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Abstract 28 

Background: Air pollution and neighborhood socioeconomic status (nSES) have been shown to 29 

affect cognitive decline in older adults. In previous studies, nSES acts as both a confounder and 30 

an effect modifier between air pollution and cognitive decline. 31 

Objectives: This study aims to examine the individual and joint effects of air pollution and nSES 32 

on cognitive decline on adults 50 years and older in Metro Atlanta, USA. 33 

Methods: Perceived memory and cognitive decline was assessed in 11,897 participants aged 34 

50+ years from the Emory Healthy Aging Study (EHAS) using the cognitive function instrument 35 

(CFI). Three-year average air pollution concentrations for 12 pollutants and 16 nSES 36 

characteristics were matched to participants using census tracts. Individual exposure linear 37 

regression and LASSO models explore individual exposure effects. Environmental mixture 38 

modeling methods including, self-organizing maps (SOM), Bayesian kernel machine regression 39 

(BKMR), and quantile-based G-computation explore joint effects, and effect modification 40 

between air pollutants and nSES characteristics on cognitive decline. 41 

Results:  Participants living in areas with higher air pollution concentrations and lower nSES 42 

experienced higher CFI scores (beta: 0.121; 95% CI: 0.076, 0.167) compared to participants 43 

living in areas with low air pollution and high nSES. Additionally, the BKMR model showed a 44 

significant overall mixture effect on cognitive decline, indicating synergy between air pollution 45 

and nSES. These joint effects explain protective effects observed in single-pollutant linear 46 

regression models, even after adjustment for confounding by nSES (e.g., an IQR increase in 47 

CO was associated with a 0.038-point decrease (95% CI: -0.06, -0.01) in CFI score). 48 

Discussion: Observed protective effects of single air pollutants on cognitive decline can be 49 

explained by joint effects and effect modification of air pollutants and nSES. Researchers must 50 

consider nSES as an effect modifier if not a co-exposure to better understand the complex 51 

relationships between air pollution and nSES in urban settings. 52 
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Introduction 56 

Exposure to ambient air pollution, particularly fine particulate matter (PM2.5), in adulthood has 57 

been associated with cognitive decline and dementias like Alzheimer’s disease (Paul et al., 58 

2019; Peters et al., 2019; Power et al., 2016; Weuve et al., 2021). Animal models suggest that 59 

air pollution affects the central nervous system through pathways involving inflammation and 60 

oxidative stress (Costa et al., 2020; Hahad et al., 2020). Though exposure to air pollutants 61 

occurs as a mixture of correlated pollutants, it is not treated as such in most epidemiological 62 

studies, including those that have assessed cognitive decline, which often rely on the use of 63 

single pollutant models (Dominici et al., 2010). Consideration of neighborhood socioeconomic 64 

status (nSES) is also important to understand the full impact of air pollution on cognitive decline.  65 

It is well known that individuals living in disadvantaged neighborhoods are often exposed to 66 

higher concentrations of air pollution than individuals living in more socioeconomically 67 

advantaged neighborhoods (Landrigan et al., 2018; Maantay, 2002). Additionally, air pollution 68 

and social vulnerability are hypothesized to interact leading to impaired health outcomes, 69 

including cognitive decline (J. A. Ailshire & Clarke, 2015). Social stressors that occur in 70 

disadvantaged neighborhoods are an integral part of the ‘triple jeopardy’ of environmental 71 

injustice. The triple jeopardy hypothesis examines how low nSES communities experience 72 

higher exposure to air pollution and increased susceptibility to poor health due to increased 73 

psychosocial stressors among other factors, resulting in health disparities (Hajat et al., 2015). 74 

Exposure to both neighborhood social stressors and air pollution may jointly affect cognitive 75 

decline in older adults through various biological pathways, but these interactions are poorly 76 

understood. Toxicology studies suggest that social stressors may lower the brain’s threshold for 77 

neurotoxicity, thus making those living in disadvantaged neighborhoods more vulnerable to the 78 

harmful effects of air pollution (Lupien et al., 2009; McEwen & Tucker, 2011).  79 

Despite the importance and relevance of the concept of environmental injustice for cognitive 80 

health, few epidemiologic studies on air pollution and cognition have considered nSES as a 81 

confounder (J. A. Ailshire & Crimmins, 2014; Bowe et al., 2019; Cullen et al., 2018; Li et al., 82 

2021) or effect modifier (J. Ailshire et al., 2017; Li et al., 2021). One study treated nSES as an 83 

effect modifier and found the association between PM2.5 and cognitive errors was stronger in 84 

older adults living in high stress neighborhoods (J. Ailshire et al., 2017). Another study found 85 

that nSES was both a confounder and an effect modifier of the association of air pollution and 86 

cognitive decline (Li et al., 2021). These studies show that it is imperative to include 87 

socioeconomic context of participants in studies of air pollution and cognitive decline. One 88 

methodologic challenge of analyses related to environmental injustice is the high correlation 89 

between environmental and social stressors. Previous studies have evaluated interactions and 90 

effect modifications of air pollutants and nSES by including interaction terms or conducting 91 

stratified linear regression models (J. Ailshire et al., 2017; Li et al., 2021). Modeling 92 

environmental exposures, including pollutants and socioeconomic contexts of the population, as 93 

a mixture is a necessary next step to describe the associations between environmental 94 

pollutants and health effects and understand their joint and potentially synergistic effects (Carlin 95 

et al., 2013; Taylor et al., 2016).  96 

Recently, statistical methods to evaluate individual, joint, and interaction effects of 97 

environmental mixtures have been developed (Bobb et al., 2015; Carlin et al., 2013; Keil et al., 98 

2020; Pearce et al., 2016). These methods all evaluate the complex problem of environmental 99 

mixtures. However, since they each address slightly different aspects of how mixtures affect 100 
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health, multiple methods must be used for a holistic assessment of the mixture effects, 101 

particularly in diverse urban settings. Mixture methods developed to investigate individual 102 

effects of highly correlated exposure variables include Bayesian Kernel Machine Regression 103 

(BKMR), Least Absolute Shrinkage and Selection Operator (LASSO) and quantile-based G-104 

computation. BKMR and quantile-based G-computation further allow estimation of the joint 105 

effects of the mixture as a whole and BKMR can estimate interactions between a limited number 106 

of exposure mixtures. Self-organizing maps (SOM) utilize a different strategy for analysis of joint 107 

effects by identifying pertinent types of multipollutant combinations that jointly affect health. 108 

However, the application of these mixture methods has been limited to environmental 109 

exposures and none of these methods have been used to quantify the complex relationship 110 

between air pollution and nSES in the context of environmental injustice on cognitive decline.  111 

This study aims to use these mixture methods to 1) identify the most harmful air pollutants and 112 

nSES indicators in relation to cognitive decline; 2) estimate the joint effects of air pollution and 113 

nSES on cognitive decline; and 3) estimate effect modification of air pollutants and nSES 114 

characteristics on cognitive decline in adults 50 years and older in Atlanta, GA. 115 

Methods 116 

Study Population 117 

The Emory Healthy Aging Study (EHAS) is a large gerontology-based ongoing research study 118 

focusing on diseases of older adults, starting in 2015. Enrollment is open to anyone over age 119 

18, living in the US, and sufficiently fluent in English. Recruitment in the Metro-Atlanta area 120 

focused on individuals receiving health services at Emory Healthcare as well as their spouses, 121 

family members, and associated non-relatives. Enrollment, consent, and all questionnaires were 122 

completed online and described elsewhere (Goetz et al., 2019). EHAS participants that enrolled 123 

during the 2015 – 2020 period, were 50 years and older at baseline, and living in the Metro-124 

Atlanta area were included in this analysis. The EHAS includes a Health History Questionnaire 125 

at enrollment where participants are asked demographic questions, such as age and self-126 

reported race/ethnicity, and health information as well as an assessment of perceived memory 127 

and cognitive decline. All participants complete an online consent process prior to enrollment, 128 

and the study was approved by the Emory University Institutional Review Board. 129 

Exposure Assessment 130 

Average ambient air pollution concentrations for the 2008-2010 period were derived from the 131 

Community Multiscale Air Quality (CMAQ) chemical transport model for twelve pollutants, 132 

Nitrogen Oxides (NOx), nitrogen Dioxide (NO2), Nitrate (NO3), Sulfur Dioxide (SO2), Ozone (O3), 133 

carbon Monoxide (CO), Ammonium (NH4), Particulate matter with a diameter 10 microns or less 134 

and 2.5 microns or less (PM10, PM2.5), Sulfate (SO4), Elemental Carbon (EC), and Organic 135 

Carbon (OC)  at a grid resolution of 4-kilometers (Senthilkumar et al., 2019). For the main 136 

analysis, participants were assigned CMAQ pollutant concentrations based on their census tract 137 

of residence. Specifically, the center of each CMAQ grid cell was geospatially matched to the 138 

closest census tract, which was then connected to each participant based on their residential 139 

street address at enrollment. Exposures assigned based on residential census tract, as 140 

opposed to street address, were used in the main analysis to facilitate the application of certain 141 

mixture methods (i.e., Self-Organizing Maps, which require all inputs (i.e., air pollution and 142 

nSES) to be at the same spatial resolution) and thus to facilitate comparison of results across 143 

mixture methods. In a sensitivity analysis, CMAQ grid cell exposures were assigned to 144 
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participants based on their residential street address to ensure that there was no bias caused by 145 

the broader census tract matching.  146 

Neighborhood socioeconomic characteristics (nSES) were obtained for each Metro-Atlanta 147 

census tract from United States Census Bureau’s American Community Survey for the years 148 

2013-2018. The 5-year average estimates were obtained through the R package tidycensus. 149 

Sixteen nSES indicators representing the six domains poverty/income, racial composition, 150 

education, employment, occupation, housing properties, were chosen to represent a mixture of 151 

exposures to nSES (Messer et al., 2006). The nSES characteristic median home value was 152 

multiplied by -1 to be in line with the other nSES characteristics, meaning that an increasing 153 

value indicates lower nSES. Additionally, an indicator for residential stability (the percentage of 154 

households that moved into their current residence before 2010) was used to control for 155 

confounding due to residential mobility in analyses.  156 

Assessment of Cognitive Decline 157 

Cognitive decline was measured using the cognitive function instrument (CFI), where higher 158 

scores indicate increased perceived memory decline and cognitive decline (Amariglio et al., 159 

2015). The CFI was self-administered and consists of 14 questions that probe subjective 160 

cognitive concerns occurring in daily life of older adults. The CFI score is predictive of cognitive 161 

decline in older adults, and can reliably track early changes in cognitive function in patients 162 

without clinical impairment. Subjective experiences of cognitive decline occur at the late stage of 163 

the preclinical, cognitively unimpaired phase of the Alzheimer’s disease continuum and are 164 

therefore often considered as the first symptom of dementia (Jack et al., 2018). Unlike other 165 

methods to assess cognitive impairment, the CFI does not require an in-person interview and 166 

review by a physician (Amariglio et al., 2015). Total CFI score was calculated by scoring the 167 

responses to each question (Yes = 1, No = 0, and Maybe = 0.5) to create an instrument ranging 168 

from 0 to 14, where higher scores indicate a higher degree of cognitive decline. Total CFI score 169 

was right skewed in our sample, and was therefore log-transformed for all analyses. 170 

Statistical Analysis 171 

To model individual and joint effects of air pollution exposures and nSES characteristics multiple 172 

exposure mixture modeling techniques were used. Statistical approaches were selected based 173 

on the research question (e.g. individual effect, effect modification, joint effect), and at this time 174 

there is no one method appropriate for all exposure mixture research (Taylor et al., 2016). 175 

Furthermore, analyses with multiple methods can allow researchers to examine the 176 

relationships between environmental mixtures and health outcomes from different perspectives 177 

to come to a more comprehensive understanding of the relationships under study.  178 

A directed acyclic graph (DAG) was used to select confounders for the effect of air pollution and 179 

nSES on cognitive decline (Figure S1). Potential confounders under consideration included 180 

individual age, race/ethnicity, education, and residential stability of the census tract. These 181 

potential confounders were used in all adjusted analyses. For the assessment of effects of 182 

individual air pollutants, models were additionally adjusted for nSES. As most of the 16 nSES 183 

variables are highly correlated (Figure S2B), principal components (PCs) were derived from 184 

nSES characteristics that account for 80% of the total variance in nSES. The uncorrelated nSES 185 

variables were then included as confounding variables in the association analyses, following the 186 

work in Li et al., (2021). For the assessment of joint effects, air pollution and nSES were 187 

considered as co-exposures. 188 
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Individual Effects 189 

First, we considered individual linear regression models for each air pollutant and nSES 190 

characteristic adjusted for individual age, race/ethnicity, education, and residential stability of 191 

the census tract. Associations with air pollution exposures were additionally adjusted for PCs of 192 

nSES characteristics. These single-exposure models illustrated how each exposure associates 193 

with cognitive decline when not accounting for other co-exposures.  194 

Second, using the R package glmnet, multi-pollutant models via LASSO regression were 195 

conducted to determine which mixture components (16 nSES and 12 air pollutants) most 196 

contribute to the mixture effect on the natural log of CFI (ln(CFI)), while accounting for the other 197 

co-exposures. LASSO regression is a supervised regression analysis method that selects 198 

variables most influential on the outcome and shrinks the effect estimates of the variables that 199 

are not influential on the outcome (Tibshirani, 1996). This method performs variable selection 200 

while controlling for co-exposures and confounding. 201 

BKMR estimates individual effects of each of the exposures and determines which mixture 202 

components contribute to the mixture’s effect on the outcome, while accounting for the other 203 

exposures in the mixture (Bobb et al., 2018). BKMR uses a specified kernel function to model 204 

the exposure mixture’s effect on an outcome, adjusting for confounders. This method allows for 205 

non-linear relationships between exposure and outcome, and can additionally model both the 206 

total mixture effect and the individual effect of each component accounting for collinearity (Bobb 207 

et al., 2015, 2018). BKMR analyses were done using the bkmr package in R (ver. 3.6.1). BKMR 208 

results are based on 20,000 iterations and were adjusted for confounders as described above. 209 

Quantile-based G-computation provides another method to estimate relative contributions of the 210 

exposure mixture components to the mixtures effect on cognitive decline (Keil et al., 2020). 211 

Quantile-based G-computation uses G-computation to estimate the total mixture effect on the 212 

outcome as a one quantile increase in all mixture components at the same time. Additionally, 213 

the weight of each exposure in the mixture effect estimate is calculated, providing the proportion 214 

of the partial effect due to a specific exposure (Keil et al., 2020). All analyses were done using 215 

the qgcomp package in R (ver. 3.6.1). The adjusted model was fitted for four quantiles of 216 

exposure and 500 bootstrap samples. 217 

Effect Modification by nSES 218 

To investigate how associations between air pollution and cognitive decline were modified by 219 

specific nSES characteristics, we included interaction terms for the pollutant and those nSES 220 

characteristics with the most robust associations with cognitive decline in the individual air 221 

pollutant linear regression models. These models were adjusted for the same factors as the 222 

models above.  223 

Joint Effects 224 

We applied the SOM algorithm in order to identify clusters of census tracts with similar air 225 

pollution and nSES characteristics (Pearce et al., 2014, 2016). The number of clusters identified 226 

by the SOM algorithm was determined by identifying group structure using within cluster sum of 227 

squares and between cluster sum of squares statistics, as well as visual inspection of the 228 

cluster star plot. These methods identify clusters with exposure levels homogenous within the 229 

cluster and heterogenous between clusters. Census tract clusters were next matched to EHAS 230 

participants using the census tract of the participant’s address. Once participants were assigned 231 
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a SOM exposure cluster, adjusted linear regression models estimated the effect of exposure 232 

cluster on CFI score. The reference cluster for the linear regression model was the cluster with 233 

highest nSES and lowest air pollution concentrations. The result is a model describing the joint 234 

effect of observed mixture combinations of air pollution and nSES characteristics on CFI.  All 235 

SOM analyses were performed using R version 3.6.1 (R Core Team, Vienna, Austria) using 236 

code within the ECM package available at: https://github.com/johnlpearce/ECM. 237 

 238 

Results 239 

Population Characteristics 240 

The final study sample contained 11,897 individuals, 50 years and older, living in the Metro-241 

Atlanta area. These participants had a median age of 65 years, and were majority white race 242 

(81.9%). Participants of EHAS were well educated, with 73.3% having a bachelor’s degree or 243 

higher. The median CFI score was 1.5 (IQR: 2.5) (Table 1), and the CFI distribution was right 244 

skewed. 245 

Air pollutants were positively correlated with one another, except for O3 and PM10, which had 246 

negative correlation with other air pollutants (Figure S2). Similarly, nSES characteristics were 247 

positively correlated with one another, with the exception of median home value, for which 248 

higher values correspond to higher nSES leading to a negative correlation with most other 249 

nSES characteristics. In order to make the results of the association analyses easier to 250 

interpret, we multiplied the median home value by (-1) for all subsequent analyses. This way 251 

higher values of all nSES characteristics correspond to lower nSES. Air pollutants and nSES 252 

characteristics were not highly correlated with each other, though percent with no car, and 253 

percent rented homes were positively correlated with most air pollutants, except for O3 and 254 

PM10. Average median home value had a small positive correlation with most air pollutants, 255 

except for OC, PM10 and PM2.5. 256 

Individual Exposure Effects 257 

In contrast to our hypothesis, individual adjusted linear regression models showed mainly 258 

protective effects for air pollutants (Figure 1A, Supplementary Table S1). An IQR increase in 259 

any of CO, EC, NH4, NO2, NO3, NOx, OC, and PM2.5 each showed either null effects or 260 

significant protective effects on cognitive decline, even when adjusted for PCs of nSES 261 

characteristics and individual level confounders. The pollutant with the largest protective effect 262 

was CO, in the adjusted model an IQR increase in CO resulted in a 0.038-point decrease in 263 

ln(CFI) score (95% CI: -0.06, -0.01) indicating less cognitive decline. NO2 and EC had similar 264 

effects, beta estimates of -0.034 (95% CI: -0.06, -0.01) and -0.031 (95% CI: -0.05, -0.01), 265 

respectively (figure 1A, supplementary table 1).  266 

In line with our hypothesis, an IQR increase in almost all nSES characteristics (indicate lower 267 

nSES) showed significant harmful effects on cognitive decline when adjusted for individual level 268 

confounders. The magnitude of an IQR increase in any of the nSES characteristic’s effects on 269 

ln(CFI) were also relatively small, all less than 0.01. An IQR increase in percent of rented 270 

homes in the census tract resulted in a 0.066-point (95% CI: 0.04, 0.09) increase in ln(CFI) 271 

score, indicating increased cognitive decline in adjusted linear regression models. Similarly, 272 

negative median home value (median home value x (-1)) showed harmful effects per IQR 273 

increase (beta: 0.053; 95% CI: 0.03, 0.07) (figure 1A, supplementary table 1). 274 
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The adjusted LASSO regression model showed similar trends as the linear regression models 275 

(Figure 1B, Supplementary Table S1). Among the air pollutants, the strongest observed 276 

associations were found for CO (beta: -0.0252), NO2 (beta: -0.0841), O3 (beta: -0.0501), PM10 277 

(beta: -0.0306), and SO2 (beta: 0.0282). Other effect estimates were shrunk close or exactly to 278 

zero. An IQR increase in CO, NO2, O3, PM10, and PM2.5 showed a protective effect against 279 

cognitive decline, whereas an IQR increase in SO2 showed harmful effects. In contrast to the 280 

linear regression models (Figure 1A), for nSES characteristics, an IQR increase in percent not 281 

in labor force, and percent of households without a car showed protective effects, though their 282 

effect estimates were shrunk close to 0. Percent of rented homes (beta: 0.074), percent of 283 

female headed households (beta: 0.0222), percent on public assistance (beta: 0.0213), and 284 

negative median home value (beta: 0.0321) showed harmful effects on cognitive decline, which 285 

is in line with the results from the linear regression analysis. Remaining estimates were shrunk 286 

close or exactly to 0 (Figure 1B, Supplementary Table S1). 287 

Using address-based matching for CMAQ air pollutant exposures did not meaningfully change 288 

the results of the linear or LASSO regressions (Figure S3). For example, NO2 had the strongest 289 

observed association with cognitive decline in both the census tract and address matched 290 

LASSO models (Beta:-0.0841 vs. -0.0882, respectively; Table S1.) In the linear regression 291 

models, census tract matched exposures were similar to address matched exposures. For 292 

example, the effect estimate of an IQR increase in CO was -0.038 in the census tract matched 293 

model, compared to -0.04 in the address matched model (Table S1). Given these results, we 294 

proceeded with the census tract matched models to make exposure assessment comparable 295 

across models. 296 

Using the adjusted BKMR model, individual effects of the mixture components on ln(CFI) score 297 

can be determined, while controlling for co-exposures and confounding. Figure 2A shows the 298 

individual effects of each mixture component on ln(CFI) score with all other mixture components 299 

are fixed to the 50th percentile, adjusted for confounders. Most mixture components had null 300 

estimated effects on ln(CFI) score. CO was negatively associated with the ln(CFI) score and 301 

SO2, percent of rented homes, and negative median home value in the census tract were 302 

positively associated with ln(CFI), which is in line with the linear regression and LASSO 303 

regression results reported above.  304 

Quantile-based G-computation results suggest a lack of directional homogeneity with respect to 305 

air pollutant and nSES characteristic mixture component effects, agreeing with the linear 306 

regression analysis and the lasso regression results. In Figure 1C positive weights indicate a 307 

positive, or harmful, effect of the mixture component on ln(CFI) score. Conversely, a negative 308 

weight would indicate a protective effect of the mixture component on ln(CFI) score. In the 309 

adjusted model, SO2 (weight: 0.1658), and percent of rented homes (weight: 0.1726) had the 310 

most harmful estimated effects, which is in line with the results of the single pollutant models 311 

and BKMR. Conversely, SO4 and CO had the most protective estimated effects in adjusted 312 

models. However, the total mixture effect was not statistically significant (psi: 0.074; p-value: 313 

0.062). 314 

Across methods, CO, NO2, and O3 showed small protective estimated effects against increased 315 

CFI scores, while SO2 was the only air pollutant that had a consistently harmful estimated effect 316 

on CFI score. For the nSES characteristics, all nSES indicators had harmful estimated effects 317 

across models, particularly, percent of rented homes and negative average median home value 318 

of the census tract.  319 
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To explore potential explanations for the protective effects of air pollutants on ln(CFI) which we 320 

found in the individual exposure models, we investigated interactions and joint effects between 321 

exposures.  322 

Effect Modifications and Joint Exposure Effects  323 

We analyzed whether associations between air pollution and cognitive decline were modified by 324 

nSES using linear regression models with an interaction term. Percent of rented homes and 325 

negative median home value were selected as nSES characteristics for the effect modification 326 

analyses because they showed the strongest associations with CFI in the BKMR model (Figure 327 

2A, Table S3). We found significant estimated effect modification by percent of rented homes for 328 

the association between EC and ln(CFI) score (interaction estimate: 0.058; 95% CI: 0.015, 329 

0.101) (Figure S4A); suggesting that the effects of EC and high percent rented homes are 330 

synergistic and ln(CFI) score is higher (increase in cognitive decline) for those with both high EC 331 

and high percent rented homes in the census tract. Additionally, the estimated effect 332 

modification by negative median home value was significant for the association between PM10 333 

and ln(CFI) score (interaction estimate: 0.063; 95% CI: 0.015, 0.110) was significant, showing 334 

that high PM10 and low home values act together in increasing the ln(CFI) score (Figure S4B). 335 

Associations with other air pollutants were not significantly modified by percent rented homes or 336 

median home value (Table S3). 337 

Next, we investigated the joint effects of air pollution and nSES using BKMR, quantile-based G-338 

computation and SOM. BKMR analysis showed significant overall mixture effects (Figure 2B). 339 

The ln(CFI) score showed a significant increase when all mixture components were above their 340 

median compared to when all mixture components were at the median level. This trend 341 

suggests a linearly increasing effect estimate at all quantiles of the exposure mixture above the 342 

median. Additionally, there is also a significant decrease in the overall mixture effect on ln(CFI) 343 

when mixture components are below the median, compared to when all mixture components 344 

are at the median level. However, the 95% credible interval for the 25th percentile of exposure 345 

compared to the median is not significant. Similar to earlier results, quantile-based G-346 

computation also found a positive association between increasing values of the mixture and 347 

ln(CFI), though the total mixture effect was not statistically significant (psi: 0.074; p-value: 348 

0.062). 349 

Next, we used the SOM approach to investigate observed patterns of exposure mixtures in 350 

association with ln(CFI). The SOM identified 6 clusters (Figure 3A, Table 1), based on the air 351 

pollution and nSES characteristics of the census tracts. Participants were not evenly distributed 352 

across clusters, a majority of participants experiencing pollution and nSES values within in 353 

cluster 4 (n=4,694; 39.46%), while comparatively few experience the combinations of pollutants 354 

and nSES variables found in clusters 2 (n=582; 4.89%) and 3 (n=378; 3.18%). All clusters had 355 

similar median ages. Cluster 4 has the lowest concentrations of most air pollutants and highest 356 

nSES, though it has highest O3 and PM10. Conversely, cluster 3 has the highest concentrations 357 

for most air pollutants and lowest nSES. In the map of Metro-Atlanta (Figure 3B), census tracts 358 

are color coded based on their SOM cluster assignment. Cluster 4, the low pollution and high 359 

nSES cluster, seen on the map in black, primarily appears in the northern half of Metro-Atlanta 360 

outside of the City of Atlanta. Clusters 1, 2, and 3 appear primarily in the City of Atlanta around 361 

highways (black lines on map). These three clusters also have the highest proportions of rented 362 

homes.  In line with Atlanta’s historical segregation policies, clusters 3 and 6, located in 363 
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southern Atlanta, contain census tracts with the highest proportions of non-Hispanic Black 364 

residents. A majority of Black EHAS participants live in cluster 6. 365 

In the adjusted linear regression model using indicators of SOM cluster membership as 366 

exposure, cluster 4 was used as the reference group because it had the lowest air pollution and 367 

highest nSES. Compared to cluster 4, all other clusters exhibit increased ln(CFI) scores, 368 

indicating increased cognitive decline (Figure 3C, Supplementary Table S2). Clusters 2 and 3, 369 

which have the highest air pollution concentrations and lowest nSES, also have the highest 370 

increase in ln(CFI) compared to cluster 4, adjusting for individual age, race/ethnicity, and 371 

residential stability of the census tract. These results provide effect estimates based on 372 

observed contrasts in exposure mixtures and suggest synergistic effects of air pollution and 373 

nSES. These findings are in line with interaction results reported earlier.  374 

The high O3 concentrations in cluster 4, the highest nSES cluster and cluster with the largest 375 

number of participants (39.46%), may be driving the estimated protective effect of O3 observed 376 

in the single pollutant models (Figure 3) because high SES potentially protects participants from 377 

the harmful effects of air pollution. NO2 and CO concentrations, which are highly correlated 378 

(Figure 3), are highest in clusters 1, 2, and 3, all located along highways (Figure 2B). Cluster 1 379 

is the second largest cluster with 25.38% of participants and has the second highest nSES. The 380 

large proportion of participants in cluster 1, compared to clusters 2 (4.89%) and 3 (3.18%) may 381 

drive the estimated protective effects of NO2 and CO (Table 1) observed throughout the results 382 

in this analysis. Individuals within cluster 1 have higher SES that can potentially protect them 383 

from the harmful effects of air pollution, while participants with low SES in clusters 2 and 3 do 384 

not have that same protection. 385 

Discussion 386 

In this study of 11,897 individuals 50 years and older from Metro Atlanta, we observed 387 

significant joint effects of air pollution and nSES on cognitive decline. Using analysis techniques 388 

accounting for multiple exposures, we disentangle the seemingly protective estimated effects of 389 

air pollution found in the individual exposure models. Air pollution and nSES exposure profiles 390 

were generated using the joint SOM model report estimated significant associations between 391 

exposure profile and cognitive decline. These associations between exposure profiles and 392 

cognitive decline yield evidence of the harmful joint effect of lower nSES and air pollution. 393 

Additionally, the BKMR model provided insight into which air pollutants and nSES 394 

characteristics most influence cognitive decline, as well as estimates of synergistic effects of the 395 

exposure mixture. These analyses reveal how imperative interaction and mixture analyses are 396 

to gain a more accurate and holistic picture of how air pollution and nSES jointly affect cognitive 397 

decline. 398 

Previous research has shown harmful associations between air pollutants and cognitive decline 399 

(Peters et al., 2019); as well as harmful associations between nSES and cognitive decline 400 

(Besser et al., 2017; Luo et al., 2019; Steptoe & Zaninotto, 2020). While nSES and air pollution 401 

may affect cognitive decline separately, it is difficult to separate their effects because they are 402 

often highly correlated. A global review found that in North America lower SES communities 403 

experience higher levels of air pollution (Hajat et al., 2015). These correlations between air 404 

pollution and nSES are frequently observed in the environmental justice literature. However, 405 

previous epidemiologic studies have mainly focused on analyzing individual exposures without 406 

controlling for co-exposures to other environmental and social stressors. In diverse cities like 407 

Atlanta, where gentrification, high levels of car traffic, and other factors often lead to high nSES 408 
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neighborhoods with high air pollution, the relationship between air pollution and nSES can be 409 

more complicated. Ignoring these complicated relationships can lead to the seemingly protective 410 

effects of air pollution on cognitive decline observed in the simpler, individual air pollutant 411 

analyses. We see this complicated relationship in the overall low correlation between air 412 

pollutants and nSES characteristics, with only the nSES characteristics percent with no car and 413 

percent rented homes being positively correlated with most air pollutants, except O3 and PM10.  414 

To the best of our knowledge, this paper is the first to use cutting edge environmental mixture 415 

methods to study air pollution and nSES characteristics in relation to cognitive decline. Previous 416 

studies of the effect of air pollution on cognitive decline have treated nSES as a confounder or 417 

effect modifier, not a co-exposure (J. Ailshire et al., 2017; J. A. Ailshire & Crimmins, 2014; Bowe 418 

et al., 2019; Cullen et al., 2018; Li et al., 2021). Utilizing multiple mixtures method approaches 419 

such as, SOM, BKMR, and quantile-based G-computation supports a comprehensive 420 

examination of the relationship between the exposure mixtures and outcomes (Taylor et al., 421 

2016). The SOM analysis revealed that participants in census tract clusters with high air 422 

pollution and low nSES had the largest decline in cognitive function, compared to census tracts 423 

with lower air pollution or higher nSES. SOM analyses, and other clustering methods, can lend 424 

insight into joint effects of exposure mixtures by identifying real-world contrasts to examine. Our 425 

results build upon those of another study analyzing EHAS data in Metro Atlanta, which identifies 426 

nSES as an effect modifier of the association between air pollution and cognitive decline 427 

suggesting a significantly harmful association between air pollutant levels and cognitive decline 428 

in low nSES neighborhoods (Li et al., 2021).  429 

BKMR analysis also reveals the overall effect of increasing the mixture of high air pollution 430 

exposure and low nSES (nSES characteristics are coded to be increasing value is lower SES) 431 

significantly increases ln(CFI) score. While the quantile-based G-computation analysis did not 432 

show a significant association between the air pollution and nSES exposure mixture and ln(CFI) 433 

score, this could be due to non-linearity of the association between the exposure mixture and 434 

the outcome. The quantile-based G-computation method can handle non-linear and non-435 

additive exposure effects, but non-linear terms need to be pre-defined by the user (Keil et al., 436 

2020), in contrast to the data-driven investigation of non-linearity in BKMR, which does not 437 

require a priori knowledge of the relationship. BKMR can handle non-linear associations in the 438 

exposure/outcome relationship without specifically adding non-linear terms into the model (Bobb 439 

et al., 2015, 2018). The BKMR analysis illustrates that SO2, percent rented homes, and negative 440 

median home value have non-linear relationships with ln(CFI) score (Figure 3A). Future studies 441 

using these methods can use the results from BKMR to inform modeling using other methods. 442 

Our results illustrate the importance of analyzing air pollution and socioeconomic exposures as 443 

a mixture. In our study, single air pollutant linear regression models estimate protective effects 444 

of air pollution exposure, counter to biological plausibility. Using methods that examine effect 445 

modifications and joint effects in linear, non-linear and spatial analyses, it was possible to 446 

disentangle the more nuanced and complicated underlying relationships between exposure to 447 

air pollution and nSES and cognitive decline in Metro Atlanta. Additionally, using multiple 448 

methods to model the effect of the exposure mixture on the outcome allowed for analysis of 449 

different aspects of the relationship between the exposure mixture and cognitive decline (Taylor 450 

et al., 2016).  451 

A strength of this study is its large sample size from a diverse city. The large sample size of the 452 

EHAS cohort and its spatial distribution across Metro Atlanta allowed for higher precision and 453 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted March 30, 2022. ; https://doi.org/10.1101/2022.03.29.22273134doi: medRxiv preprint 

https://doi.org/10.1101/2022.03.29.22273134


power than smaller studies, especially in mixture modeling analyses. The diversity of Atlanta 454 

also allowed the SOM clustering algorithm to define a variety of profiles of the exposure mixture. 455 

An additional strength of our results is the use of modeling techniques that examine individual 456 

and joint effects of air pollutants and nSES characteristics. Use of the CFI to determine 457 

cognitive decline strengthens the impact of this analysis because subjective cognitive decline is 458 

considered to be one the of first signs of progression to dementia (Amariglio et al., 2015; 459 

Jessen, 2014).  460 

The interpretation of the results above is limited by the cross-sectional nature of our data. While 461 

air pollution measurements are from 2008-2010 which is before the EHAS enrollment window of 462 

2015-2020, participants were asked their address to connect to the air pollution and nSES at the 463 

same time as the outcome assessment. There is possible exposure misclassification based on 464 

participants moving prior to their enrollment in EHAS, though this is likely to be non-differential 465 

by CFI score. An additional limitation in the exposure assessment is the grid size of the CMAQ 466 

chemical transport model. The CMAQ chemical transport model has 4 km resolution grids, 467 

which may not capture all of the variation in air pollution levels when looking at Metro-Atlanta. 468 

However, another study using air pollution exposure models with a 250m resolution did report 469 

similar harmful effects of air pollutants on cognitive decline (Li et al., 2021).  Additionally, EHAS 470 

is not a population-based sample, and the majority of participants are White and live in high 471 

nSES areas and are of high SES individually which is not the case in the Atlanta general 472 

population. There may be limitations to the generalizability of these results. 473 

Our results reveal how imperative it is to include nSES into analyses of air pollution and 474 

cognitive decline, not just as a confounder of environmental pollution levels but as a co-475 

exposure with environmental pollution. Future studies examining such co-exposures should 476 

include longitudinal measurements of air pollution and cognition to move further toward causal 477 

inference for these joint associations.  478 
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Tables 

Table 1. A. Emory Healthy Aging Study (EHAS) study population characteristics by Self-Organized Map (SOM) cluster. B. Air pollution 
measurements by SOM cluster. C. Neighborhood Socioeconomic Status (NSES) indicators by SOM cluster. 

 
SOM Cluster 

Total 1 2 3 4 5 6 
A. Study Population Characteristics 
N (%) 11897 (100) 3020 (25.38) 582 (4.89) 378 (3.18) 4694 (39.46) 1971 (16.57) 1252 (10.52) 

Median CFI (IQR) 1.5 (2.5) 1.5 (2.5) 2.0 (3.0) 2.0 (3.0) 1.5 (2.5) 2.0 (2.5) 2.0 (2.5) 

Median Age (IQR) 65 (13) 65 (14) 65 (13) 63 (12) 65 (12) 64 (12) 65 (11) 
% Residents moved in before 2010 (IQR) 21.0 (18.9) 13.6 (12.2) 13.7 (12.5) 16.0 (14.7) 27.9 (21.2) 21.6 (16.0) 25.4 (19.4) 

Race (%) 
          White 9753 (81.9) 2715 (89.9) 472 (81.2) 147 (38.9) 4292 (91.4) 1658 (84.1) 469 (37.5) 

   Black 1574 (13.2) 167 (5.5) 70 (12.1) 216 (57.1) 178 (3.8) 214 (10.9) 729 (58.2) 
   Other 570 (4.8) 138 (4.6) 40 (6.9) 15 (3.9) 224 (4.8) 99 (5.0) 54 (4.3) 

Hispanic (%) 386 (3.2) 105 (3.5) 21 (3.6) 10 (2.7) 145 (3.1) 74 (3.8) 34 (2.7) 
Education (%) 

          Associates Degree 858 (7.2) 144 (4.8) 56 (9.6) 37 (9.8) 285 (6.1) 220 (11.2) 114 (9.1) 

   Less than Bachelor’s Degree 473 (3.9) 58 (1.9) 31 (5.3) 37 (9.8) 140 (2.9) 134 (6.8) 73 (5.8) 
   Some College, but no Degree 1851 (15.6) 296 (9.8) 114 (19.6) 79 (20.9) 633 (13.5) 463 (23.5) 266 (21.3) 

   Bachelor’s Degree 4036 (33.9) 1065 (35.3) 195 (33.5) 114 (30.2) 1714 (36.5) 562 (28.5) 386 (30.8) 
   Master’s Degree 3078 (25.9) 890 (29.5) 137 (23.5) 79 (20.9) 1282 (27.3) 386 (19.6) 304 (24.3) 

   Professional or Doctorate Degree 1603 (13.5) 567 (18.8) 49 (8.4) 32 (8.5) 640 (13.6) 206 (10.5) 109 (8.7) 

B. Air Pollution Measurements - Median (IQR)  
CO (ppm) 0.5 (0.3) 0.7 (0.2) 0.7 (0.3) 0.7 (0.2) 0.5 (0.2) 0.3 (0.2) 0.5 (0.2) 

EC (μg/m3) 0.9 (0.6) 1.1 (0.2) 1 (0.4) 1.3 (0.5) 0.8 (0.4) 0.5 (0.3) 1 (0.3) 

NH4 () 1 (0.1) 1.1 (0.1) 1.1 (0.1) 1.1 (0.1) 1 (0.1) 1 (0.1) 1 (0.1) 
NO2 (ppb) 21.5 (11.1) 25.7 (4.3) 24.8 (7.3) 27.5 (5.8) 19.9 (8.8) 13.5 (7.5) 22.1 (4.2) 

NO3 (ppb) 0.6 (0.1) 0.6 (0) 0.6 (0) 0.6 (0) 0.6 (0.1) 0.6 (0.1) 0.6 (0) 
NOx (ppm) 38.9 (26.6) 50 (15.6) 49 (21.2) 55.6 (20.2) 34.9 (20.5) 21.4 (14.9) 40.9 (11.6) 

OC (μg/m3) 2.8 (0.3) 2.8 (0.1) 2.9 (0.4) 2.9 (0.2) 2.8 (0.2) 2.7 (0.3) 3 (0.2) 

O3 (ppm) 41.8 (1.3) 41.3 (1.8) 41.1 (1.5) 40.9 (1.6) 42.1 (0.9) 42 (0.8) 41.5 (1.1) 

PM10 (μg/m3) 21 (0.2) 20.9 (0.1) 21 (0.1) 21 (0.1) 21 (0.1) 21.1 (0.1) 21 (0.2) 

PM2.5 (μg/m3) 12.6 (0.6) 12.7 (0.5) 12.8 (0.8) 12.8 (0.7) 12.5 (0.4) 12.4 (0.8) 12.8 (0.5) 
SO2 (ppb) 7.8 (3.5) 9 (1.9) 8.8 (3.4) 8.7 (2.6) 7.8 (3.2) 6 (3.4) 7.1 (1.5) 

SO4 (ppb) 2.9 (0.1) 3 (0.1) 3 (0.1) 3 (0.2) 2.9 (0.1) 2.9 (0.1) 2.9 (0.1) 
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C. nSES Indicators - Median (IQR) 
% Education less than high school 10.9 (11.7) 4.1 (4.9) 28.5 (14.2) 17.8 (9.7) 3.9 (3.8) 13 (7.6) 11.5 (6.3) 
Unemployment rate 8 (5.6) 5.7 (3.9) 8.2 (4) 16.4 (7.1) 5.4 (2.7) 7.9 (3.5) 12.5 (5.2) 

% Not in labor force 26.2 (10.4) 18.6 (9.4) 20.4 (12) 34.4 (14.2) 23.9 (7.1) 28.1 (8.4) 28.9 (7.6) 
% Homes vacant 9.6 (7.9) 10.3 (7.3) 11.7 (5.5) 20.2 (12.8) 4.9 (4.2) 8.6 (5.1) 12 (5.3) 

% Homes rented 31.2 (37.4) 54.8 (23.9) 61.4 (25) 68.5 (19.4) 12.2 (10.8) 23 (15.5) 32.1 (16.5) 

% Homes crowded 1.7 (2.9) 1.3 (1.8) 6.4 (5) 3.3 (2.6) 0.3 (1) 1.7 (2) 1.9 (2.3) 
Median home value ($ in thousands) 162.7 (122.6) 265 (126.4) 118.1 (56.3) 91.1 (39.4) 287.6 (153.6) 153.8 (43.3) 112.3 (45.4) 

% Male not in management 68.4 (26.8) 41.7 (15.6) 82.2 (11.8) 82.6 (13.2) 46.5 (18.2) 71.8 (10.6) 74.1 (13.5) 
% Female not in management 58.4 (18.9) 41.2 (17.5) 74 (14.7) 73.7 (11.6) 43.6 (11.9) 61.1 (8.6) 61.2 (11.7) 

% In poverty 9.7 (12.7) 6.4 (6.2) 20.8 (10.6) 30.9 (12.5) 3.3 (3) 9.4 (6.2) 14.1 (9.1) 
% Female headed households 7.2 (7.1) 4.2 (4.9) 10.3 (5.2) 15.2 (6.5) 3.7 (2.7) 6.6 (3.9) 11.7 (6.2) 

% Income less than $35,000 27.6 (21.2) 23.7 (11.8) 44.1 (10.1) 57.1 (11.5) 13.1 (6.2) 27 (10.5) 33.4 (14.6) 
% On public assistance 1.4 (1.9) 0.7 (0.9) 1.8 (1.9) 3.1 (2.7) 0.6 (0.8) 1.7 (1.6) 2 (1.6) 

% No car 14.2 (12.3) 21.3 (7.2) 21.4 (6.4) 30.5 (8.3) 7.6 (4.1) 10.9 (4.7) 16.3 (7.5) 

% Non-Hispanic Black 21.3 (42.1) 18.5 (15.6) 24.8 (17.9) 87.4 (26.4) 6.8 (9.4) 13.9 (19.9) 73.3 (31.5) 

% Hispanic 6.4 (8.8) 6.3 (6) 37.8 (22.3) 3.3 (7.2) 4.9 (4) 7.6 (8.9) 4.8 (6.5) 
Acronym: CFI, cognitive function instrument; IQR, interquartile range; EC, elemental carbon, OC, organic carbon. 
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Figures 

A.       B.       C. 

  

Figure 1. The effect of an IQR increase in air pollution and neighborhood socio-economic status (nSES) exposures on ln(CFI) score. Air pollution 
exposure measurements were taken from the CMAQ chemical transport model in 2008-2010, and neighborhood socio-economic status exposures 
are census tract averages from 2013-2018. Median home value was multiplied by -1 so that a high value was the same nSES direction as other 
nSES characteristics. A. Lasso regression coefficients of air pollutants and nSES characteristics adjusted for individual age, race/ethnicity, 
education, and residential stability of the census tract. B. Linear regression models were adjusted for individual age, race/ethnicity, education, and 
residential stability of the census tract, air pollution exposure models were additionally adjusted for principal components of nSES characteristics 
and nSES clusters. C. Quantile-Based g-computation weights, census tract matched air pollutant measurements. Bar lengths are comparable in 
magnitude among each side only. Orange bars represent air pollutants while blue bars represent nSES characteristics.
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A. 

 

B. 

 

Figure 2. A. BKMR exposure mixture individual effects plot. The effect of each exposure holding 
all other exposures at their median and controlling for confounders. The y-axis for each plot 
represents the exposure response function (h), while the x-axis represents the centered 
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exposure level. B. BKMR exposure mixture overall effects plot. The effect of all exposures in the 
mixture at each quantile compared to the effect of all exposures in the mixture at the median.
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A.  

 

B.                                                                     C.     

 

Figure 3. Associations between air pollution and neighborhood socio-economic status (nSES) 
indicators for cognitive functioning. Median home value was multiplied by -1 so that a high value 
was the same nSES direction as other nSES characteristics A. SOM cluster star plot, slices 
represent median values of a mixture component, each circle is a SOM cluster. Blue slices 
correspond with nSES indicators, while red slices correspond with air pollutants B. Map of 
census tracts in Metro-Atlanta by cluster. Black lines represent major highways. C. Results of 
linear regression model estimating SOM cluster effect on ln(CFI) score. Cluster 4, the highest 
nSES cluster, was used as the reference group. Model adjusted for individual age, 
race/ethnicity, education, and residential stability of the census tract. 
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