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Abstract

Malaria persists at low levels on Zanzibar despite the use of vector control and case management. We use
a metapopulation model to investigate the role of human mobility in malaria persistence on Zanzibar,
and the impact of reactive case detection. The model was parameterized using survey data on malaria
prevalence, reactive case detection, and travel history. We find that in the absence of imported cases
from mainland Tanzania, malaria would likely cease to persist on Zanzibar. We also investigate potential
intervention scenarios that may lead to elimination, especially through changes to reactive case detection.
While we find that some additional cases are removed by reactive case detection, a large proportion of
cases are missed due to many infections having a low parasite density that go undetected by rapid
diagnostic tests, a low rate of those infected with malaria seeking treatment, and a low rate of follow up
at the household level of malaria cases detected at health facilities. While improvements in reactive case
detection would lead to a reduction in malaria prevalence, none of the intervention scenarios tested here
were sufficient to reach elimination. Imported cases need to be treated to have a substantial impact on
prevalence.

1 Introduction

Despite a global reduction in malaria burden in 2000–2015, improvements in case incidence have stagnated
in the United Republic of Tanzania at around 6 million cases per year since 2010 [1]. Zanzibar, a semi-
autonomous region of Tanzania, has seen a substantial decline in malaria prevalence since 2000 due to
the use of long-lasting insecticidal nets (LLINs), indoor residual spraying (IRS) and artemisinin-based
combination therapies (ACTs) [2]. These strategies have aided in reducing malaria prevalence by 10- to
23-fold as measured by rapid diagnostic tests (RDTs) and microscopy, with prevalence estimated to be
below 5% [2, 3] on both main islands of Zanzibar: Unguja and Pemba.

Additionally, the Zanzibar Malaria Elimination Programme (ZAMEP) has implemented a reactive
case detection (RCD) programme from 2012 onwards [4]. RCD involves following up clinical malaria
cases that present at a health facility and testing their household members for malaria using RDTs.
This helps to treat both asymptomatic cases, and symptomatic cases that may not report to a health
facility, with the aim to reduce onward transmission. RCD has been implemented with varying levels of
success in countries and regions with low malaria prevalence such as China [5], Eswatini [6, 7], India [8],
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and Zambia [9]. ZAMEP was aiming to achieve follow up for 100% of confirmed cases by 2018 [10],
but analyses of health facility data suggests that only 35.3% of diagnosed cases are followed up at the
household level within 3 days [4].

Despite these substantial efforts, elimination has not been achieved in Zanzibar. The persistence
of a low level of transmission despite high coverage of interventions has been attributed to geographic
foci of transmission, a reservoir of sub-patent infections that are not detected and eliminated by routine
surveillance-response activities, and repeated importation of infections [2]. The impact of these factors
on disease transmission can be studied through mathematical modelling. Failing to account for these
factors when modelling the disease can lead to overly optimistic estimates of the time or resources needed
to eliminate malaria from a setting [2, 11].

Previous studies of RCD in Zambia and Namibia have suggested that it will only lead to malaria
elimination in limited settings, particularly in areas that have reduced transmission recently [12, 13, 14,
15, 16]. The effectiveness of RCD can be improved by shifting to a reactive focal mass drug administration
(rfMDA) programme, so that the probability of treating an infection is not dependent on the diagnostic
test sensitivity [15, 16]. Diagnostic test sensitivity has been identified as a major impediment to RCD
programmes in various settings, including Zanzibar [3], Zambia [9], and Eswatini [7], due to a high
prevalence of very low density infections.

Previous studies of malaria importation have examined the impact of continuous importation of cases
to Zanzibar from mainland Tanzania, where malaria prevalence is substantially higher [11, 17, 18, 19].
Parasite importation has also been shown to be an important factor for the persistence of malaria in
settings outside of Tanzania [20, 21]. Churcher et al use branching process theory to calculate the
reproduction number based on the proportion of detected cases that are classed as imported cases. If
greater than 50% of detected cases are imported cases, the area is said to have a reproduction number
below 1 and thus have halted endemic transmission [20], that is, indigenous incidence of malaria infection
would not persist if all importation were halted [22]. Estimates of the proportion of clinical malaria
patients in Zanzibar with a recent history of travel to mainland Tanzania have ranged from 9% to 49% [2,
3]. Whole genome sequencing of isolates from Zanzibar and mainland Tanzania has also highlighted the
close relatedness of Plasmodium falciparum strains on Zanzibar and coastal Tanzania, suggesting some
cases on Zanzibar have a recent history of importation [18].

A modelling analysis of malaria importation on Zanzibar has previously been conducted using mobile
phone data to track human movement to and from mainland Tanzania [17, 23]. Using call data from the
busiest period of travel to and from Zanzibar in 2008, Le Menach et al [17] estimated around 1.6 (falling
within a range of 0–3.7) cases were imported per 1000 people per year to Zanzibar. The controlled
reproductive number, Rc, is the expected number of secondary human infections stemming from one
untreated infection in an area with vector control measures in place. Rc was estimated to be within
0—0.56 in urban Unguja, 0.71—0.91 in rural Unguja, and 0.92—0.98 in rural Pemba, using an adapted
Ross-Macdonald model.

In this paper, we use a compartmental metapopulation model to examine the impact of RCD and
rfMDA, combined with ongoing human movement, on the persistence of malaria in Zanzibar and the
potential impact of treating imported cases. Using malaria prevalence estimates for the islands of Pemba,
Unguja and mainland Tanzania, along with data on the RCD programme, we consider the potential
effects of improving or reducing the RCD programme currently in place, including changes in follow up,
improvements in the number of cases reporting to health facilities, additional testing of neighbours of
index cases, and shifting to an rfMDA intervention. We also consider possible synergies to be gained by
combining rfMDA with treating neighbours as well as index households. Finally, combining the malaria
prevalence estimates with travel history data, we estimate the likely impact of treating a proportion of
imported infections on malaria prevalence on Zanzibar.

2 Methods

This analysis uses two main models: a compartmental susceptible-infected-susceptible (SIS) population
model that was adapted to describe transmission dynamics in the presence of short-term human move-
ment, and a stochastic implementation of this model including an ongoing RCD programme in Zanzibar.
The first model is used to understand the role played by human movement in the persistence of malaria
on the islands, and the second model is used to understand the impact of interventions strategies such
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as RCD and the treatment of imported cases in reducing the endemic equilibrium on the islands. Both
models consisted of three patches: Pemba, Unguja, and mainland Tanzania.

2.1 Study setting

The Zanzibar archipelago lies to the east of the mainland of the United Republic of Tanzania. According
to the 2012 census, the two main islands, Unguja and Pemba, had populations of 896,721 and 406,848,
respectively. The islands are connected to mainland Tanzania via ferries and two airports (Fig. 1). In
addition to this, there is regular small boat traffic between mainland Tanzania and Zanzibar, often by
traditional dhows.

Figure 1: Map of Zanzibar, with the RADZEC study districts in white. Airports and ferry
terminals are highlighted. Figure adapted from [3].

ZAMEP runs an RCD programme to effectively target test-and-treat efforts towards foci of infection.
When patients on either island are diagnosed with malaria at a health facility, they should ideally be
followed up within 3 days at their household by a district malaria surveillance officer (DMSO), and
all household members should be tested with an RDT for malaria. Those who return a positive test
result are treated with artesunate-amodiaquine and a single dose of primaquine. The Reactive Case
Detection in Zanzibar: System Effectiveness and Cost (RADZEC) study included an examination of the
operational coverage of the RCD programme [4]. Across the 150 public health facilities and 51 private
health facilities, a mean of 32 and 12 malaria cases arrived at a health facility per district per month in
Unguja and Pemba, respectively, corresponding to 6.4 cases per day in the whole of Unguja, and 1.6 in
Pemba. Of those diagnosed at a health facility, 35.3% were followed up at the household by a district
malaria surveillance officer within 3 days, 47.9% within 6 days, 59.9% within 15 days, and 62.0% within
21 days. The mean household size for index households was found to be 7.0 people per household on
Pemba and 6.2 people per household on Unguja, including index cases [3].

This data, along with rolling cross-sectional survey data from the RADZEC study, were used to
parameterise the RCD parameters in the model.
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2.2 RADZEC cross-sectional survey data

The rolling cross-sectional survey component of the RADZEC study was conducted between May 2017
and October 2018. It involved following DMSOs on visits to the households of patients diagnosed with
malaria at a health facility (from now on referred to as the index case). A cross-sectional survey was
conducted at these households, which included a questionnaire, RDT tests, and collecting blood samples
for quantitative polymerase chain reaction (qPCR) tests. The survey included three types of households:
index case households, neighbouring households, and a transect of households stemming from the index
household. Neighbouring households consisted of the four households nearest to the index case household,
and transect households consisted of five households along a 200m transect starting from the index
household. The full survey details are described elsewhere [3].

The survey collected data on a range of factors including demographics, a recent history of illness,
and detailed travel history from the last 60 days. The median trip length was found to be six nights.

Within the survey population, 12,487 residents were tested with RDTs for malaria and 6,281 with
qPCR tests. The sensitivity of RDTs to detect qPCR-detectable infections was found to be 34% [3].

The malaria prevalence on each island was estimated by first taking the number of PCR-positive test
results outside of the index household above a cut-off of 0.13 parasites/µl, below which the chance of false
positive results increases. The number of people with PCR-positive results in neighbouring and transect
households was divided by the total number of people tested in neighbouring and transect households on
each island to give the estimated prevalence on each island. Members of the index household were not
included as this would have led to an artificial inflation of the malaria prevalence as index households
contained a known malaria case (the index case) and had a higher likelihood of containing additional
cases [3]. As this data was collected around the households of index cases, there was a possibility that
the prevalence in this sample was still higher than in a random sample. At the same time, as this method
directly excludes index cases and index households, where malaria prevalence is typically higher, there was
a chance that the prevalence found in neighbouring and transect households would be an underestimate.
In order to compare to a random sample, the qPCR prevalence in neighbouring and transect households
in Micheweni district (north Pemba) in the RADZEC dataset was compared to the mean prevalence
found by qPCR in a randomly sampled cross-sectional survey conducted in Micheweni in 2015 [2]. The
prevalence in neighbouring and transect households in the RADZEC study was 1.8% (95% CI: 0.9-2.7),
while the prevalence in the cross-sectional survey conducted in a random sample of households was 1.7%
(95% CI: 1.1–2.4). This suggests that the positivity rate in neighbouring and transect households is a
good approximation of the population prevalence.

The mean number of neighbours tested per index case was 20.4 in Pemba and 18.2 in Unguja. The
ratio of cases amongst index household members compared to neighbouring and transect households was
3.2 in Pemba and 10.0 in Unguja. The ratio of cases in neighbouring households compared to neighbouring
and transect households was 0.8 in Pemba and 1.3 in Unguja.

Travel data suggested that travelers spend similar numbers of nights in multiple parts of mainland
Tanzania, so the malaria prevalence for 2-10 year old children across all of Tanzania, as estimated by the
Malaria Atlas Project, was taken as the baseline for mainland Tanzania [24]. This is likely an overestimate
of the population prevalence, as the prevalence in 2-10 year old children is typically higher than in the
general population [25].

Time spent away from home, captured in the travel matrix θij (see Table 1), was calculated by noting
which proportion of nights in the last 60 nights were spent away from home amongst survey respondents
from each patch and where they were spent, where i and j represent Pemba, Unguja and mainland
Tanzania,

θij = Mean number of nights a resident of j spent in i over the last 60 nights
60 . (1)

where
∑3
j=1 θij = 1.

As we did not have data on travel to Zanzibar by residents of mainland Tanzania, we have assumed
that the same number of person-nights are spent in total by residents of mainland Tanzania on Zanzibar
as the other way around. Thus,
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Proportion of time spent on mainland× Population of each island
= Proportion of time spent on each island× Population of mainland.

Treatment was not included in the models outside of treatment due to RCD (which also includes
treatment of the index case). Instead, the daily natural clearance rate was taken to be (1/200)day−1 [26,
27].

2.3 Model description

Human movement was modelled using a deterministic SIS metapopulation model including three patches
for Pemba, Unguja and mainland Tanzania. This was then extended to include stochasticity and the
effects of RCD on Pemba and Unguja.

A model schematic can be found in Figure 2.

Mainland

Susceptible

Infected

Susceptible

Pemba

Infected

Susceptible

Infected

Unguja

Figure 2: A schematic diagram of the model with two disease states in each patch. Solid
arrows represent transitions between disease states, and dashed arrows represent transmission.
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2.3.1 SIS model including human movement

Parameter or
state variable

Description and units

Ik Proportion of people who are infectious in patch k. Dimensionless.
I∗

k Proportion of people who are infectious in patch k at equilibrium, before
changes to ongoing interventions are applied. Dimensionless.

Nk Total number of people in patch k. Humans.
βk The effective malaria transmission rate from humans to other humans

in patch k. Day−1.
θij The proportion of time the average resident of patch j spends in patch

i. Dimensionless.
µ Natural infection clearance rate. Day−1.

Table 1: Descriptions of state variables and parameters for the SIS model with human move-
ment.

The total number of people from patch j spending time in patch i, weighted by the amount of time
they spend there, is given by Njθij . Similarly, NjθijIj gives the number of infected people from patch
j spending time in patch i, weighted by the amount of time they spend there. When combined, the
effective proportion of the population that is infectious in patch i is given by

Ai =
∑3
j=1 NjθijIj∑3
j=1 Njθij

. (2)

A description of the parameters and state variables can be found in Table 1.
βiAiθik is the contact rate between a susceptible individual from patch k and an infected individual

in patch i. Summing over i gives the total rate at which a susceptible individual in patch k comes into
contact with an infected person either in their own patch or another patch, and becomes infected,

Bk =
3∑
i=1

(
βi

(∑3
j=1 NjθijIj∑3
j=1 Njθij

)
θik

)
. (3)

Eq. (3) is adapted from previous work by Ruktanonchai et al [28], accounting for both the infectious
people moving in and out of patch k, as well as the time spent by residents of k in other patches.

Combining this with the proportion of susceptible individuals in patch k, 1−Ik, and allowing infected
individuals to recover at the natural clearance rate of the disease gives the overall equation for the rate
of change of Ik:

dIk
dt =

3∑
i=1

(
βi

(∑3
j=1 NjθijIj∑3
j=1 Njθij

)
θik

)
(1− Ik)− µIk. (4)

We assume that the majority of trips are short-term trips and people retain the properties of their
residential patch in terms of recovery rate and, in section 2.3.2, the RCD programme. Survey responses
about travels in the last 60 days support the assumption of short trips.

We calibrated the model by assuming that malaria prevalence is at equilibrium. Under this assump-
tion, we can calculate the transmission rate that would lead to the observed prevalence. Thus, setting
the right hand side of Eq. (4) to 0,
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µI∗
k

1− I∗
k

=
3∑
i=1

(βiA∗
i θik) , k ∈ {1, 2, 3}, (5)

where A∗
i is Ai at the equilibrium prevalence.

The transmission parameter, β, encompasses malaria transmission from humans to mosquitoes and
back again, along with any malaria control strategies already in place. It can be derived as the solution
to a set of simultaneous equations:

β1
β2
β3

 =

A∗
1θ11 A∗

2θ21 A∗
3θ31

A∗
1θ12 A∗

2θ22 A∗
3θ32

A∗
1θ13 A∗

2θ23 A∗
3θ33

−1


µI∗
1

1−I∗
1

µI∗
2

1−I∗
2

µI∗
3

1−I∗
3

 . (6)

We then used the deteministic model to estimate the impact of human movement on malaria persist-
ence on the islands of Pemba and Unguja. The impact of no human movement was modelled by keeping
the calibrated transmission and recovery rates constant, but changing the time spent away from the home
patch to 0 in all cases (i.e. θij = 0 for all i 6= j and θij = 1 for all i = j for i, j ∈ 1, 2, 3). This scenario acts
as a counterfactual for deducing how human movement contributes to the persistence of malaria despite
the current use of interventions.

2.3.2 SIS model including human movement and an RCD programme

Eq. (4) is modified in line with previous work by Chitnis et al [12] to include RCD. RCD is modelled by
removing a number of infected individuals proportional to the number of infected people in that patch.
The rate of change in Ik is now given by

dIk
dt =

3∑
i=1

(
βi

(∑3
j=1 NjθijIj∑3
j=1 Njθij

)
θik

)
(1− Ik)− (µ+ ϕk)Ik, (7)

where ϕk is the rate of removing people from the infected class due to the RCD programme. This is
the product of the number of cases followed up by the RCD programme per day, the mean number of
household members in each index house, the ratio of positive tests in an index house versus the general
population, and the test positivity rate, divided by the total population in that patch,

ϕk = τkνkιkρ

Nk
. (8)

Parameter descriptions can be found in Table 2. The number of cases followed up by the RCD
programme per day depends on the number of infected people at any given time, the rate of seeking
treatment, and the proportion of cases followed up by DMSOs,

ιk = λkηIkNk. (9)

The rate of seeking treatment is assumed to be constant and is calculated from the observed number
of cases arriving at the health facility at equilibrium,

λk = ι∗k
η∗I∗

kNk
. (10)

The baseline value for the proportion of cases followed up by a DMSO at the index case household
level, η∗, was taken to be the 3 day follow up rate: 35.3%.

Descriptions of RCD parameters can be found in Table 2.
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Parameter Description and units
ϕk Treatment rate due to RCD programme in patch k. Day−1.
ϕ∗

k Treatment rate due to RCD programme at equilibrium in patch k.
Day−1.

τk Ratio of malaria prevalence in individuals tested within the RCD pro-
gramme as compared to the general population in patch k. Dimension-
less.

ιk Number of cases followed up by a District Malaria Surveillance Officer
per day in patch k. Humans per day.

ι∗k Number of cases followed up by a District Malaria Surveillance Officer
per day at equilibrium in patch k. Humans per day.

νk Number of people tested during follow up per index case in patch k.
Dimensionless.

ρ Rapid diagnostic test sensitivity. Dimensionless.
λk The daily rate at which an infected individual seeks treatment in patch

k. Day−1.
η The proportion of cases arriving at the health facility that are followed

up by the DMSO. Day−1.
η∗ The proportion of cases arriving at the health facility that are followed

up by the DMSO within 3 days. Dimensionless.

Table 2: Descriptions of RCD programme parameters.

Variable or parameter Mean values [95% CI] SourcePemba Unguja Mainland
I∗

k 1.36%
[0.96-1.93]

1.18%
[0.86-1.61]

7.79% [3, 24]

Nk 406,848 896,721 43,625,354 [29]

θij

0.991 0.004 5.7× 10−5

0.003 0.970 5.3× 10−4

0.006 0.026 0.999

 [3]

µ 0.005 day−1 0.005 day−1 0.005 day−1 [26, 27]
τ (h) 3.2 [2.0-4.8] 10.0 [8.0-

12.6]
N/A [3]

τ (n) 0.7 [0.4-1.3] 1.3 [0.9-1.9] N/A [3]
ν(h) 7.0 [6.5-7.5] 6.3 [5.9-6.9] N/A [3]
ν(n) 20.4 [19.4-

21.4]
18.8 [17.6-
19.9]

N/A [3]

ρ 34% 34% N/A [3]
η∗ 35.3% 35.3% N/A [4]
η - range of values
tested

0%, 35%,
48%, 60%,
62%, 100%

0%, 35%,
48%, 60%,
62%, 100%

N/A Values based on
DMSO follow up
at the index case
household level
observed in [4]

Table 3: Variable and parameter values and sources. Where a range of parameter values were
tested in the sensitivity analysis, the 95% confidence interval for the range of values tested is
given. For θij , the order of the rows and columns of the matrix correspond to Pemba, Unguja
and mainland Tanzania.
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We compared testing only index household members in the RCD programme and testing both the
index household and neighbours. When considering just index households, the targeting ratio was cal-
culated by taking the ratio of the positivity rate, as measured by PCR, in index households compared
to neighbouring and transect households. This was then adjusted in the model to ensure that a positive
case was included for the index case, as often the index case had been treated by the time the DMSO
followed up the case at the index household. The targetting ratio, τ (h), given in Table 3 considers only
the prevalence in index household members outside of the index case. When considering neighbouring
households as well, the targeting ratio in neighbouring households was calculated by taking the ratio of
PCR-positive cases in neighbouring households as compared to both neighbouring and transect house-
holds. The equation for ϕk was adapted to

ϕk =
(τ (h)
k ν

(h)
k + τ

(n)
k ν

(n)
k )ιkρ

Nk
, (11)

where the superscripts h and n refer to the index household and neighbouring households, respectively.
The RCD programme has been running on Zanzibar since 2012. Therefore, the model including the

RCD programme also assumes malaria prevalence is at a steady state. Setting the right hand side of
Eq. (7) to 0 and solving for β gives the transmission rates in the presence of an ongoing RCD programme,

β1
β2
β3

 =

A∗
1θ11 A∗

2θ21 A∗
3θ31

A∗
1θ12 A∗

2θ22 A∗
3θ32

A∗
1θ13 A∗

2θ23 A∗
3θ33

−1


(µ+ϕ∗
1)I∗

1
1−I∗

1
(µ+ϕ∗

2)I∗
2

1−I∗
2

(µ+ϕ∗
3)I∗

3
1−I∗

3

 . (12)

New interventions or potential changes to interventions are only simulated post-calibration. The
transmission parameter on the three islands is unaffected by the new intervention, since all interventions
considered here only target the infectious reservoir in humans and not the vectorial capacity.

2.3.3 Treatment of imported cases

Currently prophylaxis is not given to travellers when travelling to mainland Tanzania or vice versa.
Similarly, there is no screen-and-treat programme for entrants to Zanzibar. We expanded our model to
include treatment of imported cases as a potential intervention, in order to evaluate what proportion
of cases must be treated to achieve different reductions in prevalence on Pemba and Unguja. Eq. (7)
was modified to have a θoutbound, which included treatment for mainland Tanzanians on their outbound
journey to Zanzibar, and θreturn for Zanzibari residents that receive treatment on their return journey to
Zanzibar. Thus Eq. (7) was modified to

dIk
dt =

3∑
i=1

(
βi

(∑3
j=1 Njθ

outbound
ij Ij∑3

j=1 Njθij

)
θreturn
ik

)
(1− Ik)− (µ+ ϕk)Ik, (13)

where

θoutbound =

0.991 0.004 (1−O) ∗ 5.7× 10−5

0.003 0.970 (1−O) ∗ 5.3× 10−4

0.006 0.026 0.999

 , (14)

and

θreturn =

 0.991 0.004 5.7× 10−5

0.003 0.970 5.3× 10−4

(1−R) ∗ 0.006 (1−R) ∗ 0.026 0.999

 . (15)

O represents the proportion of travellers from mainland Tanzania receiving treatment such that they
are no longer infected upon entering Zanzibar, and R represents the proportion of Zanzibari residents
receiving treatment such that they are no longer infected upon returning to Zanzibar.

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted March 30, 2022. ; https://doi.org/10.1101/2022.03.29.22273100doi: medRxiv preprint 

https://doi.org/10.1101/2022.03.29.22273100
http://creativecommons.org/licenses/by/4.0/


2 METHODS 10

2.4 Simulations

Stochastic simulations were only run with the model with RCD. In order to allow for small but finite
populations of infectious individuals, a binomial tau-leap adaptation of the Gillespie algorithm was used
to model Eq. (7) [30]. Following calibration, the current RCD programme (baseline of 35.3% follow up
of index cases at index households only) was compared to a range of alternatives:

1. RCD at a range of levels of follow up (see Table 3 for values);
2. Expanding the RCD system to include follow up at four neighbouring households as well;
3. Doubling the daily treatment seeking rate;
4. rfMDA in the index household rather than test-and-treat;
5. Treating 50% of imported cases.

The effects of varying the proportion of cases followed up at the household level is tested by varying the
follow up proportion between those seen in 3, 6, 15 and 21 days, as well as stopping the RCD programme
altogether (no follow up) and perfectly following up every case. The potential benefits of testing and
treating all neighbours in approximately four nearby households as well was considered. As the rate of
seeking treatment amongst those infected is low, we tested doubling the daily treatment seeking rate (e.g.
by promoting early treatment seeking or broader testing of patients at formal health facilities, or due
to more individuals being symptomatic due to waning immunity). Additionally, rfMDA was modelled
with the same parameters as for RCD, except the value of the test sensitivity was changed to 100%, as
all index household members, infected or susceptible, would automatically receive treatment. Finally,
treating 50% of cases imported onto the islands by either Zanzibari residents travelling to mainland
Tanzania, or visitors from mainland Tanzania were also modelled (O = R = 0.5). 500 simulations were
run for each combination of intervention parameters.

2.5 Impact of parameter uncertainty

The impact of parameter uncertainty was investigated by testing a range of parameter values in a sensit-
ivity analysis. The values were based on the uncertainty in the sample data. The parameters varied and
the distributions from which they were sampled were as follows:

• The equilibrium malaria prevalence on Pemba, I∗
1 ∼ Beta(32, 2242) ;

• The equilibrium malaria prevalence on Unguja, I∗
2 ∼ Beta(92, 3196);

• The targeting ratio in index households in Pemba, τ (h)
1 ∼ Beta(20,427)

I∗
1

;

• The targeting ratio in index households in Unguja, τ (h)
2 ∼ Beta(64,470)

I∗
2

;

• The targeting ratio in neighbouring households in Pemba, τ (n)
1 ∼ Beta(13,1147)

I∗
1

;

• The targeting ratio in neighbouring households in Unguja, τ (n)
2 ∼ Beta(26,1619)

I∗
2

;

• The number of people tested by the RCD programme in the index household in Pemba, ν(h)
1 ∼

Normal(7.02, 0.24);
• The absolute number of people tested by the RCD programme in the index household in Unguja,
ν

(h)
2 ∼ Normal(6.36, 0.25);

• The absolute number of people tested by the RCD programme in neighbouring households in
Pemba, ν(n)

1 ∼ Normal(20.36, 0.50);
• The absolute number of people tested by the RCD programme in neighbouring households in

Unguja, ν(n)
2 ∼ Normal(18.76, 0.58).

Subscripts of 1 and 2 indicate Pemba and Unguja, respectively. 100 random values were selected
from these parameter distributions, and each set of values was simulated with five different seeds, forming
a total of 500 simulations for each intervention. The 95% confidence intervals of the distributions used
for these parameters can be found in Table 3.
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3 Results

3.1 SIS model including human movement

The SIS transmission model described by Eq. (4) showed standard dynamics of reaching the equilibrium
prevalence seen in the RADZEC study. When human movement was removed by changing the move-
ment matrix, θ, to an identity matrix, the equilibrium prevalence dropped to zero on both Pemba an
Unguja. This result is to be expected as the calibrated transmission parameter is lower than the natural
parasite clearance rate in both Pemba and Unguja. The calibrated values for β were 0.0048 (95% CI:
0.0044-0.0050), 0.0037 (95% CI: 0.0025-0.0.047) for Pemba and Unguja, respectively. Rc, given by the
transmission rate divided by the recovery rate, was found to be 0.95 (95% CI: 0.88-1.00) on Pemba and
0.74 (95% CI: 0.50-0.94) on Unguja.

An analysis of the reproductive number of the whole system showed that the overall reproductive
number is highly dependent on the transmission rate on mainland Tanzania. Details of this can be found
in the Supplementary Information.

3.2 SIS model including human movement and an RCD programme

All simulations were initially calibrated to the baseline scenario of 35.3% follow up of index cases at the
household level only. Year 0 is when the intervention is introduced.

Figure 3 shows the time series expected from changing the proportion of cases followed up by a DMSO
and expanding to four neighbouring households in the follow up (the equivalent of testing and treating
20 more people per index case). The proportion of cases followed up was varied between no follow up
and 100% follow up of index cases at the index household level, with the three day follow up level set
as the baseline. While increasing follow up would lead to a decrease in the equilibrium prevalence, the
decrease is relatively small and is insufficient to lead to elimination of local transmission. Similarly, due
to the low malaria prevalence outside of the index household, expanding the RCD programme to include
neighbours is unlikely to make a substantial difference.

Figure 3: 7-day moving average of the median of 500 stochastic simulations for an SIS model
of RCD for Pemba and Unguja comparing following up at just the index household versus
including follow up at four neighbouring households, for different levels of index case follow up.
‘HH’ stands for household. Note, the y-axes differ between islands.
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Doubling the daily rate at which an individual infected with malaria seeks treatment doubles the
number of infections found by the RCD system for a given prevalence, thus decreasing the equilibrium
prevalence (Fig. 4). For example, maintaining the 3 day follow up proportion of malaria cases of 35%
but doubling the daily treatment seeking rate is expected to reduce the average number of infected
individuals on Pemba and Unguja by 9% and 8%, respectively. Nonetheless, this is insufficient in itself
to reach elimination.

Figure 4: 7-day moving average of the median of 500 stochastic simulations for an SIS model
of RCD for Pemba and Unguja comparing the current RCD system to a system where the
treatment seeking rate was doubled. ‘HH’ stands for household. Note, the y-axes differ between
islands.

Figure 5 shows the impact of switching from RCD to rfMDA, thus bypassing the need for an RDT
test. This would ensure that the 66% of infected individuals who would test negative with an RDT
still receive treatment. While the impact is larger than increasing the treatment seeking rate, it is still
insufficient to reach elimination, even when combined with increasing the proportion of cases followed up
to 100% and treating four neighbouring households as well as the index household.

Similarly, treating 50% of cases imported from mainland Tanzania so that they do not lead to any
secondary cases is expected to have a substantial effect on the endemic equilibrium on Pemba and
Unguja (Fig. 6), but not lead to elimination, as there are sufficient imported cases to maintain endemic
transmission.

Treating people who travel would need to achieve high coverage for both travellers to and from
mainland Tanzania to achieve a substantial reduction in prevalence, as illustrated in Fig. 7. Time-
series plots for a range of treatment proportions can be found in the Supplementary Information. Due
to the transmission rate being substantially higher on Pemba than Unguja, even treating all malaria
importations from mainland Tanzania would likely be insufficient to lead to elimination within 40 years on
either Pemba or Unguja, as infections would be imported from Pemba to Unguja, sustaining transmission.

3.3 Impact of parameter uncertainty

Our analysis suggests that switching from RCD to rfMDA (at the same proportion of index cases followed
up at the household level: 35.3%) has a similar impact as increasing the follow up proportion in the RCD
programme to 100%, but neither increase the recovery rate sufficiently to lead to elimination. A larger
decrease in prevalence is seen if rfMDA is implemented with 100% of follow up at the index case household
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Figure 5: 7-day moving average of the median of 500 stochastic simulations for an SIS model of
RCD for Pemba and Unguja comparing the current RCD system to rfMDA in the index house-
hold and to one with both rfMDA in the index household and in four neighbouring households,
for different levels of index case follow up. ‘HH’ stands for household. Note, the y-axes differ
between islands.

Figure 6: 7-day moving average of the median of 500 stochastic simulations for an SIS model of
RCD for Pemba and Unguja comparing the current RCD system to a combination of RCD and
an intervention where 50% of imported cases are treated before they can infect other residents,
for different levels of index case follow up. ‘HH’ stands for household. Note, the y-axes differ
between islands.
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Figure 7: Heatmap showing the median final prevalence reached after 40 years out of 500
stochastic runs when treatment of travellers is included.

level, or if 50% of imported cases are treated. When parameter uncertainty is included in the simulations,
we find that although the final prevalence reached in 40 years is sensitive to the varied parameters (see
Fig. 8), the overall trends remained the same. It is worth noting that the median prevalence reached
after 40 years across 100 parameter sets differs from the prevalence reached in previous figures due to the
difference in the median and modal values of the parameter distributions (see Supplementary Information
for details).

4 Discussion

Our results suggest that case importation and the low test sensitivity of RDTs in asymptomatic patients
are the main factors that should be targeted to substantially reduce Zanzibar’s malaria burden, while
continuing to maintain the vector control measures that are currently in place. Removing the RCD
programme would likely lead to an increase in malaria prevalence, but increasing follow up to cover all
malaria cases arriving at a health facility would still be insufficient for reaching elimination. Treating
imported cases, implementing rfMDA at the household level and increasing the rate at which infected
people seek treatment would help reduce the endemic prevalence on both islands substantially. 100%
imported case treatment is expected to reduce the prevalence below 1 case per 100,000 on Unguja and
1.4 cases per 10,000 population on Pemba, as Zanzibar acts as a sink for infections from mainland
Tanzania, where prevalence is higher. This result assumes that all current measures are maintained.
Relaxing interventions already in place may lead to the local reproduction number being higher than 1,
and thus elimination would not be achieved even with treating 100% of imported cases.

As those residing in the same household as index cases are significantly more likely to test positive for
malaria than those residing in neighboring households [3], the extra effort of testing neighboring residents
makes little difference to overall transmission as compared to increasing follow up at the households of
index cases.

Moving from RCD to rfMDA allows for the treatment of approximately three times more cases for any
given prevalence, particularly low density infections that are less likely to be detected by RDT, but may
still contribute to onward transmission. It is possible that early infections in neighbours are missed by
RCD as the parasite density may be too low to be detected by RDTs. A previous field study compared
RCD to rfMDA in the low malaria-endemic setting of Namibia and found a significant reduction in
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Figure 8: Bar chart showing the final equilibrium value after 40 years of the SIS model with
the current RCD system (baseline), an RCD system with 100% follow up, replacing the RCD
system with rfMDA, both replacing the RCD system with rfMDA and increasing follow up to
100%, and treating 50% of imported cases while maintaining the baseline RCD programme. The
error bars here show the 95% confidence interval for both the stochastic variation and parameter
uncertainty.

incidence in the rfMDA arm [16]. rfMDA in this context could also have a prophylactic effect, preventing
onward transmission from the index case. However, rfMDA involves substantially more antimalarial
exposure than RCD. This may have a negative effect on parasite resistance [31, 32]. Increases in drug
resistance may lead to increased treatment failure rates, leading to a resurgence in malaria prevalence,
though this was not found to be a frequent cause of malaria resurgence in previous work [33].

These results are broadly in line with findings from other studies on RCD effectiveness in different set-
tings. A recent study of mass drug administration campaigns in the Greater Mekong Subregion suggested
that an RCD programme in the region would have missed 99.6% of Plasmodium infections [34]. When
modelling RCD in southern Zambia, the number of people presenting to a health facility with malaria
and being followed up was found to be a limiting factor for an RCD programme’s success [13]. Similarly,
an independent study of Zambia’s reactive case detection system found that in low-transmission settings,
improving case management (the rate at which patients seek treatment from health facilities) would have
a greater impact on onward transmission than further improving the RCD system [14]. Additionally,
this study highlighted that in both low and high transmission settings, importation management was
crucial for successful disease elimination. Similar results were found by Le Menach et al when examining
malaria importation rates onto Pemba and Unguja in 2012 [17]. Our findings also show that importation
management is key to interrupting transmission on Unguja and substantially reducing disease prevalence
on Pemba. As the average time spent on mainland Tanzania is higher amongst Unguja residents in the
sample, as compared to Pemba residents, the effect of importation was estimated to be larger on Unguja
than on Pemba.

Reconstructing travel history data from survey responses is prone to underestimates of travel fre-
quency as certain trips may not be recalled. Thus, our estimate of the amount of time Zanzibari residents
spend away from home are likely to be underestimates. Therefore, malaria importation is likely to play a
larger role in malaria persistence than estimated here. We have also not considered the seasonal variation
in travel. The busiest travel period typically falls between October and December, which coincides with
the shorter period of seasonal rainfall [2, 17]. This variation throughout the year will also impact the
rate of case importation into the region.
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Additionally, we have assumed that malaria transmission is constant throughout the year on the
islands. The data used in this study is averaged across both high and low seasons of transmission [3].
Seasonal transmission likely increases the importance of imported cases, as elimination may be achieved
in the dry season, but cases are re-introduced in the wet season when the transmission rate is higher.
Also, reactive vector control is another reactive intervention that may be considered in the wet season,
which would involve spraying insecticide inside index and neighbouring households to prevent further
transmission from known cases. A field study of reactive vector control found adding it to RCD or
rfMDA had an additional benefit in reducing malaria incidence in Namibia [16].

This analysis does not preclude the existence of smaller foci of transmission that could exist on these
islands. Transmission is likely to be heterogeneous, with local sources and sinks of cases. As there
was insufficient data on local movement patterns within each island, each island has been treated as
homogeneous. Extending this analysis with other sources of data on travel, such as call record detail
data, would allow for a finer-scale analysis of parasite sources and sinks.

Additionally, as the model presented here is an SIS model, it does not include the relationship between
infection and disease, which would play a role in the effectiveness of an RCD programme that relies on
patients seeking treatment. This should be considered in future work conducted in this area.

Here, we have defined malaria elimination as having zero malaria infections present on an island. In
contrast, the World Health Organization defines a country to have eliminated malaria when they have
zero indigenous cases for three consecutive years, allowing for some imported and introduced cases [1].
Thus, our definition of elimination is a stricter definition in comparison to the World Health Organization.

5 Conclusion

Our analysis suggests that the current interventions in place on Unguja have sufficiently reduced the
transmission rate such that malaria elimination could be achieved in the absence of imported cases. On
Pemba, the situation is less clear, though the mean controlled reproduction number is below 1. Current
interventions should be maintained, and improvements to the surveillance-response system are expected
to have an incremental effect on the malaria prevalence. Interventions with the most impact were found
to be those that removed the majority of cases imported to the islands.
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