, Fernandez-Cancio M, Carreras C, Vagace JM, Garcia-Patos V, Pujol-Borrell R, Soler-Palacin

P, Colobran R. Expanding the Clinical and Genetic Spectra of Primary Immunodeficiency-Related Disorders
 With Clinical Exome Sequencing: Expected and Unexpected Findings. Front Immunol. 2019;10:2325.
 <u>https://doi.org/10.3389/fimmu.2019.02325</u>

Bradshaw G, Lualhati RR, Albury CL, Maksemous N, Roos-Araujo D, Smith RA, Benton MC, Eccles
DA, Lea RA, Sutherland HG, Haupt LM, Griffiths LR. Exome Sequencing Diagnoses X-Linked MoesinAssociated Immunodeficiency in a Primary Immunodeficiency Case. Frontiers in Immunology. 2018;9:420.
<u>https://doi.org/10.3389/fimmu.2018.00420</u>

8 Liu L, Okada S, Kong XF, Kreins AY, Cypowyj S, Abhyankar A, Toubiana J, Itan Y, Audry M, Nitschke 13. 9 P, Masson C, Toth B, Flatot J, Migaud M, Chrabieh M, Kochetkov T, Bolze A, Borghesi A, Toulon A, Hiller J, 10 Everich S, Everich K, Gulacsy V, Chernyshova L, Chernyshov V, Bondarenko A, Grimaldo RM, Blancas-11 Galicia L. Beas IM. Roesler J. Magdorf K. Engelhard D. Thumerelle C. Burgel PR. Hoernes M. Drexel B. Seger 12 R, Kusuma T, Jansson AF, Sawalle-Belohradsky J, Belohradsky B, Jouanguy E, Bustamante J, Bue M, Karin 13 N, Wildbaum G, Bodemer C, Lortholary O, Fischer A, Blanche S, Al-Muhsen S, Reichenbach J, Kobayashi M, Rosales FE, Lozano CT, Kilic SS, Oleastro M, Etzioni A, Traidl-Hoffmann C, Renner ED, Abel L, Picard C, 14 15 Marodi L, Boisson-Dupuis S, Puel A, Casanova JL. Gain-of-function human STAT1 mutations impair IL-17 16 immunity and underlie chronic mucocutaneous candidiasis. J Exp Med. 2011;208(8):1635-48. 17 https://doi.org/10.1084/jem.20110958

Bousfiha A, Jeddane L, Picard C, Al-Herz W, Ailal F, Chatila T, Cunningham-Rundles C, Etzioni A,
 Franco JL, Holland SM, Klein C, Morio T, Ochs HD, Oksenhendler E, Puck J, Torgerson TR, Casanova JL,
 Sullivan KE, Tangye SG. Human Inborn Errors of Immunity: 2019 Update of the IUIS Phenotypical
 Classification. J Clin Immunol. 2020;40(1):66-81. <u>https://doi.org/10.1007/s10875-020-00758-x</u>

15. Vorsteveld EE, Hoischen A, van der Made CI. Next-Generation Sequencing in the Field of Primary
 Immunodeficiencies: Current Yield, Challenges, and Future Perspectives. Clin Rev Allergy Immunol.
 2021;61(2):212-25. <u>https://doi.org/10.1007/s12016-021-08838-5</u>

Labrousse M, Kevorkian-Verguet C, Boursier G, Rowczenio D, Maurier F, Lazaro E, Aggarwal M,
Lemelle I, Mura T, Belot A, Touitou I, Sarrabay G. Mosaicism in autoinflammatory diseases: Cryopyrinassociated periodic syndromes (CAPS) and beyond. A systematic review. Crit Rev Clin Lab Sci.
2018;55(6):432-42. <u>https://doi.org/10.1080/10408363.2018.1488805</u>

de Inocencio J, Mensa-Vilaro A, Tejada-Palacios P, Enriquez-Merayo E, Gonzalez-Roca E, Magri G,
 Ruiz-Ortiz E, Cerutti A, Yague J, Arostegui JI. Somatic NOD2 mosaicism in Blau syndrome. J Allergy Clin
 Immunol. 2015;136(2):484-7 e2. <u>https://doi.org/10.1016/j.jaci.2014.12.1941</u>

Mensa-Vilaro A, Teresa Bosque M, Magri G, Honda Y, Martinez-Banaclocha H, Casorran-Berges M,
 Sintes J, Gonzalez-Roca E, Ruiz-Ortiz E, Heike T, Martinez-Garcia JJ, Baroja-Mazo A, Cerutti A, Nishikomori
 R, Yague J, Pelegrin P, Delgado-Beltran C, Arostegui JI. Brief Report: Late-Onset Cryopyrin-Associated
 Periodic Syndrome Due to Myeloid-Restricted Somatic NLRP3 Mosaicism. Arthritis Rheumatol.
 2016;68(12):3035-41. https://doi.org/10.1002/art.39770

37 Kawasaki Y, Oda H, Ito J, Niwa A, Tanaka T, Hijikata A, Seki R, Nagahashi A, Osawa M, Asaka I, 19. 38 Watanabe A, Nishimata S, Shirai T, Kawashima H, Ohara O, Nakahata T, Nishikomori R, Heike T, Saito MK. 39 Identification of a High-Frequency Somatic NLRC4 Mutation as a Cause of Autoinflammation by Pluripotent 40 Cell-Based Phenotype Dissection. Arthritis & Rheumatology. 2017:69(2):447-59. 41 https://doi.org/10.1002/art.39960

42 20. Holzelova E, Vonarbourg C, Stolzenberg MC, Arkwright PD, Selz F, Prieur AM, Blanche S, Bartunkova
43 J, Vilmer E, Fischer A, Le Deist F, Rieux-Laucat F. Autoimmune lymphoproliferative syndrome with somatic
44 Fas mutations. N Engl J Med. 2004;351(14):1409-18. <u>https://doi.org/10.1056/NEJMoa040036</u>

Aluri J, Bach A, Kaviany S, Chiquetto Paracatu L, Kitcharoensakkul M, Walkiewicz MA, Putnam CD,
Shinawi M, Saucier N, Rizzi EM, Harmon MT, Keppel MP, Ritter M, Similuk M, Kulm E, Joyce M, de Jesus AA,
Goldbach-Mansky R, Lee YS, Cella M, Kendall PL, Dinauer MC, Bednarski JJ, Bemrich-Stolz C, Canna SW,
Abraham SM, Demczko MM, Powell J, Jones SM, Scurlock AM, De Ravin SS, Bleesing JJ, Connelly JA, Rao
VK, Schuettpelz LG, Cooper MA. Immunodeficiency and bone marrow failure with mosaic and germline TLR8
gain of function. Blood. 2021;137(18):2450-62. https://doi.org/10.1182/blood.2020009620

Beck DB, Ferrada MA, Sikora KA, Ombrello AK, Collins JC, Pei W, Balanda N, Ross DL, Ospina
 Cardona D, Wu Z, Patel B, Manthiram K, Groarke EM, Gutierrez-Rodrigues F, Hoffmann P, Rosenzweig S,
 Nakabo S, Dillon LW, Hourigan CS, Tsai WL, Gupta S, Carmona-Rivera C, Asmar AJ, Xu L, Oda H,
 Goodspeed W, Barron KS, Nehrebecky M, Jones A, Laird RS, Deuitch N, Rowczenio D, Rominger E, Wells

KV, Lee CR, Wang W, Trick M, Mullikin J, Wigerblad G, Brooks S, Dell'Orso S, Deng Z, Chae JJ, Dulau-Florea
A, Malicdan MCV, Novacic D, Colbert RA, Kaplan MJ, Gadina M, Savic S, Lachmann HJ, Abu-Asab M,
Solomon BD, Retterer K, Gahl WA, Burgess SM, Aksentijevich I, Young NS, Calvo KR, Werner A, Kastner DL,
Grayson PC. Somatic Mutations in UBA1 and Severe Adult-Onset Autoinflammatory Disease. N Engl J Med.
2020;383(27):2628-38. <u>https://doi.org/10.1056/NEJMoa2026834</u>

van der Made CI, Potjewijd J, Hoogstins A, Willems HPJ, Kwakernaak AJ, de Sevaux RGL, van Daele
PLA, Simons A, Heijstek M, Beck DB, Netea MG, van Paassen P, Elizabeth Hak A, van der Veken LT, van
Gijn ME, Hoischen A, van de Veerdonk FL, Leavis HL, Rutgers A. Adult-onset autoinflammation caused by
somatic mutations in UBA1: A Dutch case series of patients with VEXAS. J Allergy Clin Immunol.
2022;149(1):432-9 e4. https://doi.org/10.1016/j.jaci.2021.05.014

Zhou Q, Lee GS, Brady J, Datta S, Katan M, Sheikh A, Martins MS, Bunney TD, Santich BH, Moir S,
 Kuhns DB, Long Priel DA, Ombrello A, Stone D, Ombrello MJ, Khan J, Milner JD, Kastner DL, Aksentijevich I.
 A hypermorphic missense mutation in PLCG2, encoding phospholipase Cgamma2, causes a dominantly
 inherited autoinflammatory disease with immunodeficiency. Am J Hum Genet. 2012;91(4):713-20.
 https://doi.org/10.1016/j.ajhg.2012.08.006

16 25. Radboudumc. Primary Immunodeficiency Gene Panel DG 3.1.0 (456 genes). 2021. Available from:
 https://www.radboudumc.nl/getmedia/9f3c2425-6875-4887-9c32 3a1dae08f627/PRIMARYIMMUNODEFICIENCY DG310.aspx

19 26. World Medical A. World Medical Association Declaration of Helsinki: ethical principles for medical 20 research involving human subjects. JAMA. 2013;310(20):2191-4. <u>https://doi.org/10.1001/jama.2013.281053</u>

21 Konrad EDH, Nardini N, Caliebe A, Nagel I, Young D, Horvath G, Santoro SL, Shuss C, Ziegler A, 27. 22 Bonneau D, Kempers M, Pfundt R, Legius E, Bouman A, Stuurman KE, Ounap K, Pajusalu S, Wojcik MH, 23 Vasileiou G, Le Guyader G, Schnelle HM, Berland S, Zonneveld-Huijssoon E, Kersten S, Gupta A, Blackburn 24 PR, Ellingson MS, Ferber MJ, Dhamija R, Klee EW, McEntagart M, Lichtenbelt KD, Kenney A, Vergano SA, 25 Abou Jamra R, Platzer K, Ella Pierpont M, Khattar D, Hopkin RJ, Martin RJ, Jongmans MCJ, Chang VY, 26 Martinez-Agosto JA, Kuismin O, Kurki MI, Pietilainen O, Palotie A, Maarup TJ, Johnson DS, Venborg Pedersen 27 K, Laulund LW, Lynch SA, Blyth M, Prescott K, Canham N, Ibitoye R, Brilstra EH, Shinawi M, Fassi E, Study 28 DDD, Sticht H, Gregor A, Van Esch H, Zweier C. CTCF variants in 39 individuals with a variable 29 neurodevelopmental disorder broaden the mutational and clinical spectrum. Genet Med. 2019;21(12):2723-30 33. https://doi.org/10.1038/s41436-019-0585-z

28. D'Hauw A, Seyger MM, Groenen PJ, Weemaes CM, Warris A, Blokx WA. Cutaneous graft-versushost-like histology in childhood. Importance of clonality analysis in differential diagnosis. A case report. Br J
Dermatol. 2008;158(5):1153-6. <u>https://doi.org/10.1111/j.1365-2133.2008.08497.x</u>

Lelieveld SH, Reijnders MR, Pfundt R, Yntema HG, Kamsteeg EJ, de Vries P, de Vries BB, Willemsen
MH, Kleefstra T, Lohner K, Vreeburg M, Stevens SJ, van der Burgt I, Bongers EM, Stegmann AP, Rump P,
Rinne T, Nelen MR, Veltman JA, Vissers LE, Brunner HG, Gilissen C. Meta-analysis of 2,104 trios provides
support for 10 new genes for intellectual disability. Nat Neurosci. 2016;19(9):1194-6.
https://doi.org/10.1038/nn.4352

39 30. Li H, Durbin R. Fast and accurate long-read alignment with Burrows-Wheeler transform.
 40 Bioinformatics. 2010;26(5):589-95. <u>https://doi.org/10.1093/bioinformatics/btp698</u>

McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D,
Gabriel S, Daly M, DePristo MA. The Genome Analysis Toolkit: a MapReduce framework for analyzing nextgeneration DNA sequencing data. Genome Res. 2010;20(9):1297-303. https://doi.org/10.1101/gr.107524.110

Krumm N, Sudmant PH, Ko A, O'Roak BJ, Malig M, Coe BP, Project NES, Quinlan AR, Nickerson DA,
Eichler EE. Copy number variation detection and genotyping from exome sequence data. Genome Res.
2012;22(8):1525-32. <u>https://doi.org/10.1101/gr.138115.112</u>

47 33. Karczewski KJ, Francioli LC, Tiao G, Cummings BB, Alfoldi J, Wang Q, Collins RL, Laricchia KM, 48 Ganna A, Birnbaum DP, Gauthier LD, Brand H, Solomonson M, Watts NA, Rhodes D, Singer-Berk M, England 49 EM, Seaby EG, Kosmicki JA, Walters RK, Tashman K, Farjoun Y, Banks E, Poterba T, Wang A, Seed C, 50 Whiffin N, Chong JX, Samocha KE, Pierce-Hoffman E, Zappala Z, O'Donnell-Luria AH, Minikel EV, Weisburd 51 B, Lek M, Ware JS, Vittal C, Armean IM, Bergelson L, Cibulskis K, Connolly KM, Covarrubias M, Donnelly S, 52 Ferriera S, Gabriel S, Gentry J, Gupta N, Jeandet T, Kaplan D, Llanwarne C, Munshi R, Novod S, Petrillo N, 53 Roazen D, Ruano-Rubio V, Saltzman A, Schleicher M, Soto J, Tibbetts K, Tolonen C, Wade G, Talkowski ME, 54 Genome Aggregation Database C, Neale BM, Daly MJ, MacArthur DG. The mutational constraint spectrum

quantified from variation in 141,456 humans. Nature. 2020;581(7809):434-43. <u>https://doi.org/10.1038/s41586-</u>
 020-2308-7

3 34. Sherry ST, Ward M, Sirotkin K. dbSNP-database for single nucleotide polymorphisms and other 4 classes of minor genetic variation. Genome Res. 1999;9(8):677-9. <u>https://doi.org/10.1101/gr.9.8.677</u>

Sinchards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, Grody WW, Hegde M, Lyon E, Spector
E, Voelkerding K, Rehm HL, Committee ALQA. Standards and guidelines for the interpretation of sequence
variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and
the Association for Molecular Pathology. Genet Med. 2015;17(5):405-24. https://doi.org/10.1038/gim.2015.30

9 Wallis Y, Payne S, McAnulty C, Bodmer D, Sistermans E, Robertson K, Moore D, Abbs S, Deans Z, 36. 10 Devereau A. Practice Guidelines for the Evaluation of Pathogenicity and the Reporting of Sequence Variants 11 in Clinical Molecular Genetics. 2013. Available from: https://www.acqs.uk.com/media/10791/evaluation and reporting of sequence variants bpgs june 12 2013 -13 _finalpdf.pdf

Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E, Fennell T, O'Donnell-Luria AH, Ware JS, 14 37. 15 Hill AJ, Cummings BB, Tukiainen T, Birnbaum DP, Kosmicki JA, Duncan LE, Estrada K, Zhao F, Zou J, Pierce-16 Hoffman E, Berghout J, Cooper DN, Deflaux N, DePristo M, Do R, Flannick J, Fromer M, Gauthier L, Goldstein J, Gupta N, Howrigan D, Kiezun A, Kurki MI, Moonshine AL, Natarajan P, Orozco L, Peloso GM, Poplin R, 17 18 Rivas MA, Ruano-Rubio V, Rose SA, Ruderfer DM, Shakir K, Stenson PD, Stevens C, Thomas BP, Tiao G, 19 Tusie-Luna MT, Weisburd B, Won HH, Yu D, Altshuler DM, Ardissino D, Boehnke M, Danesh J, Donnelly S, Elosua R, Florez JC, Gabriel SB, Getz G, Glatt SJ, Hultman CM, Kathiresan S, Laakso M, McCarroll S, 20 McCarthy MI, McGovern D, McPherson R, Neale BM, Palotie A, Purcell SM, Saleheen D, Scharf JM, Sklar P, 21 Sullivan PF, Tuomilehto J, Tsuang MT, Watkins HC, Wilson JG, Daly MJ, MacArthur DG, Exome Aggregation 22 C. Analysis of protein-coding genetic variation in 60,706 humans. Nature. 2016;536(7616):285-91. 23 24 https://doi.org/10.1038/nature19057

25 38. Boomsma DI, Wijmenga C, Slagboom EP, Swertz MA, Karssen LC, Abdellaoui A, Ye K, Guryev V, 26 Vermaat M. van Diik F. Francioli LC. Hottenga JJ. Laros JF. Li Q. Li Y. Cao H. Chen R. Du Y. Li N. Cao S. van 27 Setten J, Menelaou A, Pulit SL, Hehir-Kwa JY, Beekman M, Elbers CC, Byelas H, de Craen AJ, Deelen P, 28 Dijkstra M, den Dunnen JT, de Knijff P, Houwing-Duistermaat J, Koval V, Estrada K, Hofman A, Kanterakis A, 29 Enckevort D, Mai H, Kattenberg M, van Leeuwen EM, Neerincx PB, Oostra B, Rivadeneira F, Suchiman EH, 30 Uitterlinden AG, Willemsen G, Wolffenbuttel BH, Wang J, de Bakker PI, van Ommen GJ, van Duijn CM. The Genome of the Netherlands: design, and project goals. Eur J Hum Genet. 2014;22(2):221-7. 31 https://doi.org/10.1038/ejhg.2013.118 32

Wiel L, Baakman C, Gilissen D, Veltman JA, Vriend G, Gilissen C. MetaDome: Pathogenicity analysis
 of genetic variants through aggregation of homologous human protein domains. Human Mutation.
 2019;40(8):1030-8. <u>https://doi.org/10.1002/humu.23798</u>

Stephenson JD, Laskowski RA, Nightingale A, Hurles ME, Thornton JM. VarMap: a web tool for
 mapping genomic coordinates to protein sequence and structure and retrieving protein structural annotations.
 Bioinformatics. 2019;35(22):4854-6. <u>https://doi.org/10.1093/bioinformatics/btz482</u>

41. Turner TN, Yi Q, Krumm N, Huddleston J, Hoekzema K, HA FS, Doebley AL, Bernier RA, Nickerson
DA, Eichler EE. denovo-db: a compendium of human de novo variants. Nucleic Acids Res. 2017;45(D1):D804D11. <u>https://doi.org/10.1093/nar/gkw865</u>

42. Neitzel H. A routine method for the establishment of permanent growing lymphoblastoid cell lines. Hum
 43. Genet. 1986;73(4):320-6. <u>https://doi.org/10.1007/BF00279094</u>

43. Oosting M, Kerstholt M, ter Horst R, Li Y, Deelen P, Smeekens S, Jaeger M, Lachmandas E, Vrijmoeth
H, Lupse M, Flonta M, Cramer RA, Kullberg BJ, Kumar V, Xavier R, Wijmenga C, Netea MG, Joosten LAB.
Functional and Genomic Architecture of Borrelia burgdorferi-Induced Cytokine Responses in Humans. Cell
Host & Microbe. 2016;20(6):822-33. https://doi.org/10.1016/j.chom.2016.10.006

44. Dode C, Le Du N, Cuisset L, Letourneur F, Berthelot JM, Vaudour G, Meyrier A, Watts RA, Scott DG,
Nicholls A, Granel B, Frances C, Garcier F, Edery P, Boulinguez S, Domergues JP, Delpech M, Grateau G.
New mutations of CIAS1 that are responsible for Muckle-Wells syndrome and familial cold urticaria: a novel
mutation underlies both syndromes. Am J Hum Genet. 2002;70(6):1498-506. <u>https://doi.org/10.1086/340786</u>

Jimenez-Trevino S, Gonzalez-Roca E, Ruiz-Ortiz E, Yague J, Ramos E, Arostegui JI. First report of
 vertical transmission of a somatic NLRP3 mutation in cryopyrin-associated periodic syndromes. Ann Rheum
 Dis. 2013;72(6):1109-10. <u>https://doi.org/10.1136/annrheumdis-2012-202913</u>

4 46. Badran YR, Dedeoglu F, Leyva Castillo JM, Bainter W, Ohsumi TK, Bousvaros A, Goldsmith JD, Geha
5 RS, Chou J. Human RELA haploinsufficiency results in autosomal-dominant chronic mucocutaneous
6 ulceration. J Exp Med. 2017;214(7):1937-47. <u>https://doi.org/10.1084/jem.20160724</u>

Adeeb F, Dorris ER, Morgan NE, Lawless D, Maqsood A, Ng WL, Killeen O, Cummins EP, Taylor CT,
 Savic S, Wilson AG, Fraser A. A Novel RELA Truncating Mutation in a Familial Behcet's Disease-like
 Mucocutaneous Ulcerative Condition. Arthritis Rheumatol. 2021;73(3):490-7. https://doi.org/10.1002/art.41531

10 48. Tangye SG, Al-Herz W, Bousfiha A, Chatila T, Cunningham-Rundles C, Etzioni A, Franco JL, Holland SM, Klein C, Morio T, Ochs HD, Oksenhendler E, Picard C, Puck J, Torgerson TR, Casanova JL, Sullivan KE. 11 Human Inborn Errors of Immunity: 2019 Update on the Classification from the International Union of 12 13 Immunological Societies Expert Committee. J Clin Immunol. 2020;40(1):24-64. 14 https://doi.org/10.1007/s10875-019-00737-x

Treise I, Huber EM, Klein-Rodewald T, Heinemeyer W, Grassmann SA, Basler M, Adler T, Rathkolb
 B, Helming L, Andres C, Klaften M, Landbrecht C, Wieland T, Strom TM, McCoy KD, Macpherson AJ, Wolf E,
 Groettrup M, Ollert M, Neff F, Gailus-Durner V, Fuchs H, Hrabe de Angelis M, Groll M, Busch DH. Defective
 immuno- and thymoproteasome assembly causes severe immunodeficiency. Sci Rep. 2018;8(1):5975.
 https://doi.org/10.1038/s41598-018-24199-0

Sarrabay G, Mechin D, Salhi A, Boursier G, Rittore C, Crow Y, Rice G, Tran TA, Cezar R, Duffy D,
 Bondet V, Boudhane L, Broca C, Kant BP, VanGijn M, Grandemange S, Richard E, Apparailly F, Touitou I.
 PSMB10, the last immunoproteasome gene missing for PRAAS. J Allergy Clin Immunol. 2020;145(3):1015-7
 e6. https://doi.org/10.1016/j.jaci.2019.11.024

Khan S, Pereira J, Darbyshire PJ, Holding S, Dore PC, Sewell WA, Huissoon A. Do ribosomopathies
 explain some cases of common variable immunodeficiency? Clin Exp Immunol. 2011;163(1):96-103.
 https://doi.org/10.1111/j.1365-2249.2010.04280.x

52. Molho-Pessach V, Ramot Y, Mogilevsky M, Cohen-Daniel L, Eisenstein EM, Abu-Libdeh A, Siam I,
Berger M, Karni R, Zlotogorski A. Generalized verrucosis and abnormal T cell activation due to homozygous
TAOK2 mutation. J Dermatol Sci. 2017;87(2):123-9. <u>https://doi.org/10.1016/j.jdermsci.2017.03.018</u>

S3. Chen T, Zhu L, Zhou YY, Pi B, Liu XJ, Deng GH, Zhang R, Wang YM, Wu ZG, Han MF, Luo XP, Ning
Q. KCTD9 contributes to liver injury through NK cell activation during hepatitis B virus-induced acute-onchronic liver failure. Clinical Immunology. 2013;146(3):207-16. <u>https://doi.org/10.1016/j.clim.2012.12.013</u>

Barreda D, Gutierrez-Gonzalez LH, Martinez-Cordero E, Cabello-Gutierrez C, Chacon-Salinas R,
 Santos-Mendoza T. The Scribble Complex PDZ Proteins in Immune Cell Polarities. J Immunol Res.
 2020;2020:5649790. <u>https://doi.org/10.1155/2020/5649790</u>

Rabenhorst U, Thalheimer FB, Gerlach K, Kijonka M, Bohm S, Krause DS, Vauti F, Arnold HH,
 Schroeder T, Schnutgen F, von Melchner H, Rieger MA, Zornig M. Single-Stranded DNA-Binding
 Transcriptional Regulator FUBP1 Is Essential for Fetal and Adult Hematopoietic Stem Cell Self-Renewal. Cell
 Rep. 2015;11(12):1847-55. <u>https://doi.org/10.1016/j.celrep.2015.038</u>

56. Zhou W, Chung YJ, Parrilla Castellar ER, Zheng Y, Chung HJ, Bandle R, Liu J, Tessarollo L, Batchelor
E, Aplan PD, Levens D. Far Upstream Element Binding Protein Plays a Crucial Role in Embryonic
Development, Hematopoiesis, and Stabilizing Myc Expression Levels. Am J Pathol. 2016;186(3):701-15.
https://doi.org/10.1016/j.ajpath.2015.10.028

57. Ebihara T, Song C, Ryu SH, Plougastel-Douglas B, Yang L, Levanon D, Groner Y, Bern MD,
Stappenbeck TS, Colonna M, Egawa T, Yokoyama WM. Runx3 specifies lineage commitment of innate
lymphoid cells. Nat Immunol. 2015;16(11):1124-33. <u>https://doi.org/10.1038/ni.3272</u>

47 58. Brenner O, Levanon D, Negreanu V, Golubkov O, Fainaru O, Woolf E, Groner Y. Loss of Runx3
48 function in leukocytes is associated with spontaneously developed colitis and gastric mucosal hyperplasia.
49 Proc Natl Acad Sci U S A. 2004;101(45):16016-21. https://doi.org/10.1073/pnas.0407180101

Zhang Z, Kim T, Bao M, Facchinetti V, Jung SY, Ghaffari AA, Qin J, Cheng G, Liu YJ. DDX1, DDX21,
 and DHX36 helicases form a complex with the adaptor molecule TRIF to sense dsRNA in dendritic cells.
 Immunity. 2011;34(6):866-78. <u>https://doi.org/10.1016/j.immuni.2011.03.027</u>

60. Koemans TS, Kleefstra T, Chubak MC, Stone MH, Reijnders MRF, de Munnik S, Willemsen MH,
Fenckova M, Stumpel C, Bok LA, Sifuentes Saenz M, Byerly KA, Baughn LB, Stegmann APA, Pfundt R, Zhou
H, van Bokhoven H, Schenck A, Kramer JM. Functional convergence of histone methyltransferases EHMT1
and KMT2C involved in intellectual disability and autism spectrum disorder. PLoS Genet.
2017;13(10):e1006864. https://doi.org/10.1371/journal.pgen.1006864

9 61. Wang L, Feng W, Yang X, Yang F, Wang R, Ren Q, Zhu X, Zheng G. Fbxw11 promotes the 10 proliferation of lymphocytic leukemia cells through the concomitant activation of NF-kappaB and beta-11 catenin/TCF signaling pathways. Cell Death Dis. 2018;9(4):427. <u>https://doi.org/10.1038/s41419-018-0440-1</u>

Barrie ES, Alfaro MP, Pfau RB, Goff MJ, McBride KL, Manickam K, Zmuda EJ. De novo loss-of function variants in NSD2 (WHSC1) associate with a subset of Wolf-Hirschhorn syndrome. Cold Spring Harbor
 Molecular Case Studies. 2019;5(4):a004044. <u>https://doi.org/10.1101/mcs.a004044</u>

Agarwal AK, Xing C, DeMartino GN, Mizrachi D, Hernandez MD, Sousa AB, Martinez de Villarreal L,
 dos Santos HG, Garg A. PSMB8 encoding the beta5i proteasome subunit is mutated in joint contractures,
 muscle atrophy, microcytic anemia, and panniculitis-induced lipodystrophy syndrome. Am J Hum Genet.
 2010;87(6):866-72. https://doi.org/10.1016/j.ajhg.2010.10.031

Brehm A, Liu Y, Sheikh A, Marrero B, Omoyinmi E, Zhou Q, Montealegre G, Biancotto A, Reinhardt
 A, Almeida de Jesus A, Pelletier M, Tsai WL, Remmers EF, Kardava L, Hill S, Kim H, Lachmann HJ,
 Megarbane A, Chae JJ, Brady J, Castillo RD, Brown D, Casano AV, Gao L, Chapelle D, Huang Y, Stone D,
 Chen Y, Sotzny F, Lee CC, Kastner DL, Torrelo A, Zlotogorski A, Moir S, Gadina M, McCoy P, Wesley R,
 Rother KI, Hildebrand PW, Brogan P, Kruger E, Aksentijevich I, Goldbach-Mansky R. Additive loss-of-function
 proteasome subunit mutations in CANDLE/PRAAS patients promote type I IFN production. J Clin Invest.
 2015;125(11):4196-211. https://doi.org/10.1172/JCI81260

Wang F, He J, Liu S, Gao A, Yang L, Sun G, Ding W, Li CY, Gou F, He M, Wang F, Wang X, Zhao X,
Zhu P, Hao S, Ma Y, Cheng H, Yu J, Cheng T. A comprehensive RNA editome reveals that edited Azin1
partners with DDX1 to enable hematopoietic stem cell differentiation. Blood. 2021;138(20):1939-52.
https://doi.org/10.1182/blood.2021011314

Hoffman JD, Ciprero KL, Sullivan KE, Kaplan PB, McDonald-McGinn DM, Zackai EH, Ming JE.
 Immune abnormalities are a frequent manifestation of Kabuki syndrome. Am J Med Genet A. 2005;135(3):278 <u>https://doi.org/10.1002/ajmg.a.30722</u>

67. Ehrlich M, Sanchez C, Shao C, Nishiyama R, Kehrl J, Kuick R, Kubota T, Hanash SM. ICF, an
immunodeficiency syndrome: DNA methyltransferase 3B involvement, chromosome anomalies, and gene
dysregulation. Autoimmunity. 2008;41(4):253-71. <u>https://doi.org/10.1080/08916930802024202</u>

Kanarek N, Ben-Neriah Y. Regulation of NF-kappaB by ubiquitination and degradation of the
 IkappaBs. Immunol Rev. 2012;246(1):77-94. <u>https://doi.org/10.1111/j.1600-065X.2012.01098.x</u>

Kim TY, Siesser PF, Rossman KL, Goldfarb D, Mackinnon K, Yan F, Yi X, MacCoss MJ, Moon RT,
Der CJ, Major MB. Substrate trapping proteomics reveals targets of the betaTrCP2/FBXW11 ubiquitin ligase.
Mol Cell Biol. 2015;35(1):167-81. <u>https://doi.org/10.1128/MCB.00857-14</u>

Yaron A, Hatzubai A, Davis M, Lavon I, Amit S, Manning AM, Andersen JS, Mann M, Mercurio F, BenNeriah Y. Identification of the receptor component of the IkappaBalpha-ubiquitin ligase. Nature.
1998;396(6711):590-4. <u>https://doi.org/10.1038/25159</u>

44 71. Skaar JR, Pagan JK, Pagano M. Mechanisms and function of substrate recruitment by F-box proteins.
45 Nat Rev Mol Cell Biol. 2013;14(6):369-81. <u>https://doi.org/10.1038/nrm3582</u>

Holt RJ, Young RM, Crespo B, Ceroni F, Curry CJ, Bellacchio E, Bax DA, Ciolfi A, Simon M, Fagerberg
CR, van Binsbergen E, De Luca A, Memo L, Dobyns WB, Mohammed AA, Clokie SJH, Zazo Seco C, Jiang
YH, Sorensen KP, Andersen H, Sullivan J, Powis Z, Chassevent A, Smith-Hicks C, Petrovski S, Antoniadi T,
Shashi V, Gelb BD, Wilson SW, Gerrelli D, Tartaglia M, Chassaing N, Calvas P, Ragge NK. De Novo Missense
Variants in FBXW11 Cause Diverse Developmental Phenotypes Including Brain, Eye, and Digit Anomalies.
Am J Hum Genet. 2019;105(3):640-57. https://doi.org/10.1016/j.ajhg.2019.07.005

1 73. Benary U, Wolf J. Controlling Nuclear NF-kappaB Dynamics by beta-TrCP-Insights from a 2 Computational Model. Biomedicines. 2019;7(2):40. <u>https://doi.org/10.3390/biomedicines7020040</u>

74. van der Made CI, Hoischen A, Netea MG, van de Veerdonk FL. Primary immunodeficiencies in
 cytosolic pattern-recognition receptor pathways: Toward host-directed treatment strategies. Immunol Rev.
 2020;297(1):247-72. <u>https://doi.org/10.1111/imr.12898</u>

5. Simon AJ, Golan AC, Lev A, Stauber T, Barel O, Somekh I, Klein C, AbuZaitun O, Eyal E, Kol N, Unal
E, Amariglio N, Rechavi G, Somech R. Whole exome sequencing (WES) approach for diagnosing primary
immunodeficiencies (PIDs) in a highly consanguineous community. Clin Immunol. 2020;214:108376.
https://doi.org/10.1016/j.clim.2020.108376

Chinn IK, Chan AY, Chen K, Chou J, Dorsey MJ, Hajjar J, Jongco AM, 3rd, Keller MD, Kobrynski LJ,
 Kumanovics A, Lawrence MG, Leiding JW, Lugar PL, Orange JS, Patel K, Platt CD, Puck JM, Raje N, Romberg
 N, Slack MA, Sullivan KE, Tarrant TK, Torgerson TR, Walter JE. Diagnostic interpretation of genetic studies
 in patients with primary immunodeficiency diseases: A working group report of the Primary Immunodeficiency
 Diseases Committee of the American Academy of Allergy, Asthma & Immunology. J Allergy Clin Immunol.
 2020;145(1):46-69. https://doi.org/10.1016/j.jaci.2019.09.009

16 77. de Koning HD, van Gijn ME, Stoffels M, Jongekrijg J, Zeeuwen PL, Elferink MG, Nijman IJ, Jansen
 17 PA, Neveling K, van der Meer JW, Schalkwijk J, Simon A. Myeloid lineage-restricted somatic mosaicism of
 18 NLRP3 mutations in patients with variant Schnitzler syndrome. J Allergy Clin Immunol. 2015;135(2):561-4.
 19 <u>https://doi.org/10.1016/j.jaci.2014.07.050</u>

78. Wolach B, Scharf Y, Gavrieli R, de Boer M, Roos D. Unusual late presentation of X-linked chronic
granulomatous disease in an adult female with a somatic mosaic for a novel mutation in CYBB. Blood.
2005;105(1):61-6. <u>https://doi.org/10.1182/blood-2004-02-0675</u>

79. Brunet T, Jech R, Brugger M, Kovacs R, Alhaddad B, Leszinski G, Riedhammer KM, Westphal DS,
Mahle I, Mayerhanser K, Skorvanek M, Weber S, Graf E, Berutti R, Necpal J, Havrankova P, Pavelekova P,
Hempel M, Kotzaeridou U, Hoffmann GF, Leiz S, Makowski C, Roser T, Schroeder SA, Steinfeld R, StroblWildemann G, Hoefele J, Borggraefe I, Distelmaier F, Strom TM, Winkelmann J, Meitinger T, Zech M, Wagner
M. De novo variants in neurodevelopmental disorders-experiences from a tertiary care center. Clin Genet.
2021;100(1):14-28. https://doi.org/10.1111/cge.13946

de Ligt J, Willemsen MH, van Bon BW, Kleefstra T, Yntema HG, Kroes T, Vulto-van Silfhout AT, Koolen
 DA, de Vries P, Gilissen C, del Rosario M, Hoischen A, Scheffer H, de Vries BB, Brunner HG, Veltman JA,
 Vissers LE. Diagnostic exome sequencing in persons with severe intellectual disability. N Engl J Med.
 2012;367(20):1921-9. <u>https://doi.org/10.1056/NEJMoa1206524</u>

Beciphering Developmental Disorders S. Prevalence and architecture of de novo mutations in
 developmental disorders. Nature. 2017;542(7642):433-8. https://doi.org/10.1038/nature21062

35 Kuehn HS, Boisson B, Cunningham-Rundles C, Reichenbach J, Stray-Pedersen A, Gelfand EW, 82. 36 Maffucci P, Pierce KR, Abbott JK, Voelkerding KV, South ST, Augustine NH, Bush JS, Dolen WK, Wray BB, Itan Y, Cobat A, Sorte HS, Ganesan S, Prader S, Martins TB, Lawrence MG, Orange JS, Calvo KR, Niemela 37 JE, Casanova JL, Fleisher TA, Hill HR, Kumanovics A, Conley ME, Rosenzweig SD. Loss of B Cells in Patients 38 39 Ν with Heterozygous **Mutations** IKAROS. Engl J Med. 2016;374(11):1032-43. in 40 https://doi.org/10.1056/NEJMoa1512234

41 83. Holland SM, DeLeo FR, Elloumi HZ, Hsu AP, Uzel G, Brodsky N, Freeman AF, Demidowich A, Davis
42 J, Turner ML, Anderson VL, Darnell DN, Welch PA, Kuhns DB, Frucht DM, Malech HL, Gallin JI, Kobayashi
43 SD, Whitney AR, Voyich JM, Musser JM, Woellner C, Schaffer AA, Puck JM, Grimbacher B. STAT3 mutations
44 in the hyper-IgE syndrome. N Engl J Med. 2007;357(16):1608-19. <u>https://doi.org/10.1056/NEJMoa073687</u>

45 84. Howard K, Hall CP, Al-Rahawan MM. Wiskott-Aldrich Syndrome: Description of a New Gene Mutation
46 Without Immunodeficiency. J Pediatr Hematol Oncol. 2016;38(2):163.
47 <u>https://doi.org/10.1097/MPH.0000000000479</u>

48 85. Moya-Quiles MR, Bernardo-Pisa MV, Menasalvas A, Alfayate S, Fuster JL, Boix F, Salgado G, Muro
49 M, Minguela A, Alvarez-Lopez MR, Garcia-Alonso AM. Severe combined immunodeficiency: first report of a
50 de novo mutation in the IL2RG gene in a boy conceived by in vitro fertilization. Clin Genet. 2014;85(5):500-1.
51 https://doi.org/10.1111/cge.12208

1 86. Hsu AP, Donko A, Arrington ME, Swamydas M, Fink D, Das A, Escobedo O, Bonagura V, Szabolcs

2 P, Steinberg HN, Bergerson J, Skoskiewicz A, Makhija M, Davis J, Foruraghi L, Palmer C, Fuleihan RL, Church

3 JA, Bhandoola A, Lionakis MS, Campbell S, Leto TL, Kuhns DB, Holland SM. Dominant activating RAC2 4 mutation with lymphopenia, immunodeficiency, and cytoskeletal defects. Blood. 2019;133(18):1977-88.

4 mutation with lymphopenia, immunodeficiency 5 https://doi.org/10.1182/blood-2018-11-886028

6 87. Sobreira N, Schiettecatte F, Valle D, Hamosh A. GeneMatcher: a matching tool for connecting 7 investigators with interest in Hum Mutat. 2015;36(10):928-30. an the same gene. https://doi.org/10.1002/humu.22844 8

9

1 Figure and Table supplements

2 Figure 1 – table supplement 1. List of 123 patient-parent trios with whole exome sequencing performance statistics and associated clinical phenotypes.

3 Patient characteristics, including sex, five-year age range at sampling and phenotypical IUIS classification were provided, and information on the genetic ancestry,

- 4 median target coverage, % targets covered with at least 5x or 20x coverage was retrieved from each trio-based whole exome sequencing dataset. Patients included
- 5 in previous publications are noted.

Patient	Sav	Age range	Constis speetry	Phonotype (ILUS placeification)	Median target	% Torgoto >Ev	% Targata >20v	Previously
Nr	Sex	at sampling	Genetic ancestry	Phenotype (1013 classification)	coverage	% Targets 25x	% Targets 220x	published
1	Μ	11-15	Europe	SCID	112	98.68	93.73	Yes (28)
2	М	16-20	Europe	Bone marrow failure	110	99.74	97.96	Yes (10)
3	F	31-35	Europe	Immune dysregulation, syndromes with autoimmunity and others	116	99.63	98.29	No
4	М	0-5	Europe	Defect in intrinsic and innate immunity, bacterial and parasitic	153	99.63	98.2	Yes (10)
5	М	0-5	Europe	Predominantly antibody deficiency, hypogammaglobulinemia	121	99.68	98.18	No
6	Μ	21-25	Europe	Bone marrow failure	134	99.2	95.08	No
7	М	46-50	Europe	Autoinflammatory disorder	100	99.66	97.88	Yes (10)
8	Μ	0-5	Europe	CID, syndromal	97	99.31	96.27	Yes (10)
9	М	6-10	Europe	Predominantly antibody deficiency, hypogammaglobulinemia	90	99.61	97.32	Yes (10)
10	F	0-5	Europe	Immune dysregulation, HLH/EBV	112	99.63	98.3	Yes (10)
11	М	0-5	Europe	Immune dysregulation, HLH/EBV	104	99.54	97.19	Yes (10)
12	F	11-15	Middle East	CID, syndromal	106	99.61	97.8	Yes (10)
13	М	16-20	Europe	CID, syndromal	139	99.54	97.56	Yes (10)
14	Μ	36-40	Europe	Unclassified	240	99.37	97.66	Yes (10)
15	F	0-5	Europe	SCID	86	98.8	93.7	Yes (10)
16	F	0-5	Europe	Defect in intrinsic and innate immunity, MSMD and viral infection	79	99.25	95.34	Yes (10)
17	F	6-10	Europe	CID, syndromal	109	99.53	97.59	Yes (10)
18	F	26-30	Europe	CID, syndromal	117	98.61	94.32	Yes (10)
19	F	6-10	Europe	Autoinflammatory disorder	119	99.2	96.11	No
20	F	26-30	No Genetic Ancestry Info	Unclassified	120	99.5	97.55	No
21	М	6-10	Europe	Autoinflammatory disorder	131	99.76	98.47	Yes (10)
22	F	31-35	Europe	Immune dysregulation, autoimmunity and others	118	99.4	97.06	No
23	М	11-15	Middle East	Autoinflammatory disorder	123	99.7	98.21	Yes (10)
24	М	0-5	Europe	CID, syndromal	119	99.4	95.92	Yes (10)
25	F	6-10	Europe	Autoinflammatory disorder	129	99.48	97.61	Yes (10)
26	F	0-5	No Genetic Ancestry Info	Bone marrow failure	174	99.16	95.82	Yes (10)
27	М	11-15	Europe	Autoinflammatory disorder	144	99.35	95.85	No

28	F	16-20	Europe	Predominantly antibody deficiency, hypogammaglobulinemia	110	99.48	97.15	No
29	F	26-30	Europe	Autoinflammatory disorder	110	99.3	96.44	No
30	М	6-10	Europe	Defect in intrinsic and innate immunity, bacterial and parasitic	102	99.27	95.47	No
31	Μ	6-10	Africa	CID, syndromal	108	99.51	96.61	No
32	М	11-15	Europe	CID, syndromal	127	99.55	97.28	No
33	F	36-40	Europe	Immune dysregulation, autoimmunity and others	115	99.35	96.79	No
34	М	0-5	Europe	Defect in intrinsic and innate immunity, MSMD and viral infection	119	99.15	94.49	No
35	М	11-15	Europe	Defects in intrinsic and innate immunity	114	99.2	94.45	No
36	М	0-5	Europe	Bone marrow failure	117	99.38	96.49	No
37	М	6-10	Europe	Autoinflammatory disorder	109	99.23	94.75	No
38	F	16-20	Europe	Autoinflammatory disorder	107	99.62	96.51	No
39	F	31-35	Europe	Predominantly antibody deficiency, hypogammaglobulinemia	134	99.33	96.83	No
40	Μ	11-15	Europe	CID, syndromal	121	99.42	96.54	No
41	F	51-55	Europe	Bone marrow failure	90	99.16	95.4	No
42	М	0-5	Europe	Immune dysregulation, HLH/EBV	106	99	94.14	No
43	F	0-5	Europe	CID, syndromal	106	98.5	92.92	No
44	М	16-20	Europe	Predominantly antibody deficiency, hypogammaglobulinemia	112	99.51	96.92	No
45	М	0-5	No Genetic Ancestry Info	CID, syndromal	225	99.04	95.09	No
46	F	16-20	No Genetic Ancestry Info	Predominantly antibody deficiency, hypogammaglobulinemia	180	99.18	95.25	No
47	М	16-20	Europe	Predominantly antibody deficiency, hypogammaglobulinemia	105	99.55	96.6	No
48	М	26-30	No Genetic Ancestry Info	Predominantly antibody deficiency, hypogammaglobulinemia	230	99.32	96.19	No
49	М	26-30	Europe	Predominantly antibody deficiency, hypogammaglobulinemia	125	99.7	97.52	No
50	М	6-10	Europe	CID, syndromal	102	99.54	96.62	No
51	F	0-5	Europe	Autoinflammatory disorder	125	99.58	97.78	No
52	М	11-15	Europe	Predominantly antibody deficiency, hypogammaglobulinemia	106	99.48	96.39	No
53	F	11-15	Europe	Autoinflammatory disorder	119	99.56	98.04	No
54	F	11-15	Middle East	CID, syndromal	117	99.51	97.48	No
55	М	6-10	Europe	Predominantly antibody deficiency, hypogammaglobulinemia	92	99.68	97.23	No
56	F	21-25	Europe	Predominantly antibody deficiency, hypogammaglobulinemia	109	99.56	97.52	No
57	М	0-5	Europe	Autoinflammatory disorder	103	99.67	97.25	No
58	F	21-25	Europe	Unclassified	113	99.39	96.88	Yes (27)
59	М	6-10	Europe	Autoinflammatory disorder	101	98.59	93.02	No
60	М	6-10	Europe	Defects in intrinsic and innate immunity, MSMD and viral infection	101	98.23	91.81	No
61	М	0-5	No Genetic Ancestry Info	CID, syndromal	21	86.15	48.53	No
62	М	0-5	Europe	Immune dysregulation, autoimmunity and others	125	98.93	95.02	No
63	М	6-10	Europe	Immune dysregulation, autoimmunity and others	105	98.63	93.33	No
64	М	0-5	Europe	Immune dysregulation, autoimmunity and others	120	98.9	94.92	No
65	М	0-5	Europe	Defects in intrinsic and innate immunity	105	98.53	93.02	No
66	F	0-5	No Genetic Ancestry Info	CID, syndromal	240	99.24	96.69	No
67	М	0-5	Europe	Autoinflammatory disorder	104	99.07	94.62	No
68	F	0-5	Europe	Defects in intrinsic and innate immunity	96	99.77	97.87	No

69	М	0-5	Europe	CID, non-syndromal	101	99.75	98.04	No
70	F	11-15	Europe	Defects in intrinsic and innate immunity, MSMD and viral infection	106	99.6	98.26	No
71	F	6-10	Europe	Bone marrow failure	105	99.63	98.34	No
72	М	0-5	No Genetic Ancestry Info	Suspected SCID (low TRECs)	148	99.42	96.14	No
73	М	0-5	No Genetic Ancestry Info	Immune dysregulation, autoimmunity and others	253	99.27	96.59	No
74	М	31-35	Europe	Autoinflammatory disorder	127	99.83	98.81	No
75	F	6-10	Europe	Bone marrow failure	99	99.09	98.92	No
76	F	0-5	Europe	Immune dysregulation, autoimmunity and others	90	99.6	97.64	No
77	F	0-5	Europe	CID, syndromal	116	99.66	98.32	No
78	F	6-10	Europe	CID, syndromal	111	99.64	98.1	No
79	F	6-10	Europe	Congenital defect of phagocyte, neutropenia	92	99.56	96.55	No
80	F	0-5	No Genetic Ancestry Info	Suspected SCID (low TRECs)	206	99.26	96.32	No
81	F	0-5	Europe	Congenital defect of phagocyte, neutropenia	110	99.66	98.07	No
82	F	26-30	Europe	Predominantly antibody deficiency, hypogammaglobulinemia	103	99.72	97.88	No
83	F	0-5	No Genetic Ancestry Info	CID, non-syndromal	181	98.91	95.1	No
84	F	0-5	No Genetic Ancestry Info	Autoinflammatory disorder	169	98.76	94.24	No
85	F	16-20	Europe	Predominantly antibody deficiency, hypogammaglobulinemia	90	99.46	96.32	No
86	Μ	6-10	Middle East	Defect in intrinsic and innate immunity, MSMD and viral infection	209	99.06	95.12	No
87	Μ	11-15	Europe	Autoinflammatory disorder	98	99.65	95.11	No
88	F	26-30	Europe	Autoinflammatory disorder	124	99.56	98.07	No
89	F	16-20	Europe	CID, syndromal	107	99.48	97.46	No
90	Μ	11-15	Europe	Unclassified	103	99.71	97.5	No
91	F	0-5	Europe	Suspected SCID (low TRECs)	116	97.67	90.26	No
92	F	0-5	Europe	Suspected SCID (low TRECs)	194	98.79	94.47	No
93	F	26-30	Europe	Immune dysregulation, autoimmunity and others	115	99.64	98.14	No
94	F	41-45	Europe	Unclassified	119	99.61	98	No
95	М	11-15	Europe	Defects in intrinsic and innate immunity	107	99.75	97.48	No
96	Μ	21-25	Europe	CID, syndromal	251	99.03	95.58	No
97	F	16-20	Europe	Immune dysregulation, autoimmunity and others	98	99.48	96.25	No
98	М	0-5	Europe	SCID	199	99.02	95.31	No
99	F	11-15	Europe	Bone marrow failure	179	98.55	93.77	No
100	F	21-25	Europe	Autoinflammatory disorder	111	99.46	97.78	No
101	М	0-5	Middle East	Immune dysregulation, HLH/EBV	128	98.73	92.71	No
102	F	11-15	Middle East	Immune dysregulation, autoimmunity and others	87	98.34	88.22	No
103	F	0-5	Europe	Immune dysregulation, HLH/EBV	121	99.51	97.3	No
104	F	0-5	Europe	Defects in intrinsic and innate immunity	247	98.9	95.47	No
105	М	31-35	Europe	Defects in intrinsic and innate immunity, MSMD and viral infection	111	99.27	98.79	No
106	F	11-15	Europe	Immune dysregulation, autoimmunity and others	111	99.53	97.71	No
107	F	0-5	Europe	Defects in intrinsic and innate immunity	98	99.4	97.09	No
108	Μ	21-25	Europe	Bone marrow failure	159	99.35	99.21	No
109	Μ	31-35	Europe	Congenital defect of phagocyte, neutropenia	115	99.71	97.99	No

110	F	0-5	Europe	Immune dysregulation, autoimmunity and others	92	99.41	96.82	No
111	F	0-5	Europe	Defect in intrinsic and innate immunity, MSMD and viral infection	101	99.52	97.5	No
112	F	6-10	Europe	CID, syndromal	101	99.51	97.52	No
113	М	0-5	Europe	Autoinflammatory disorder	96	99.62	96.94	No
114	М	6-10	Europe	Immune dysregulation, autoimmunity and others	114	99.33	99.16	No
115	F	0-5	Europe	SCID	151	99.1	98.96	No
116	М	0-5	Central South Asia	Bone marrow failure	125	99.34	99.17	No
117	М	0-5	Europe	Congenital defect of phagocyte, neutropenia	111	99.7	97.93	No
118	F	0-5	Middle East	Immune dysregulation, autoimmunity and others	86	99.11	98.82	No
119	F	11-15	Europe	Autoinflammatory disorder	120	99.57	97.98	No
120	М	11-15	Europe	Congenital defect of phagocyte, functional defects	167	99.37	99.23	No
121	F	0-5	Middle East	Defects in intrinsic and innate immunity	97	99.49	97.05	No
122	М	0-5	Europe	Suspected SCID (low TRECs)	114	99.36	99.16	No
123	М	0-5	Europe	Autoinflammatory disorder	98	99.61	96.45	No
				Average	124.11	99.23	96.18	

1 Abbreviations: IUIS = International Union of Immunological Societies; (S)CID = (severe) combined immunodeficiency; HLH = haemophagocytic lymphohistiocytosis;

2 EBV = Epstein-Barr virus; MSMD = Mendelian susceptibility to mycobacterial disease; TREC = T cell receptor excision circle.

1 Figure 1 – table supplement 2. List of all candidate de novo variants found in this IEI cohort. Whole exome sequencing datasets of 123 suspected IEI patient-

2 parent thos were consecutively intered to retain candidate (rare and exonic of splice site region) de novo variants of ea	each patient.
---	---------------

Patient Nr	Chromosome	Start position	Reference	Variant	% variation	Protein effect	Gene name
1	chr16	9858731	G	A	40.95	40.95 synonymous variant	
1	chr16	67968809	С	Т	41.30	missense variant	PSMB10
1	chr19	30314571	С	Т	46.67	stop gained	CCNE1
3	chrX	39933622	G	A	49.58	missense variant	BCOR
5	chr4	140640926	G	А	48.41	missense variant	MAML3
6	chr4	3188351	G	A	21.19	missense variant	HTT
6	chr7	107832197	С	Т	26.53	missense variant	NRCAM
6	chr6	43039087	Т	С	50.56	synonymous variant	KLC4
6	chr8	10465338	Т	A	22.81	synonymous variant	RP1L1
6	chr8	10466094	С	Т	25.14	synonymous variant	RP1L1
6	chr8	10465340	С	Т	21.57	missense variant	RP1L1
8	chr19	38028251	G	A	49.64	missense variant	ZNF793
9	chr11	8707228	Т	С	52.27	missense variant	RPL27A
9	chr16	613300	G	Α	46.34	synonymous variant	PRR35
10	chr15	41865534	G	A	46.23	missense variant	TYRO3
12	chr9	33261159	G	С	46.67	missense variant	BAG1
15	chr12	133696890	Т	С	50.00	missense variant	ZNF891
16	chr8	109226842	С	Т	60.00	missense variant	EIF3E
16	chr14	59757956	A	С	54.05	missense variant	DAAM1
16	chr14	65198823	Т	С	45.45	missense variant	PLEKHG3
16	chr17	79892248	G	A	56.58	missense variant	PYCR1
17	chr17	48701721	G	С	44.62	missense variant, splice region variant	CACNA1G
18	chr17	6023839	G	A	59.09	missense variant	WSCD1
18	chr20	31619534	С	Т	41.71	synonymous variant	BPIFB6
20	chr10	64928256	A	С	44.07	missense variant	JMJD1C
21	chr8	29994915	С	Т	49.41	missense variant	LEPROTL1
22	chr1	109811902	С	Т	64.10	missense variant	CELSR2
22	chr9	135521387	G	A	52.11	synonymous variant	DDX31
23	chr3	48502012	G	С	46.49	missense variant	ATRIP
25	chr5	70806905	CAA		41.62	stop gained, in-frame deletion	BDP1
25	chrX	48371004	С	Т	50.68	missense variant	PORCN
26	chr1	160160772	Т	С	52.52	synonymous variant	CASQ1
26	chr1	170015893	С	Т	47.27	synonymous variant	KIFAP3
26	chr14	33015396	С	Т	41.84	missense variant	AKAP6
26	chr14	93709400		С	23.53	frameshift variant	BTBD7
27	chr8	30700639	G	A	46.15	synonymous variant	TEX15
27	chr16	29997683	С	Т	52.08	missense variant	TAOK2
28	chr8	25292997	С	Т	33.33	missense variant	KCTD9
28	chr8	144940811	С	G	34.88	missense variant	EPPK1
29	chr1	12387862	С	Т	47.06	synonymous variant	VPS13D
29	chr2	46819659	С	Т	52.11	stop gained	PIGF
29	chr4	73186532	С	A	41.73	missense variant	ADAMTS3
29	chr10	7318934	TCT		46.50	in-frame deletion	SFMBT2
29	chr21	33732194	G	A	45.45	stop gained	URB1
30	chr5	35065629	С	Т	49.52	synonymous variant	PRLR
30	chr19	33706718	С	Т	53.13	missense variant	SLC7A10
31	chr12	57920559	CTCT		54.14	frameshift variant	MBD6

33	chr5	64077751	Α	G	45.45	missense variant	CWC27
33	chr10	26417401	G	A	51.72	synonymous variant	MYO3A
35	chr14	92959959	G	А	33.73	missense variant	SLC24A4
36	chr6	170876017	G	A	49.62	synonymous variant	TBP
37	chr6	43100171	Т	С	42.95	missense variant	PTK7
38	chr1	161772035	A	G	53.03	synonymous variant	ATF6
38	chr15	42988057	G	А	59.49	synonymous variant	STARD9
41	chr1	16070935	G	А	48.67	missense variant	TMEM82
41	chr22	38211717	С	Т	49.38	missense variant	GCAT
42	chr2	175202175	GGCGGCGGCAGCGGCGGCGGCAGC		55.56	in-frame deletion	SP9
42	chr6	110944071	С	Т	51.85	synonymous variant	CDK19
43	chr20	25596994	A	G	44.85	missense variant	NANP
46	chr1	899890	G	А	46.05	synonymous variant	KLHL17
46	chr1	35824576	A	С	35.17	missense variant	ZMYM4
49	chr7	100279738	С	Т	31.58	missense variant	GIGYF1
49	chr2	15769801		Т	56.20	frameshift variant	DDX1
49	chr4	169845502	GA		49.53	frameshift variant	PALLD
49	chr6	31749648	G	А	44.89	missense variant	VARS1
49	chr19	50000493	AAG		40.58	in-frame deletion	RPS11
50	chr12	124221884	G	А	21.74	synonymous variant	ATP6V0A2
50	chr20	23584162	C.	Т	53.62	synonymous variant	CST9
50	chrX	54817426	G	A	97.03	missense variant	ITIH6
50	chr4	103866434	<u> </u>	A	52 17	missense variant	SI C9B1
50	chr5	112769523	C.	Т	50.00	synonymous variant	TSSK1B
50	chr1	197129117	 C	Δ	56.25	missense variant	78TB41
51	chr19	41386478	Ğ		86.89	syponymous variant	CYP2A7
52	chr8	144874432	<u> </u>	' T	39.02	missense variant	SCRIB
52	chr16	18830915	<u>T</u>	 C	42.06	missense variant	SMG1
52	chr10	875275		0	22.00	frameshift variant	MED16
53	chr5	171205802	CA000	C	37.04	splice acceptor variant	EBXW/11
53	chr17	48070807	! Т	C	49.01	missense variant	
55	chr11	1207/6725		U	40.49		NEDKR
56	chr15	76404507	C	і т	45.40	missonso variant	TMEM266
57	ohr15	10494391	C	 	<u> </u>	missense variant	
50	chillo	40307214	A	I	42.70		
50	CIITIO	0/040900	6	I	43.70	missense variant	
59	chr0	24/30//94	C	1	54.92		
59	chrife	1900107	6	A	54.82		SLUZ4AZ
59	CN116	68056410	<u> </u>	I	63.24	synonymous variant	DDX28
59		/8063997	<u>U</u>	A	29.58	missense variant	CCDC40
60	Chriu	99968165	1	<u> </u>	44.58	synonymous variant	R3HUUTL
60	CDF11	4870051	G	A	56.16	missense variant	085151
60	chr20	18/94/10	G		54.35	trameshift variant	SCP2D1
61	cnr2	47710036	A	<u> </u>	/1.43	missense variant	MSH2
61	chr9	140685313		<u> </u>	35.29	missense variant	EHMI1
61	chr17	//984488		<u> </u>	43.75	missense variant	IBC1D16
64	chr3	49167806	G	<u>A</u>	48.82	synonymous variant	LAMB2
64	chr16	83998933	C	T	53.25	missense variant	OSGIN1
65	chr1	44360053	Α	G	45.24	splice acceptor variant	ST3GAL3
65	chr5	167645868		С	53.45	frameshift variant	TENM2
65	chr11	89135634	TC		64.29	frameshift variant	NOX4
66	chr4	175898983	<u>A</u>	G	52.00	synonymous variant	ADAM29
66	chr15	41102374	C	Ť	55.64	missense variant	ZFYVE19
66	chr17	72281342	T	С	55.90	splice donor variant	DNAI2
66	chr22	38121773	C	A	22.58	synonymous variant	TRIOBP

67	chr8	23155621	С	Т	31.58	missense variant	LOXL2
68	chr1	55168322	Т	С	48.85	synonymous variant	MROH7
68	chr17	42084846	Α	G	50.60	missense variant	NAGS
70	chr2	64779432	С	A	44.09	missense variant	AFTPH
72	chr19	580774	G		56.07	frameshift variant	BSG
73	chr10	70987078		A	47.33	frameshift variant	HKDC1
73	chr11	1606168	G	Т	20.00	svnonvmous variant	KRTAP5-1
73	chr12	21471770	G	C	35.71	missense variant	SLCO1A2
75	chr1	78435621	A	C	46.67	missense variant	FUBP1
76	chr7	132571737	6	C C	41.67	missense variant	CHCHD3
76	chr13	99047515	G	A	44 44	missense variant	FARP1
76	chr16	28837622	G	A	63 64	missense variant	ATXN2I
76	chr17	21319951	A	G	20.00	missense variant	KCNJ12
76	chr19	38655406	<u> </u>	6	40.43	missense variant	SIPA1L3
77	chrX	117528078	<u> </u>	<u>T</u>	45 59	missense variant	WDR44
78	chr1	43913308	<u> </u>	Δ	42.45	synonymous variant	SZT2
78	chr7	151860074	<u>ک</u>	<i>N</i>	46.79	frameshift variant	KMT2C
78	chr8	135545120	6	Δ	40.75	synonymous variant	7647
80	chr15	00347497	6	<u> </u>	<u>49.15</u> 56.15	missonso variant	
00	chi i i	90347407	<u>G</u>	<u> </u>	50.10		
02	CIIIZ	213043042	A	6	17.05	Synonymous variant	
03	Chi7	162800010	<u> </u>	т	47.90	mameshin variant, splice region variant	
03	CIII5	102090919	<u> </u>		20.00	missense variant	
83	Chri 3	103382492	A	G	43.30	missense variant	
83	Chr15	63966552	<u> </u>	<u> </u>	49.02	missense variant	HERUI
83	Chr16	89265147	G	A	54.52	stop gained	SLC22A31
84	chr3	101117774	G	A	47.62	missense variant	SENP7
85	cnr2	179497010	G	A	51.72	synonymous variant	11N
85	chr13	/640/282	<u> </u>		49.62	synonymous variant	
86	chr/	80293770	AACATAAGTA		55.56	frameshift variant	CD36
86	chr13	1111420/1	<u> </u>		35.64	synonymous variant	COL4A2
86	chr16	75646363	G	<u>A</u>	50.85	missense variant	ADA I 1
90	chr19	40889864	G	<u>A</u>	39.39	synonymous variant	HIPK4
91	chr1	153789892	G	Α	48.31	missense variant	GATAD2B
91	chr22	43230306	G	A	36.36	missense variant	ARFGAP3
92	chr2	21363959	G	A	44.44	missense variant	TDRD15
92	chr21	19653534	Т	C	40.76	missense variant	TMPRSS15
95	chr8	42179639	G	A	33.96	synonymous variant	IKBKB
96	chr9	34256995	Т	A	45.58	synonymous variant	KIF24
97	chr19	43376039	C	Т	44.87	missense variant	PSG1
98	chr6	43039601	Т	С	55.00	synonymous variant	KLC4
98	chr2	238249487	Т	G	47.13	missense variant	COL6A3
98	chr19	40719909		G	21.03	frameshift variant	MAP3K10
100	chr2	186669876	С	A	39.10	synonymous variant	FSIP2
101	chr2	238004500	A	G	61.33	missense variant	COPS8
101	chr17	78341841	Т	С	53.04	missense variant	RNF213
102	chr1	19609317	С	Т	41.38	missense variant	AKR7A3
102	chr1	19609318	С	Т	40.87	synonymous variant	AKR7A3
104	chr2	71163167	С	Т	42.12	missense variant	ATP6V1B1
105	chr17	39240792		CTAGCTGCTGCATCT	23.29	in-frame insertion	KRTAP4-7
106	chr1	155629606	G	Α	40.72	missense variant	YY1AP1
106	chr18	47777275	T	G	23.96	missense variant	CFAP53
107	chr17	55957032	G	Ă	52.13	missense variant	CUEDC1
108	chr4	1959681	G	T	40.50	missense variant	NSD2
108	chr9	38414121	Ă	G	44.90	synonymous variant	IGFBPI 1
100	01110	00111121		Ŭ	11.00	oynonymodo vanam	101 21 21

108	chr10	101295200	GCC		20.00	in-frame deletion	NKX2-3
108	chr18	51750585	GCC		27.78	in-frame deletion	MBD2
108	chr4	1959687	G	Т	40.48	missense variant	NSD2
109	chr20	5081567	С	Т	51.22	missense variant	TMEM230
110	chr10	75528852	TGAC		58.33	frameshift variant	SEC24C
110	chr14	93119129	С	Т	48.18	missense variant	RIN3
111	chr10	70644299	С	A	42.61	missense variant	STOX1
111	chr17	4440216	G	А	51.52	synonymous variant	SPNS2
112	chr4	144468021	A	G	52.63	synonymous variant	SMARCA5
113	chr2	73680020	A	G	52.98	synonymous variant	ALMS1
113	chr14	63863401	С	G	45.31	missense variant	PPP2R5E
114	chr17	39240792		CTAGCTGCTGCATCT	58.33	in-frame insertion	KRTAP4-7
114	chr2	131221459	С	Т	41.18	missense variant	POTEI
115	chr3	89521721	С	Т	25.57	missense variant	EPHA3
115	chr18	7026058	G	A	49.12	synonymous variant	LAMA1
116	chr8	144999832	Α	С	48.44	missense variant	PLEC
117	chr3	42700697	GAG		20.00	in-frame deletion	ZBTB47
118	chr19	40711861	Α	G	26.79	missense variant	MAP3K10
118	chr1	25256227	С	Т	47.57	missense variant	RUNX3
118	chr4	88537012	С	Т	20.35	synonymous variant	DSPP
118	chr4	151770608	Α	С	21.74	missense variant	LRBA
118	chr9	140139542	Т	G	33.33	splice region variant, synonymous variant	FAM166A
119	chr11	65423234	С	Т	54.62	splice acceptor variant	RELA
119	chr15	75641602.00	G	Α	59.46	missense variant	NEIL1
119	chr18	72997837	ACA		21.05	in-frame deletion	TSHZ1
120	chr1	32280068	G	Α	50.00	synonymous variant	SPOCD1
120	chr19	15535770	Т	A	53.85	synonymous variant	WIZ
121	chr5	37364086	Т	С	47.06	missense variant, splice region variant	NUP155
122	chr1	53387237	С	Т	48.89	missense variant	ECHDC2
123	chr1	888593	G	С	51.88	missense variant	NOC2L
123	chr2	27604480	C	G	43.24	missense variant	PPM1G
123	chr17	60743473	G	Т	55.77	missense variant	MRC2

1 Figure 1 – table supplement 3. De novo variant rate and distribution of de novo variant types across 2 our IEI cohort in comparison to a reference cohort from Kaplanis et al. (8). The total amount of candidate 3 de novo variants was retrieved from our cohort, consisting of 123 individuals. All identified de novo variants 4 with minimally 20% variation reads of the comparably processed Kaplanis et al. cohort were obtained (8). The 5 amount of predicted loss-of-function, synonymous and non-synonymous de novo single nucleotide variants or 6 small insertion-deletions were extracted from both cohorts. The total amount of all, predicted loss-of-function, 7 synonymous and non-synonymous de novo variants were divided by the respective cohort size to obtain the 8 average number of respective variants per individual for each cohort.

	IEI cohort	Kaplanis <i>et al.</i> cohort (8)
Number of individuals	123	31,058
All de novo SNVs or small indels		
Total	187	44,742
Per individual	1.52	1.44
De novo predicted loss-of-function SNVs or small indels		
Total	26	7,196
Per individual	0.21	0.23
De novo synonymous SNVs or small indels		
Total	51	8,868
Per individual	0.41	0.29
De novo non-synonymous SNVs or small indels		
Total	110	28,678
Per individual	0.89	0.92

9 Abbreviations: IEI = inborn errors of immunity; SNV = single nucleotide variant; indel = insertion-deletion.

10

Figure 1 – figure supplement 1. Distribution of *de novo* variants per case. Using the R software, a code was developed that filtered each trio-based whole exome sequencing dataset consecutively on the inheritance, genomic location and population allele frequency of the called single nucleotide variants and small insertiondeletions in order to obtain candidate *de novo* variants. These variants are located in exonic or splice site regions and rarely occur in the population. The number of candidate *de novo* variants were counted per patient.

Table 1B – table supplement 1. List of patient trios with variants identified in genes outside the diagnostic IEI gene panel, or classified as risk factors,
carriership or variants of uncertain significance. Information on copy number variants or inherited single nucleotide variants and small insertion-deletions that were
identified prior to this cohort study in the scope of *in silico* gene panel analysis and, if appropriate informed consent was provided, in-depth variant analysis of each
patient in this inborn errors of immunity cohort. Variants and their associated American College of Medical Genetics and Genomics classification and clinical
significance, including possibly associated clinical phenotypes, are listed.

Patient Nr	Sex	Age range at sampling	Phenotype (IUIS classification)	Variant	ACMG classification	Clinical significance	Comments
1	М	11-15	SCID	FLG Chr1(GRCh37):g.152285861G>A NM_002016.1:c.1501C>T p.(Arg501*)	Pathogenic	Ichthyosis vulgaris (OMIM #146700)	Additional <i>de</i> novo SNV
			—	arr[GRCh37] 16q21qter(?_qter)x2	-	Homozygous mosaicism	(Table 2B)
				EYS Chr6(GRCh37):g.65300805G>C NM_001142800.1:c.4955C>G p.(Ser1652*)	Pathogenic	Retinitis pigmentosa 25	
3	F	31-35	Immune dysregulation, syndromes with autoimmunity and others	EYS Chr6(GRCh37):g.64430943A>T NM_001142800.1:c.8984T>A.p.(IIe2995Asn)	Likely pathogenic	(OMIM #602772)	
				FGB Chr4(GRCh37):g.155486984C>T NM_005141.4:c.139C>T_p.(Arg47*)	Pathogenic	Carriership (htz. OMIM #202400)	
6	М	21-25	Bone marrow failure	PTCH1 Chr9(GRCh37):g.98231067_98231068delinsAA NM 000264.3:c.2215_2216delinsTT p. (His739Phe)	Uncertain significance	Uncertain significance (htz, OMIM #109400)	
7	М	46-50	Autoinflammatory disorder	C7 Chr5(GRCh37):g.40959614_40959616del NM_000587.2:c.1553_1555del p.(Thr518del)	Uncertain significance	Carriership (htz, OMIM #610102)	
16	F	0-5	Defect in intrinsic and innate immunity, MSMD and viral infection	IRAK4 Chr12(GRCh37):g.44165145C>T NM_001114182.2:c.284C>T p.(Ala95Val)	Uncertain significance	Carriership (htz, OMIM #607676)	
				DNASE1 Chr16(GRCh37):g.3707343G>C NM_005223.3:c.704+1G>C p.?	Likely pathogenic	Risk factor (htz, OMIM #152700)	
21	М	6-10	Autoinflammatory disorder	MUC2 Chr11(GRCh37):g.1078647G>C ENST00000441003.2:c.855G>C p.(Trp285Cys)	Uncertain significance	Uncertain significance (htz)	
				seq[GRCh37] del(17)(q25.3qter) NC_000017.10:g.(80544076_80544938)_qterdel	Pathogenic	Uncertain significance (htz)	De novo CNV
22	M	11 15	Autoinflommatory disorder	TERT Chr5(GRCh37):g.1278865G>A NM_198253.2:c.2177C>T p.(Thr726Met)	Uncertain significance	Uncertain significance (htz, OMIM #613989)	
23	IVI	11-15		NCF2 Chr1(GRCh37):g.183538298G>A NM_000433.3:c.692C>T p.(Pro231Leu)	Uncertain significance	Carriership (htz, OMIM #233710)	
32	М	11-15	CID, syndromal	DOCK8 Chr9(GRCh37):g.304661C>T NM_203447.3:c.485C>T p.(Thr162Met)	Uncertain significance	Carriership (htz, OMIM #243700)	
40	М	11-15	CID, syndromal	MYBPC3 Chr11(GRCh37):g.47353661del NM_000256.3:c.3776del p.(Gln1259fs)	Pathogenic	Hypertrophic cardiomyopathy 4 (OMIM #115197)	
44	м	16-20	Predominantly antibody deficiency,	TNFRSF13B Chr17(GRCh37):g.16843729G>T NM_012452.2:c.542C>A p.(Ala181Glu)	Likely pathogenic	Risk factor (htz, OMIM #240500)	
			hypogammaglobulinemia	JAGN1 Chr3(GRCh37):g.9932407A>G NM_032492.3:c.1A>G p.?	Uncertain significance	Carriership (htz, OMIM #616022)	
45	М	0-5	CID, syndromal	PARN Chr16(GRCh37):g.14721009G>A NM_002582.3:c.281C>T p.(Pro94Leu)	Uncertain significance	Uncertain significance (hmz, OMIM #616353)	
54	F	11-15	CID, syndromal	ADAM17 Chr2(GRCh37):g.9666240T>A NM_003183.5:c.753A>T p.(Leu251Phe)	Uncertain significance	Uncertain significance (hmz, OMIM #614328)	

55	М	6 10	Predominantly antibody deficiency,	NOD2 Chr16(GRCh37):g.50746164C>T	Uncertain	Risk factor				
	IVI	0-10	hypogammaglobulinemia	NM_022162.2:c.2342C>T p.(Ala781Val)	significance	(htz, OMIM #266600)				
56 E			TNFRSF13B Chr17(GRCh37):g.16843729G>T	Likely nathogenic	Risk factor					
	F	21-25	Predominantly antibody deficiency,	NM_012452.2:c.542C>A p.(Ala181Glu)	Elkely pathogenic	(htz, OMIM #240500)				
50		21-25	hypogammaglobulinemia	TNFRSF13B Chr17(GRCh37):g.16852187A>G	Likoly pathogonic	Risk factor				
				NM_012452.2:c.310T>C p.(Cys104Arg)		(htz, OMIM #240500)				
68	F	0-5	Defects in intrinsic and innate immunity	TNFRSF13B Chr17(GRCh37):g.16852187A>G	Likely pathogenic	Risk factor				
		0-0		NM_012452.2:c.310T>C p.(Cys104Arg)		(htz, OMIM #240500)				
				sea[GRCb37] dun(22)(a11 21a11 21)		Chromosome 22q11.2				
69	M	0-5	CID, non-syndromal	NC $0.00022 \ 10.\alpha \ (18775421 \ 18803060) \ (21414845 \ 21576183) dup$	Pathogenic	microduplication syndrome	De novo CNV			
				110_000022.10.g.(10/73421_10093900)_(21414043_21370103)dup		(OMIM #608363)				
76	F	0-5	Immune dysregulation, autoimmunity and	ATM Chr11(GRCh37):g.108123641T>G	Pathogenic	Carriership				
		00	others	NM_000051.3:c.1898+2T>G p.?	T attrogenie	(htz, OMIM #208900)				
				JAK3 Chr19(GRCh37):g.17953972C>T						
80	F	0-5	Suspected SCID (low TRECs)	NM_000215.3:c.430G>A p.(Asp144Asn)	_ Uncertain	Uncertain significance (ch, OMIM #600802)				
00		00		JAK3 Chr19(GRCh37):g.17955108C>T	significance					
			NM_000215.3:c.119G>A p.(Arg40His)							
		16-20		TNXB Chr6(GRCh37):g.32049159_32049162dup NM_001365276.1;c.4025_4028dup.p.(Val1344fs)	Pathogenic Pathogenic	Classic-like Ehlers-Danlos				
						syndrome				
85	F		Predominantly antibody deficiency,			(OMIM #606408)				
00	•		hypogammaglobulinemia	seq[GRCh37] dup(17)(p12p12) NC 000017.10:g.(14080637 14095281) (15457168 15458539)dup		Charcot-Marie-Tooth disease				
						type 1A				
				·······		(OMIM #118220)				
100	F	21-25	Autoinflammaton/ disorder	GABRG2 Chr5(GRCh37):g.161580318C>T	Uncertain	Uncertain significance				
100		21-25	Autormanmatory disorder	NM_198903.2:c.1492C>T p.(Pro498Ser)	significance	(htz, OMIM #607681)				
				TACO1 Chr17(GRCh37):g.61678707C>T						
				NM_016360.3:c.265C>T p.(Arg89Cys)		Uncertain significance				
101	M	0-5	Immune dysregulation, HLH/EBV	TACO1 Chr17(GRCh37) g 61683701A>C	Uncertain significance	(htz_OMIM #619052)				
							NM_016360.3:c.416A>C p.(Glu139Ala)		(
				DKI D Chr1(CDCh27);g 155261626C>T						
				NM 000298 5:c 1529G>A n (Arg510Gln)	Pathogenic	Pyruwate kinase deficiency				
103	F	0-5	Immune dysregulation, HLH/EBV			(OMIM #266200)				
				NM 000298 5 c $401T_{A}$ n (Val134Asn)	Pathogenic	(Ommin #206200)				
				TNERSE13B Chr17(GRCh37);g 168521874\G		Risk factor				
112	F	6-10	CID, syndromal	NM_012452.2 cc.310T>C n Cvs104Arg	Likely pathogenic	(htz_OMIM #240500)				
				sea(GRCh37) dup(X)(a13.1a13.1)			De novo			
115	F	0-5	SCID	NC 000023 10 g (70391543 70443557) (70838299 70887653)dup	Uncertain significance	Uncertain significance (htz)	CNV			
										

1 Abbreviations: IUIS = International Union of Immunological Societies; ACMG = American College of Medical Genetics and Genomics; (S)CID = (severe) combined

2 immunodeficiency; MSMD = mendelian susceptibility to mycobacterial disease; TREC = T cell receptor excision circle; HLH = haemophagocytic lymphohistiocytosis;

3 EBV = Epstein-Barr virus; OMIM = Online Mendelian Inheritance in Man; htz = heterozygous; hmz = homozygous; ch = compound heterozygous; SNV = single

4 nucleotide variant; CNV = copy number variant.

1 Figure 2 – figure supplement 1. RNA splicing effect of the FBXW11 de novo splice site variant (c.1468-2 2A>G). Panel A shows the agarose gel on the cDNA PCR products of patient and control Epstein-Barr virus 3 (EBV)-transformed lymphoblastoid cell lines (EBV-LCLs) treated with or without cycloheximide (CHX). Three 4 distinct bands were identified and are indicated by arrows next to a 100bp ladder (L). Both the wildtype allele 5 of the patient and the control show a smear, possibly indicating the presence of multiple FBXW11 isoforms. 6 Panel B shows traces of the three bands from the agarose gel that were cut out and sent for Sanger 7 sequencing. As the splice site variant in the patient was expected to lead to skipping of exon 12, the boundaries 8 between exons 11, 12 and 13 were shown. The second band confirms skipping of exon 12 that results in a 9 shorter transcript of the mutated FBXW11 allele. After CHX treatment, this band shows an increased quantity, 10 indicating that the mutated allele undergoes nonsense mediated decay, but incomplete. Furthermore, a smaller 11 transcript is formed in the patient, which is shown to contain part of exon 12, but not exon 13.

12 Figure 2 – figure supplement 1A – source data 1.