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Abstract

Two common obstacles limiting the performance of data-driven algorithms in

digital histopathology classification tasks are the lack of expert annotations and

the narrow diversity of datasets. Multi-instance learning (MIL) can be used to

address the former challenge for the analysis of whole slide images (WSI) but

performance is often inferior to full supervision. We show that the inclusion

of weak annotations can significantly enhance the effectiveness of MIL while

keeping the approach scalable.

An analysis framework was developed to process periodic acid-Schiff (PAS)

and Sirius Red (SR) slides of renal biopsies. The workflow segments tissues into

coarse tissue classes. Handcrafted and deep features were extracted from these

tissues and combined using a soft attention model to predict several slide-level

labels: delayed graft function (DGF), acute tubular injury (ATI), and Remuzzi

grade components. A tissue segmentation quality metric was also developed to
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reduce the adverse impact of poorly segmented instances. The soft attention

model was trained using 5-fold cross-validation on a mixed dataset and tested

on the QUOD dataset containing n=373 PAS and n=195 SR biopsies.

The average ROC-AUC over different prediction tasks was found to be

0.598±0.011, significantly higher than using only ResNet50 (0.545±0.012), only

handcrafted features (0.542±0.011), and the baseline (0.532±0.012) of state-of-

the-art performance. Weighting tissues by segmentation quality in conjunction

with soft attention has led to further improvement (AUC = 0.618 ± 0.010).

Using an intuitive visualisation scheme, we show that our approach may also

be used to support clinical decision making as it allows pinpointing individual

tissues relevant to the predictions.

Keywords: Digital Histopathology, Kidney Transplant, Multi-instance

Learning, Bayesian Neural Network
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1. Introduction

Computational pathology can assist pathologists by providing an automated

second opinion on their assessment. Moreover, it may help us to better un-

derstand the mechanisms of organ injury by detecting and quantifying subtle

histological changes in biopsies. While these models can help us improve the5

discriminative power of assessment tasks with performance unrivaled by clas-

sical image processing algorithms, there are several challenges limiting their

applicability. Firstly, training neural networks often requires large amounts of

labelled data. However, most datasets contain no more than several hundred

slides. In our setting, samples with known outcomes are biased due to pre-10

transplantation screening (either based on the patient’s clinical information or

histology). The only available data are “hard examples” that have either been

missed by pathologists or are plagued by factors not guaranteed to be visible

in biopsies. There is also a “bootstrap” problem - while a severe shortage of

pathologists is a primary motivation to expedite the development of an auto-15
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mated tool, this shortage limits the speed and scale in which labelled data can

be procured.

To date, most deep-learning based computational pathology platforms are

designed to predict or assess only a bespoke set of narrowly defined clinical out-

comes or visual changes (collectively known as slide-level labels). Most existing20

work (Yi et al., 2022; Hermsen et al., 2019; Marsh et al., 2018; Davis et al.,

2021; Kers et al., 2022) is limited to fully-supervised learning, which requires

labelling large number of tissue compartments or rectangular tiles as either

normal or diseased. To adapt these platforms for a different diagnosis would re-

quire additional time from pathologists to go through the entire dataset, adding25

further to the project’s investment. Regrettably, the expert-time cost of fully-

supervised learning is prohibitive and has been a major reason for the limited

number of publications applied to renal histology.

To address the lack of local expert annotations, a number of multi-instance

learning approaches (Lu et al., 2021; Iizuka et al., 2020; Campanella et al., 2019;30

Li et al., 2021) have been developed to train classification tasks using only slide-

level labels. However, available multi-instance learning models typically need to

be trained on either large datasets, or on slides with plenty of tissue area with

good diagnostic quality. In our setting where many slides contain sub-optimal

tissue areas, we find existing approaches fail to deliver acceptable classification35

performance.

Furthermore, models trained under multi-instance learning tend to have lim-

ited diagnostic transparency - features are often extracted from rectangular

tiles which are inconsistent with the anatomical, irregular tissue compartments

within the biopsies. It is common for different functional tissue structures to40

vary in size by several orders of magnitude (eg. cell nuclei vs arteries). This

may be partially addressed by using tiles from several magnifications (Li et al.,

2021), but this solution could make visualisation considerably more challenging.

Any histology analysis framework also needs to be robust to artifacts. This

is particularly true in our application for two reasons. Firstly, in needle biopsies,45

a large proportion of tissue resides close to the edge and is often distorted or
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truncated. Exclusion of these tissues is not always possible as biopsies are often

narrow and have limited material available. Secondly, decisions of transplanta-

tion are time-sensitive hence the long-term aim is to eventually read histology

from frozen biopsies which are often plagued with artifacts. There is a lack of50

definitive attempts to reduce the impact of artifacts. Treatment of artifacts is

often either not mentioned or is excluded manually in most experiments. To

our knowledge, the most common approach to tackle artifacts include explic-

itly labelling of artifacts and aggressive data augmentation (Marsh et al., 2018;

Davis et al., 2021). However, these approaches would only work on objects that55

resemble the training data.

The goal of this pilot study is to show the feasibility of a flexible yet scalable

platform for providing quantitative insight into visual associations to transplant

dysfunction using renal biopsies stained with periodic acid-Schiff (PAS) and Sir-

ius Red (SR) while addressing the aforementioned issues. Our workflow extracts60

a number of histologically relevant visual features from tissues and was devel-

oped with minimal laborious labelling by expert pathologists. We used these

visual features in combination with convolutional neural network (CNN) fea-

tures to predict several slide-level labels such as Delayed Graft Function (DGF)

- defined as patients who need dialysis within the first week after transplantation65

(Yarlagadda et al., 2008), Acute Tubular Injury (ATI), and Remuzzi Scores (Re-

muzzi et al., 2006). We compared the predictive performance of our framework

with features based on tissue compartments with a standard workflow that re-

lies only on CNN-derived features and on rectangular tiles and showed that the

proposed workflow produces consistently higher area-under-the-curve (AUC) in70

the models’ receiver operator characteristics (ROC) and Precision-Recall (PR)

curves.

Furthermore, we developed a visualisation scheme that works specifically

for our proposed workflow. Compared to prior work (Lu et al., 2021; Iizuka

et al., 2020; Campanella et al., 2019), using tissue-derived features enabled us75

to pinpoint a diagnosis to specific tissues irrespective of their size and shape,

enabling the potential of transparent diagnosis and visualisation.
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Finally, through our experiments, we also find that tissue quality and quan-

tity may play a significant role in the predictability of a slide. By incorporating

a metric derived from Bayesian Neural Networks (BNN) describing tissue qual-80

ity similar to Tam et al. (Tam et al., 2020) derived from an ensemble of CNN

models, we are able to consistently improve the quality of predictions measured

by AUC.

2. Method

We propose a computational framework to extract visual histopathological85

features from different functional components of the biopsy. A schematic of the

workflow is shown in Figure 1. In a first step we identify specific tissue com-

partments (Figure 1(a)). Details of the segmentation algorithm are discussed

in Section 2.2. Subsequently, we extract a set of tissue compartment specific

features (Figure 1(b)) which are described in Section 2.3).90

Finally, we combine combine instance level features into a fixed-length de-

scription of the whole slide (Figure 1(c)). We evaluate different approaches to

combining these features. The most trivial method is to simply perform an

average/max pooling from the feature values of all the tissues. However, if

the segmented tissues were only coarsely categorised, a large portion may be95

irrelevant for diagnosis. Pooling features from different tissues irrespective of

their histopathological importance could lead to erroneous predictions that lack

transparency.

Multi-instance learning (MIL) (Campanella et al., 2019; Maron and Lozano-

Pérez, 1998; Ilse et al., 2018) is another approach commonly applied to histol-100

ogy analysis for making slide level (bag) predictions from a variable number

of instances. A slide is classified as positive if at least one positive instance

is detected. Implementation of the original MIL algorithm involves predict-

ing a probability value for each instance and then converting these instance

probabilities into a bag-level value using max-pooling. However, this approach105

has several limitations that make it unsuitable for predicting kidney function.
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Figure 1: Overview of the framework. This figure shows an overview of the proposed

quantitative analysis framework. (a) Tissue segmentation returns the instance outline of three

different tissue types and cell nuclei. (b) Feature extraction returns a mixture of handcrafted

and deep features iterated over each tissue. (c) Finally, features from a variable number of

tissues are pooled together with soft attention to form a single vectorial description of a slide

to predict the slide’s label. The slide label could either be clinical endpoints, assessment

results given by pathologists, or other biomarkers.
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Firstly, the use of max-pooling means that the method is particularly sensitive

to noise. In our slides, we often have artifacts or tissues with morphology not

previously seen during training. There is an inherent risk that the presence of

these artifacts could sway the predictions as the classifiers have not been trained110

on embeddings beyond the original data. Secondly, although we are formulat-

ing our problem as a classification task, kidney function and the grading of

slides have an inherent progressive nature. Standard MIL is not well adapted

to handling multi-class classification problems and it gives predictions that lack

symmetry between the positives and negatives.115

To partially mitigate the aforementioned limitations, we implement a soft

attention mechanism. As a result we can use attention-weighted averages of the

instances to make predictions as shown in the schematic in Figure 2. The model

consists of multiple stages: Firstly, it converts each instance’s features into a

permutation-invariant embedding. From these embeddings, a gated attention120

mechanism (Ilse et al., 2018) assigns weights to each instance depending on their

relative importance for the bag-level predictions. The reason a gated mechanism

is used is to enhance the non-linearity of tanh when the function’s input values

are small. Because soft attention is learned, theoretically, it should be capable

of rejecting instances not relevant for the assigned bag-level prediction task.125

The fractional contribution ak of an instance k to the final prediction is:

ak =
exp(w⊤(tanh(Vh⊤

k )⊙ sigmoid(Uh⊤
k )))

K∑
j=1

exp(w⊤(tanh(Vh⊤
j )⊙ sigmoid(Uh⊤

j )))

(1)

Where h is an embedding derived from the feature vector of one instance,

w,U,V are learnable weights in our neural network.

In practice, however, in many biomedical datasets, the number of instances

in each bag could be greater than the number of bags, making it very difficult130

to train a reliable attention mechanism. The attention network may also fail

to assign a meaningful score for instances that do not resemble any of those

from the training examples. To address this challenge, we propose to include an

7

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 21, 2022. ; https://doi.org/10.1101/2022.03.30.22269826doi: medRxiv preprint 

https://doi.org/10.1101/2022.03.30.22269826
http://creativecommons.org/licenses/by-nc-nd/4.0/


additional factor g into the weighted average. The weight gk over an instance

k can be described as a confidence score of the neural network on an instance135

indicative of its resemblance to the training data. Such a score can be derived

using probabilistic predictions from BNNs (Gal and Ghahramani, 2016; Blundell

et al., 2015; Kendall and Gal, 2017). As we have a plethora of delineated

tissues, we decided to obtain g using our UNet ensemble (described in Section

2.2). To account for the Bayesian uncertainty of different instances, we simply140

incorporate g into the attention as follows:

ak =
exp(w⊤(tanh(Vh⊤

k )⊙ sigmoid(Uh⊤
k ))gk)

K∑
j=1

exp(w⊤(tanh(Vh⊤
j )⊙ sigmoid(Uh⊤

j ))gk)

(2)

Figure 2: Attention Model - this model is used for combining feature vectors from a variable

number of tissues into a single vector describing a slide. The gate attention module learns

which instances are relevant for the bag-level prediction tasks. Optionally, in addition to the

learned attention, we also weight instances by their segmentation quality and how much the

instances resemble our locally-delineated training examples.

2.1. Datasets

Two main datasets are used in this study. A breakdown of the datasets is

summarised in Table 1. The datasets contain slides stained using PAS and SR.
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Table 1: Datasets. Slides were digitised by at least 4 different scanners. All slides from

the NMP dataset, 169 QUOD-PAS slides, and 20 QUOD-SR slides were digitised using a

Hammatsu scanner at 40x (0.22mpp). The other QUOD slides were digitised using a Glissando

Desktop scanner at 40x (0.27mpp). The total area (mm2) selected for tissue delineation from

each dataset is shown in the right-most column. (Note: 65 tiles contain only annotations of

cell nuclei are not included in the table.)

Dataset / Stain Donors Kidneys Biopsies Slides Tiles Delineated

QUOD → PAS 348 373 394 414 85 253

QUOD → SR 173 195 195 215 20 20.1

NMP → HE 35 35 169 169 240 400

NMP → PAS 4 4 23 26 12 5.89

NMP → SR 4 4 22 26 20 9.69

Native → PAS 12 12 12 12 26 235

TCGA → HE 11 11 11 11 22 282

Table 2: Overview of tissue instances delineated. This table gives an overview of the

number of tissue instances delineated by hand.

Number of Instances Area (mm2)

Tub Glom Vessels Tub Glom Ves

QUOD → PAS 2145 323 119 4.68 3.87 2.60

QUOD → SR 889 24 22 2.03 0.309 0.254

NMP → HE 13103 581 175 31.8 7.39 4.37

NMP → PAS 753 25 40 1.64 0.270 0.236

NMP → SR 1311 38 17 2.70 0.411 0.493

Native → PAS 1156 226 55 3.62 4.15 1.11

TCGA → HE 1739 422 143 5.84 7.53 9.49
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While PAS is a routine stain for renal biopsy assessment, SR could be promising145

for the computational quantification of fibrotic tissues. SR is normally viewed

under polarised light (Grimm et al., 2003) for maximum signal-to-noise ratio,

but attempts to quantify the extent of fibrosis under unpolarised light have also

been shown to be highly reproducible (Farris et al., 2011).

The QUOD Dataset consists of paraffin-embedded 22mm pre-implantation150

half-core needle biopsies from the Quality in Organ Donor Biobank1, a national

multi-centre UK-wide bioresource of deceased donor clinical samples procured

during donor management and organ procurement. These biopsies were from a

larger cohort of cases where both kidneys from the donor have been transplanted

and yielded similar outcomes (12-month eGFR) in both recipients. This cohort155

selection criteria allow us to reduce the importance of recipient-related factors

amongst other variables influencing transplant outcomes. Clinical parameters

of the QUOD dataset are listed in the Supplementary Materials (Table S6). We

have received biopsies from n=354 donors from this dataset. Histology slides

prepared from pre-implantation biopsies from n=348 donors (373 recipients)160

were stained in PAS and n=174 donors (174 recipients) were stained in SR. 180

donors had biopsy sections that were only stained with PAS but not SR and 6

donors were stained vice versa.

A characteristic of these QUOD biopsies is that they are very small for two

reasons. Firstly, a small needle is used to minimise bleeding complications after165

transplant. Secondly, biopsies were halved in length as the other halves were

used for other assays. The majority of slides do not contain enough tissues for

full assessment according to the Banff criteria (Racusen et al., 1999) which states

that ≥ 7 glomeruli and ≥ 1 artery is necessary for assessment. (Distributions

of glomeruli and arteries available in Supplementary Materials Figure S3 and170

S4.) Slides that contain no arteries or < 7 glomeruli are only partially assessed.

Hence only 90 PAS slides had received a full Remuzzi score. Several slides

1Collection of QUOD samples and the research ethics approval was provided by QUOD

(NW/18/0187).
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containing only fractions of an artery also received Remuzzi artery score. A

large proportion of tissues also suffer from artifacts such as forceps compression,

folding, or duplication of serial sections.175

The NMP dataset2 originated from an organ normothermic perfusion exper-

iment (Weissenbacher, 2018; Weissenbacher et al., 2019) from 35 donors. The

slides were 18 gauge 33mm core needle biopsies obtained from deceased donor

kidneys that were discarded as deemed unsuitable as transplants for mechani-

cal reasons. These kidneys were placed into a normothermic machine perfusion180

(NMP) system. Biopsies were obtained at different time points during NMP

hence most samples suffered from notable ischemic damage. Most of the slides

(n=169) were stained with Haemotoxylin and Eosin (H&E) but had been com-

putationally converted to PAS stain using a CycleGAN (Zhu et al., 2017) with

image quality largely indiscernible by our collaborating pathologist. From the185

same dataset, we also have a smaller number of slides stained directly with PAS

and SR (n=26 from 4 donors for each stain).

Apart from the two main datasets, we have also included additional slides

from native biopsies 3 in PAS (Supplementary Section S5) and slides from The

Cancer Genome Atlas (TCGA) stained in H&E. These slides were solely used190

for strengthening the segmentation algorithms (Section 2.2) to ensure it would

generalise well to unseen data.

From each dataset, we manually marked out a number of rectangular tiles

to delineate different tissue compartments - tubules, glomeruli, vessels, and cell

nuclei. The number of delineated tissues for each dataset is shown in Table195

2. Delineating the outline of tissues is a laborious task. To make the task

scalable, initial annotations were performed by a engineer with limited training

in pathology. Thus, we only have the coarse classification of these tissues. For

2Research ethics approved by the National Ethics Review Committee of the United King-

dom (12/EE/0273)
3Ethics approved by the Research Ethics Committee of Oxford University Hospital NHS

Foundation Trust Research and Governance (19/WM/0215)
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instance, proximal tubules are what is relevant for assessment but a notable por-

tion of objects marked as “tubules” were actually distal tubules or the collecting200

duct. Objects marked as “vessels” consist of a mixture of arteries, arteriole, and

veins; some casts might be misidentified as sclerosed glomeruli. The boundaries

of glomeruli were inconsistent regarding the inclusion of the urinary space. Ow-

ing to the small size of many biopsies, tissues that were truncated near the edge

of the biopsies were also delineated as long as they were human-recognisable.205

A subset of these tissues was cross-checked by our pathologist (Details in the

Supplementary Materials Tables S2 and S3).

The tiles selected for tissue delineation may contain a mixture of tissue-

containing and blank areas and are of different sizes and aspect ratios such that

it covers a diverse range of tissue morphology. As the number of tubules is far210

greater than the number of glomeruli and vessels, in 165 out of 425 of the tiles

(967 out of 1210mm2 in terms of area) listed in Table 1 we only delineated the

glomeruli and vessels but not tubules.

2.2. Tissue Segmentation

Segmenting tissues according to functional compartments allows us to in-215

corporate known visual features into histology analysis and maximises the in-

terpretability of predictions made by algorithms. Tissue segmentation was per-

formed using an ensemble of UNets (Ronneberger et al., 2015). As we have a

varying number of annotations available, we chose to use a different number of

UNets for PAS and SR-stained slides.220

For segmenting tissues in PAS-stained slides, we used a total of 13 models as

follows: 2 models to segment cell nuclei at 0.44 microns-per-pixel (mpp); 2 mod-

els to segment tubules, glomeruli, and vessels at 0.44mpp; 3 models to segment

tubules and glomeruli at 0.44mpp; 3 models to segment glomeruli and vessels

at 0.88mpp; 3 models to segment glomeruli and vessels at 1.76mpp. Models225

that process identical tissue classes at the same magnification were trained on

a different train:validation (4:1) split. These UNets were trained and validated

using tissues delineated from the NMP, TCGA, and native biopsy slides.
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For SR-stained tissues, we used 4 models as follows: 2 models to segment

tubules, glomeruli, and vessels at 0.44mpp; 2 models to segment the same tissues230

at 0.88mpp. Cell nuclei are not segmented as they are not visible under SR.

To process the test data, we implemented the ensemble of UNets with

dropout to simulate Bayesian Neural Networks (Gal and Ghahramani, 2016;

Kendall et al., 2015) with the same hyperparemters as Tam et al. (Tam et al.,

2020). The motivation for using BNNs is that they generally output predictions235

where the soft values are more representative of the probability of a correct

prediction. However, in cases where uncertainties are data-limited (aleatoric

uncertainties) rather than model-limited (epistemic uncertainties), we find that

there could still be notable discrepancies between the predictions and the actual

probabilities. In particular, if the relevant class is rare or looks very different240

in the test data, it could lead to under/over-confident predictions. Thus, we

propose to correct the predictions using a data-driven approach as shown in

Equation 3:

p̃ = max(p̄−Aσp, 0) (3)

Where p̄ is the mean output from the neural network ensemble; σp is the stan-

dard deviations from the ensemble over a single pixel; A is a constant to be245

empirically determined from the training data; p̃ is the corrected probabilistic

output from the network ensembles, which is clamped to a value above zero. As

we shall see in Section 3.1, this serves to remove pixels that are overconfident

and would help to suppress false-positive pixels caused by artifacts.

From the ensemble-averaged (Equation 3) segmentation maps, we obtain250

tissue instances using the max-flow-min-cut (Boykov and Funka-Lea, 2006) al-

gorithm. Individual tissues are cropped from the original slide with 1.32µm

padding on each side. In order to perform localised diagnostics based on indi-

vidual tissues, areas outside of the tissues are blurred. This helps to prevent

extra-tissue regions from contributing to visual features at later steps.255

In our case, we have chosen to derive g from the UNet ensemble. For a slide
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with K tissue instances, the weight assigned to the instance k is given as:

gk =

max
j∈K

(s2j )− s2k

max
j∈K

(s2j )−min
j∈K

(s2j )
(4)

sj is the mean value of σp over the segmentation mask for instance j. If all

UNets from the ensemble predicts similar values for the pixels within instance k,

gk would have a value close to 1. Otherwise, high discordance between different260

UNets would result in gk close to 0.

More details regarding the implementation of tissue segmentation is detailed

in Section S3 under Supplementary Materials.

2.3. Extraction of Histological Features

We aim to demonstrate (i) the benefits of using handcrafted features to265

augment deep features and (ii) how extracting features from functional tissue

structures can boost performance and interpretability in multi-instance learning

settings. As there are currently very few studies that quantitatively assess how

individual histological features correlate with physiologically relevant measure-

ments, we tested a wide range of features in our study including both hand-270

crafted and deep features. Using the aforementioned workflow, we extracted a

number of histological features from our slides from tissues. We designed hand-

crafted features that comprise tissue morphological descriptors, colour, texture,

as well as second-order features such as how colour/texture are distributed with

respect to the tissue compartment. The majority of handcrafted features were275

designed with one tissue type in mind but implemented across all tissue classes

such that the feature vector is the same length for all tissue types.

Some of these features are designed to reflect visual changes of tubules that

have undergone chronic or acute injuries. For PAS-stained slides, cell nuclei are

typically visible within each tissue so their colour and distribution may also shed280

light on the state of the biopsy. In proximal tubules, darker nuclei in epithelial

cells may be a feature of mitosis and cellular repair; whereas cell nuclei located

far away from the boundary of proximal tubules may signify cell dropout or
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cytoplasm expansion which is a feature of acute tubular injury (Pieters et al.,

2019; Solez et al., 1993). As the number of nuclei in each tissue is variable, the285

values are pooled together at every tenth percentile. This has an advantage over

max-pooling of being less sensitive to artifacts/falsely detected cell nuclei.

The full list of handcrafted features used in this study is shown in Table S7.

Several features are derived from the distribution and colour of segmented cell

nuclei. However, we recognise that some tissue compartments may not have290

any nuclei so these will lead to missing feature values. To prepare our data for

machine processing, missing values are imputed with the mean value from the

rest of the datasets. Some slide-level information, such as the total area of the

biopsy, is appended to the feature vector of each individual tissue. In total, this

resulted in 98 unique handcrafted features for the PAS-stained slides and 40295

features for the SR slides.

Figures 3 and 4 show selection of tissue examples with close to minimum /

maximum feature values from the QUOD/PAS slides.

In addition to handcrafted features, we also experimented with features from

several established deep neural networks. Deep features are obtained from the300

same patch (with surroundings blurred) as the handcrafted features at 0.44mpp.

The crops were not resized before we fed them into neural networks as we want

objects of the same physical size to elicit the same filter responses. Fully-

connected layers of neural networks were replaced by adaptive average pooling,

resulting in a single 1D feature vector for each tissue. Each feature is normalised305

to unit variance with zero mean over our datasets to speed up convergence during

training.

2.4. Predicting Slide Level Labels

Several different physiologically relevant measurements are available for our

datasets.310

A subset of PAS-stained slides has been assessed by an experienced patholo-

gist (blinded to the donor characteristics and outcome) to determine the extent

of histological changes. Slides are graded according to the Remuzzi criteria (Re-
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(a) Segmented glomeruli with minimum urinary space

(b) Segmented glomeruli with maximum urinary space

Figure 3: Glomeruli with (a) minimum / (b) maximum urinary space area. Ex-

amples are algorithmically selected from the entire QUOD dataset. Visual differences of

individual handcrafted features can be easily interpreted by inspecting the collection of tis-

sues with low vs high values. Note that regions outside the tissue are blurred

16

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 21, 2022. ; https://doi.org/10.1101/2022.03.30.22269826doi: medRxiv preprint 

https://doi.org/10.1101/2022.03.30.22269826
http://creativecommons.org/licenses/by-nc-nd/4.0/


(a) Segmented vessels with minimum lumen to total tissue area

ratio

(b) Segmented vessels with maximum lumen to total tissue area

ratio

Figure 4: Vessels with (a) minimum / (b) maximum ratio between the lumen area

to total vessel area. This exemplary feature corresponds to one of the Remuzzi Score

criteria. Examples are algorithmically selected from the entire QUOD dataset. We choose to

calculate the ratio of areas instead of diameters to avoid geometric template fitting as most

vessels sections are not round.
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muzzi et al., 2006) based on the severity of Tubule Atrophy (Remuzzi TA), arte-

rial and arteriolar narrowing (Remuzzi A), glomerular global sclerosis (Remuzzi315

G), and interstitial fibrosis (Remuzzi IF). In addition, as part of the assessment

routine, biopsies are also graded for Acute Tubular Injury (ATI). The distribu-

tion of the assessed grades can be found in the Supplementary Materials (Figure

S1).

For labels with insufficient cases for training or testing, we regrouped the320

most severe cases until there is enough donors for cross-validation to reduce class

imbalance. As a result, Remuzzi G, TA, and IF become a binary classification

task; whereas labels for ATI are regrouped to either two or three (0-2) grades

instead of four grades from the original assessment.

Apart from eGFR, the QUOD dataset also contains binary labels regarding325

whether the recipient has suffered from DGF. DGF may have origins from a

variety of diagnoses. While ATI is one of the known leading culprits, there are

also other causes such as T cell-mediated rejection, antibody-mediated rejection,

and acute calcineurin toxicity (Kers et al., 2018; Rolak et al., 2021). While it

may not be possible to detect some recipient-related factors (such as rejection)330

or surgical causes (such as anastomosis) from histology, there may be subtle or

localised acute lesions within small regions of some biopsies. A method based on

multi-instance learning may have a chance of detecting these localised changes

missed by human inspectors or not meeting histological thresholds of established

grading criteria.335

Combinations of handcrafted histological features and deep features are used

as input for our multi-instance soft attention model (Figure 2). The length of

training is determined using the validation AUC at 40 epochs after the metric

becomes stagnant. A weighted sampling approach was used to increase the

frequency of sampling the rarer classes.340

To reduce bias, hyperparameters of our attention model are tuned based on

a trivial task. Slides are labelled by whether they contain enough glomeruli for

assessment. Slides with < 7, 7−9, and ≥ 10 unique glomeruli are separated into

three different classes. Hyperparameters are searched using HyperOpt (Bergstra
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et al., 2013) and remain fixed for other tasks in order to be able to compare345

different featuresets fairly. Examples of hyperparameters explored include the

choice of gated/un-gated attention network, size of network layers, and regular-

isation weight.

Because the QUOD slides were obtained from real transplant settings, there

were several challenges to developing an algorithmic workflow based on these350

slides. Firstly, these slides consist mostly of kidneys with little chronic damage -

the dataset is biased due to pre-transplant donor screening and the distribution

of biopsies with pathological changes is highly imbalanced. Secondly, the ma-

jority of biopsies are inadequately small that they do not meet the Banff criteria

(Racusen et al., 1999). For predicting assessment grades given by pathologists,355

we only included slides with enough tissues for each grade. As for the prediction

of DGF, we found that it was necessary to include slides of all sizes in order to

achieve at least one donor per label per cross-validation. Cross-validation splits

are subjected to the constraint where all slides from each donor remain in the

same training/validation/test set.360

3. Results and Discussion

Experimental results are presented in four sections. Section 3.1 briefly de-

scribes the segmentation results on the QUOD dataset. In Section 3.2, features

are extracted based on segmented tissue instances and are used to predict slide

labels. We also compare classification performance between different feature-365

sets across several tasks. Section 3.3 shows a pilot visualisation scheme of the

proposed workflow. Finally, Section 3.4 presents results showing segmentation

uncertainty can be used to improve prediction performance.

3.1. Segmentation Results

As per earlier experiments, we found that UNets that were trained on the370

same magnification tend to produce false-positive segments in the same areas of

the test data regardless of how dataset splits, weight parameters, input tile size,
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and regularisation are initialised. These false positives were likely caused by

tissues with morphology not present in the training data. Combining multiple

magnifications according to Equation 3 has helped to remove most of these false375

positives. Figure 5 shows the segmentation examples from individual models

and the combined soft prediction. It can be seen that most artifacts from

individual UNets (b-e) are no longer visible once combined (f). Although it

may be sufficient to use fewer UNets in the ensemble to reduce the amount of

computational work, for the purpose of this experiment we are interested in the380

rest of the workflow where segmentation is not a limiting factor. More details

on tissue segmentation is described in Section S3.

3.2. Performance of Different Featuresets

In this section, the soft attention models are implemented directly without

accounting for the segmentation quality (Figure 2) of the tissues.385

We compared predictive performance using a variety of featuresets as the

input to the soft attention models. In order to avoid the need to set up an

arbitrary threshold, we reported results in the form of ROC and PR curves.

Curves are weighted by the number of tissues/patches in each slide to reduce

the noisy impact from biopsies that do not meet the Banff criteria.390

To draw a conclusion of the optimal methodology, we have calculated not

just AUCs but also their variability. Reported ROC-AUC values of the soft at-

tention model in all tables in this paper averaged across 5 fold cross-validation

test set (3:1:1 training/validation/testing) and 5 different seeded weight initial-

isation (total 25 models). Multi-class models are macro-class-averaged. We395

reported the unbiased standard error of the mean AUC to ensure that compar-

isons are meaningful and to account for data and model noise. Standard errors

are calculated as if the different prediction tasks are independent. In addition,

because training was performed on mixed datasets, neural networks may have

learned to look for “shortcuts” (eg. classification based on staining protocol400

rather than pathological changes) instead of performing the main task. Thus,

all AUC values are evaluated based on only the QUOD slides.
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Figure 5: Output from the UNet ensemble. (a): Original PAS-stained slide; (b)-(e):

Softmax predictions of glomeruli from single UNets at different magnifications segmenting

specific tissue classes. (b) 0.44mpp, all tissue classes; (c) 0.44mpp, tubules + glomeruli;

(d) 0.88mpp, glomeruli + vessels; (e) 1.76mpp, glomeruli+vessels; (f) Ensemble-combined

predictions showing tubules, glomeruli, and vessels in red, green, and blue respectively.
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Deep features are extracted from a number of neural networks, including sev-

eral networks pre-trained with ImageNet (ResNet50 (He et al., 2016), VGG16

(Simonyan and Zisserman, 2014), InceptionV3 (Szegedy et al., 2016)), two net-405

works trained using cropped image patches (ResNet50 and a Variational Au-

toEncoder (Kingma and Welling, 2013)), and ScatterNet (Bruna and Mallat,

2013). Details of these features is summarised in Table 3 with further descrip-

tion in the Supplementary Materials Table S8. Features extracted from the

segmented tissues are given the prefix “Tissue”. We have also extracted fea-410

tures using fixed-sized rectangular tiles - these are given the prefix “Tiles” in

the table. While handcrafted features can be calculated for individual tissues,

there is no intuitive way to do so for rectangular tiles as they may contain a

varying number of tissues. A breakdown of the predictive performance of some

of these featuresets for different tasks is shown in Table 4.415

To compare the general utility of the different methodologies we averaged

the AUCs from different tasks. ROC-AUCs are averaged with inverse vari-

ance weighting so tasks with higher prediction consistencies are weighted more.

Precision-Recall (PR) curve AUCs are also given in results (Table 3) as a com-

plementary metric to ROC-AUCs. PRs could be insightful for tasks with highly420

imbalanced labels. However, variances of PR-AUCs tend to be small for the

more challenging tasks, so we only reported the arithmetic mean rather than

the inverse variance weighted mean in the table.

The mean ROC-AUC values in Table 3 demonstrate the progress towards

improving performance by using features extracted from tissue compartments425

versus the simplistic model that uses only features from rectangular tiles. For

example, when comparing the ResNet50 featuresets (rows 1 and 7) we get

AUC = 0.598± 0.011 and 0.532± 0.012 for features extracted from tissues and

rectangular tiles respectively. These results show that our proposed approach

is superior in most cases. If we look at the results at a more granular level, we430

will find that there are some tasks where tile features may have the potential to

outperform tissue features. From the prediction task breakdown for these two

featuresets (corresponding columns in Table 4), we see that tiles perform better
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for Remuzzi G (0.556 ± 0.049 vs 0.631 ± 0.074), DGF/PAS (0.504 ± 0.025 vs

0.525 ± 0.018), and DGF/SR (0.649 ± 0.031 vs 0.656 ± 0.032). However, the435

differences for these individual tasks have not yet reached statistical significance

so this could be down to noise in the data.

A second observation to note is that performance is better when deep and

handcrafted features are combined compared to using only deep features or

only handcrafted features (AUC = 0.598 ± 0.011, 0.545 ± 0.012, and 0.542 ±440

0.011 in respective order as seen from rows 1, 11, and 12 in Table 3). While

the overall AUC values for “Tissue ResNet50 Only” and “Tissue HC” are not

significantly different, from the task breakdown in Table 4 we can see that AUCs

are more variable for the predictions based on handcrafted features. This could

be because handcrafted features are specialised in specific tasks. For example,445

in our dataset, most slides that have been graded for Remuzzi A had only the

minimum number of one artery, many of which are partially truncated. So it

may be hard for our attention model to learn to predict Remuzzi A grades based

on only deep features. Handcrafted features can help to supply complementary

information based on domain knowledge. These results suggest that both types450

of features may have their respective advantages. Thus, implementing a hybrid

approach in the workflow may be optimal for general tasks.

Furthermore, we have also attempted to compare our soft attention model

with other multi-instance methods such as CLAM (Lu et al., 2021) and MIL

(Campanella et al., 2019; Maron and Lozano-Pérez, 1998) as shown in rows 14455

and 15 in Table 3. While soft attention has consistently outperformed MIL,

comparison is more challenging for CLAM due to the extra hyperparameters

involved. An extensive search over several hyperparameters using HyperOpt’s

Bayesian optimisation algorithm (Bergstra et al., 2013) with the Ray Tune plat-

form (Liaw et al., 2018) has shown that the extra clustering step in CLAM has460

not led to any benefits to our prediction tasks.

In additional to neural networks pre-trained with ImageNet, we have mod-

ified a ResNet50 architecture to predict ATI scores (0-3) based on localised

tissue patches (Image patches with ATI distribution shown in Figure S7). This

23

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 21, 2022. ; https://doi.org/10.1101/2022.03.30.22269826doi: medRxiv preprint 

https://doi.org/10.1101/2022.03.30.22269826
http://creativecommons.org/licenses/by-nc-nd/4.0/


modified ResNet was trained and validated on 731 images of proximal tubules465

with a 4:1 split. The purpose of this model is to test whether convolution filters

would better capture histopathological changes if it has prior exposure to such

images. The results (AUC = 0.598± 0.011, 0.598± 0.009 from rows 1 and 2 in

Table 3) show there is no significant difference in performance regarding how the

networks were trained, suggesting the convolution filters learned from ImageNet470

may already be adequate for capturing diversity in renal histology.

3.3. Attention Visualisation

Multi-instance learning on whole slide images is not commonly trained end-

to-end due to their large size. Features are usually saved onto the disk before

being processed by the MIL model. Gradients from neural network feature475

extractors could take up an enormous amount of space, so they are discarded

during the feature extraction process in real-life implementations. As a result,

the most straightforward parameters that could be directly visualised are the

attention values attributed to the different instances. However, visualisation of

attention parameters could often be ambiguous. In the case where rectangular480

tiles are chosen, the resolution of the attention map is limited by the size of the

tile. Localisation of the diagnostic would be poor if the tile size is too large.

If the tile size is too small, there would be limited receptive field and we may

risk truncating meaningful tissue structures; a hybrid approach that uses tiles

at multiple scales may be complicated to visualise as interpolations may be485

required to fuse them together.

On the other hand, soft attention mechanism based on individual tissues

allows improved diagnostic interpretability strictly confined to the anatomical

boundaries of these tissues. Figure 6 show an example of how our visualisation

scheme (left) compares to the standard approach (right) which uses deep features490

from rectangular tiles. The models producing these exemplary overlay images

were both trained to predict Remuzzi G grade. Both overlays show that the

networks have learned to attend to the Glomeruli. In the standard approach,

we see that the tiles around most glomeruli are highlighted in red, but in many
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Table 3: Overview of featuresets. Featuresets are made by concatenating deep neural

network (DNN) and handcrafted (HC) features. We have also tested adding donor/recipient

metadata (*Supplementary Materials Section S4) as feature vectors as shown in row 13. Mean

AUC values over multiple tasks are shown. Detail breakdown of AUC values of some of these

featuresets is shown in Table 4. Qualitative description of these featureset is also available in

Table S8.

Mean PAS SR

# Featureset ROC-AUC PR-AUC DNN HC HC

1 Tissue ResNet 0.598±0.011 0.279±0.009 1024 98 40

2
Tissue

ResNet (ATI)
0.598±0.009 0.283±0.008 1024 98 40

3 Tissue VGG16 0.596±0.011 0.280±0.009 1000 98 40

4 Tissue VAE 0.559±0.009 0.252±0.007 200 0 0

5 Tissue InceptionV3 0.553±0.011 0.269±0.009 768 98 40

6 Tissue ScatterNet 0.551±0.012 0.269±0.008 1029 0 0

7
Tiles (2 Levels)

ResNet
0.532±0.012 0.258±0.007 2048 0 0

8
Tiles (2 Levels)

ScatterNet
0.514±0.010 0.275±0.009 1029 0 0

9
Tiles (1 Level)

ResNet
0.507±0.014 0.252±0.005 1024 0 0

10
Tiles (2 Level)

VAE
0.460±0.012 0.226±0.007 200 0 0

11
Tissue

ResNet Only
0.545±0.012 0.259±0.011 1024 0 0

12 Tissue HC 0.542±0.011 0.259±0.007 0 98 40

13
Tissue ResNet

Metadata*
0.607±0.010 0.280±0.008 1024 98 40

14
Tissue ResNet

CLAM
0.597±0.011 0.259±0.011 1024 98 40

15
Tissue ResNet

MIL
0.553±0.008 0.259±0.007 1024 98 40

25

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 21, 2022. ; https://doi.org/10.1101/2022.03.30.22269826doi: medRxiv preprint 

https://doi.org/10.1101/2022.03.30.22269826
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 4: Overview of AUC values of predictions based on different featuresets

(columns) and prediction tasks (rows). The second last row shows the inverse-variance

weighted mean of the various tasks above. Columns are arranged in descending order of the

mean ROC-AUC. It can clearly be seen that features extracted from tissues (column prefix

“Tissue”) perform better than features extracted from fixed-sized rectangular tiles (column

prefix “Tiles”). Note also that combining deep features with handcrafted features (Tissue

ResNet, AUC = 0.598) resulted in better performance than using only either deep features

(Tissue ResNet Only, AUC = 0.545) or handcrafted features (Tissue HC, AUC = 0.542).

Label/

Stain

Tissue

ResNet

Tissue

ResNet

(ATI)

Tissue

ResNet

Only

Tissue

HC

Tiles (2

Levels)

ResNet

Tiles (1

Level)

ResNet

ATI
0.673 0.651 0.535 0.525 0.482 0.424

±0.021 ±0.013 ±0.026 ±0.019 ±0.035 ±0.039

DGF
0.504 0.512 0.521 0.463 0.525 0.502

±0.025 ±0.023 ±0.027 ±0.035 ±0.018 ±0.028

DGF/SR
0.649 0.634 0.607 0.579 0.656 0.674

±0.031 ±0.021 ±0.03 ±0.039 ±0.032 ±0.037

Remuzzi A 0.590 0.581 0.539 0.594 0.466 0.461

±0.028 ±0.024 ±0.024 ±0.027 ±0.03 ±0.029

Remuzzi G 0.556 0.566 0.575 0.580 0.631 0.604

±0.049 ±0.047 ±0.05 ±0.038 ±0.074 ±0.073

Remuzzi IF 0.427 0.526 0.430 0.521 0.469 0.466

±0.029 ±0.036 ±0.075 ±0.035 ±0.06 ±0.058

Remuzzi TA 0.571 0.588 0.528 0.569 0.556 0.482

±0.047 ±0.034 ±0.056 ±0.05 ±0.044 ±0.045

Mean 0.598 0.598 0.545 0.542 0.532 0.507

ROC-AUC ±0.011 ±0.009 ±0.012 ±0.011 ±0.012 ±0.014

Mean 0.279 0.283 0.259 0.258 0.258 0.252

PR-AUC ±0.009 ±0.008 ±0.011 ±0.007 ±0.007 ±0.005
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cases, it may not be clear to an inexperienced observer as to which tissues495

within the tiles triggered the prediction. Conversely, our approach shows clear

pinpointing of the tissues of interest as the glomeruli are mostly highlighted in

red whereas irrelevant tissues, including those adjacent to the glomeruli, are

shaded in blue.

Figure 6: Comparison of visualisation of attention map. (Left) Our visualisation scheme

highlights individual tissue instances relevant to the prediction. (Right) If rectangular tiles

are used diagnostic could be ambiguous as the tile boundaries do not generally convey any

diagnostic meaning. This makes it hard to pinpoint the offending tissue if they are much

larger or smaller than the tile. While it may be possible to produce a smoother heatmap by

using overlapping tiles, this will merely be a visual gimmick - the resolution of the attention

map cannot be improved because information would have already been lost.

Saliency maps within individual instances can be produced if greater clar-500

ity is desired at the cost of processing time. In implementations where only
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deep features are used, it may be possible to produce saliency maps directly

by chaining up feature extractors with the soft attention model while keeping

track of gradients in only a small number of instances. If handcrafted features

are included, however, direct localisation to the image space would not be pos-505

sible using the original network. In these cases, heatmaps can be produced with

an ad-hoc network trained using only the relevant tissues (as given by the soft

attention model) to predict slide-level labels.

We demonstrate the overlay of saliency map based on a soft attention model

trained on ResNet50+handcrafted features to predict binary ATI grades as this510

is a case with high AUC (corresponding model in Figure 9). Using the attention

values and slide labels, we trained a ResNet18 model to predict ATI slide labels

using individual tissues as inputs. The network is trained using L2 loss where

different instances are scaled by outputs from an attention model which learns

the same task. All instances are used for training this ResNet18 model but515

instances with low attention scores contribute to smaller loss. Figure 7 shows

the result of this attempt - saliency map within each tissue is produced using

an occlusion-based approach (Zeiler and Fergus, 2014) using Python package

Captum (Kokhlikyan et al., 2020); whereas the outline of the tissues is colour-

coded by the instance-level attention. We can see that the attention model has520

learnt to focus on the proximal tubules in the cortical regions of the biopsy

(outlined in red). Within these tissues, there is some evidence that shows the

saliency maps are highlighting areas close the boundaries where the epithelial

cells are located. Apart from the occlusion-based approach, we also attempted to

use Integrated Gradients (Sundararajan et al., 2017) and Noise Tunnel (Adebayo525

et al., 2018), but visualisation was found to be less intuitive as the saliency maps

generated are too rough for the magnification we worked on.

3.4. Confidence-Weighted Predictions

In the previous sections, we presented results whereby tissue features were

combined using soft attention models without accounting for the quality of the530

segmentation. We argue that the soft attention vectors learned by the models
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Figure 7: Visualisation of instance-level attention combined with saliency maps

from individual tissues. Tissue boundaries are coloured by the learned instance-level soft

attention value, indicating its relevance to the slide-level prediction. In this example, the

slide-level label is ATI. The image clearly shows our network is able to attend to proximal

tubules (mostly outlined in red). The saliency maps are produced from an occlusion-based

approach using an additional network trained on individual tissues to predict the slide label.
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may not be always meaningful. This would happen if the instances do not

resemble those in the training data, in which case the presence of the instance

would only contribute to noise. We propose a scheme to take into account the

quality of the instances in the form of Equation 2 and 4. Under the proposed535

scheme, g is added as a feature to the original featureset and each instance k is

weighted by gk during both training and testing time.

Figures 8, 9, and 10 show examples of ROC/PR curves on three different

tasks, all of which were weighted by segmentation quality in the models. The

solid plot lines show the median values and the shaded regions show the range of540

five bootstraps. Figure 8 is a plot of the “Trivial” task where models are trained

using only ResNet50 features to classify whether a slide contains an adequate

number of glomeruli. This task differs from counting glomeruli as there are

duplicated tissue sections in 268 out of 612 slides (some slides contain multiple

cut-throughs of the same biopsy). A naive model that only counts glomeruli545

would overestimate the number. We tuned our model based on this task as all

slides are labelled so the dataset-induced noise would be minimal.

Figure 9 show ROC/PR curves for ATI grades where each solid line (Grade 0-

2) represents the trade-offs from one-vs-other classification with models trained

using ResNet50 combined with handcrafted features. If the grading is instead550

re-formulated as a binary task (labelled “Binary” in the plot), grouping all > 0

grades together and re-training the models, we get a mean AUC = 0.874±0.016.

The optimal operating threshold can be found using the curve’s intercept with

the maximum iso-accuracy line. At this threshold, we report a performance of

tpr = 0.985 and fpr = 0.495.555

As for DGF, we find that performances are generally higher in SR slides.

Figure 10 shows the performance of the models trained on ResNet50 and hand-

crafted features. Based on the optimal threshold from the ROC curve, we get

tpr = 0.645 and fpr = 0.277.

Table 5 shows the mean AUCs for different tasks with the proposed addition560

where instances are weighted by segmentation quality. Entries in this table cor-

respond to those in Table 4. Again, comparison of individual predictive tasks is
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Figure 8: ROC/PR plots from tissue quality-weighted models predicting whether

a PAS-stained slide has an adequate number of unique glomeruli for assessment

(3 classes). Class 0 : < 7; Class 1 : 7−9; Class 2 : ≥ 10; !Class 0 : ≥ 7 glomeruli. The curves

with the median AUC from 5 bootstraps are shown as solid lines. There are duplicated tissue

sections in approximately 268 of the slides so models are likely to overestimate the number

of unique glomeruli. The marker on the plots shows the optimal operating threshold for the

respective class. ROC/PR curves for !Class 0 represent the performance when Class 1-2 are

grouped together as a single class.
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Figure 9: ROC/PR plots from tissue quality-weighted models predicting ATI

grades based on PAS slides. Models are trained using ResNet50 and handcrafted fea-

tures. Curves with the median AUC from five bootstraps are shown as solid lines. (Grade

0-2 ): Models trained to predict ATI grades 0, 1, and > 2; Binary: ROC/PR curves from

models specifically trained to predict only two grades: (0, > 0).
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Figure 10: ROC/PR plots from tissue quality-weighted models predicting the pres-

ence of DGF after transplant based on SR slides. 37 out of 143 cases exhibited DGF.

Models are trained using ResNet50 and handcrafted features. Curves with the median AUC

from 5 bootstraps are shown as solid lines.

not always possible due to the limited size of the labelled data, but an improve-

ment can clearly be seen when we average over different tasks. For example,

when we use ResNet50 and handcrafted features (column “Tissue ResNet”),565

implementation of g has led to an increase in ROC-AUC and PR-AUC from

(0.598± 0.011, 0.279± 0.011) to (0.618± 0.010, 0.313± 0.014).

While weighting tissues by segmentation quality has provided a performance

boost for most prediction tasks, the boost is largest for the prediction of Re-

muzzi IF (average ROC-AUC improvement: 0.101±0.023). One possible expla-570

nation is that interstitial fibrosis is a histological change not so well captured

by our featuresets as the changes reside between, rather than within, the seg-

mented tissues. Fibrosis also correlates strongly with tubular atrophy, which

is characterised by changes in the basement membrane near tissue boundaries.

Neither of these would be visible if objects are under-segmented. In our case,575

most instances with poor segmentation quality are also the ones that are under-

segmented due to how the segmentation results were combined (Equation 3).

Consequently, these tissues also become less relevant to the prediction task.

There may be a second reason why the proposed weighting improves pre-

dictions. As biopsies tend to contain many tissues, it is often not possible to580
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delineate every tissue within a slide. The annotator may have the tendency to

choose regions where tissues are legible and create training sets based on these

examples. Even though the delineation task was not performed by an expert,

the choice of tissues on its own may still contain information indicative of what

constitutes as “good quality” or what counts as “relevant”.585

Table 5: Segmentation Quality-Weighted Performance. Primary performance is in

ROC-AUC. Mean PR-AUC over different prediction tasks is also given in the bottom row.

Comparison with unweighted predictions in Table 4 show that weighting instances by segmen-

tation quality gives us a significant boost in performance.

Label/Stain
Tissue

Resnet

Tissue

Resnet

(ATI)

Tissue

ResNet

Only

Tissue HC

ATI 0.652±0.021 0.644±0.015 0.654±0.012 0.581±0.019

DGF 0.591±0.022 0.543±0.022 0.569±0.022 0.489±0.027

DGF/SR 0.642±0.036 0.635±0.037 0.613±0.027 0.562±0.033

Remuzzi A 0.589±0.028 0.601±0.027 0.589±0.028 0.625±0.024

Remuzzi G 0.569±0.033 0.56±0.048 0.562±0.038 0.506±0.038

Remuzzi IF 0.648±0.025 0.6±0.027 0.589±0.021 0.548±0.035

Remuzzi TA 0.585±0.073 0.596±0.045 0.562±0.056 0.538±0.06

Mean

ROC-AUC
0.618±0.01 0.609±0.009 0.617±0.008 0.563±0.011

Mean

PR-AUC
0.313±0.014 0.291±0.013 0.292±0.012 0.261±0.014

4. Conclusion and Further Work

We propose a scheme to improve the performance of multi-instance predic-

tion tasks based on soft attention models by incorporating weak labels at the

local level. This approach could make projects that are currently bottle-necked

by expert annotations more scalable. In our case, the weak labels are the tis-590
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sues’ outlines delineated into coarse classes. These delineated tissue instances

provided several advantages over featuresets extracted from rectangular tiles.

Firstly, having features extracted from tissues allow us to design handcrafted

features inspired by domain knowledge. We show that the generalised perfor-

mance is improved significantly when handcrafted features are combined with595

deep features compared to models trained using only either deep or handcrafted

features. Secondly, features from rectangular tiles do not generally conform to

the functional boundaries of tissue compartments. Using features based on tis-

sues in soft attention models allows an intuitive visualisation scheme pinpointing

relevant tissues for transparent diagnostics. Thirdly, we argue that the attention600

values predicted could only be meaningful if the images resemble the training

data. Instances significantly different from the training set could contribute to

noise at the bag-level prediction so we propose to incorporate a tissue quality

metric derived from an ensemble of BNNs to reduce their impact.

There are also limitations that need to be addressed in our experiments.605

Firstly, it is not clear whether the advantage of combining handcrafted features

with deep features will still hold for larger datasets. Secondly, when there are

multiple relevant instances in a slide, soft attention would only focus on a small

number of instances in most cases. Many relevant instances are predicted low

values. Therefore, it remains challenging to quantify the number of relevant610

tissues in a slide - this will be needed to quantify uncertainties of slide-level

predictions. We will need to investigate whether it can be solved using an

ensemble of models.

Thirdly, we find that there are currently insufficient diseased cases in our

dataset. For example, there are currently only several dozens of sclerosed615

glomeruli from all datasets combined, hence the segmentation performance may

not generalise well to diseased instances. In many cases, if the segmentation

of diseased instances is suboptimal, soft attention may focus on tissues with

confounding visual changes. This would result in correct slide-level prediction

but a wrong focus of attention. Isolating highly correlated pathological changes620

may be possible through arithmetic operations with soft attention maps, but
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this may require a sufficiently large training dataset.

In some cases, we recognise that performance of multi-instance learning may

still not match models trained by fully-supervised approaches. If full-supervision

is needed, our proposed platform can be used as a guide for a human-in-a-loop625

labelling scheme to bootstrap a project. For example, we can choose to label

specifically only tissue compartments with high attention from slides that have

been given a wrong prediction. The soft attention model can then be repeatedly

re-trained with labelled instances excluded from the slide in each iteration. This

may help to reduce the time needed for pathologists to go through the entire630

dataset when we want to add a new diagnosis.
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