1	HIV co-infection is associated with lower tuberculosis bacterial burden independent of time
2	to diagnosis in Botswana, a setting with widespread ART use
3	
4	Juliana S. Chalfin ¹ *, Chelsea R. Baker ¹ *, Balladiah Kizito ² , Dimpho Otukile ² , Matsiri T.
5	Ogopotse ² , Sanghyuk S. Shin ¹ **, Chawangwa Modongo ² **
6	
7	¹ Sue & Bill Gross School of Nursing, University of California Irvine, Irvine, CA, USA
8	² Victus Global Botswana Organisation, Gaborone, Botswana
9	
10	*Co-first author
11	**Co-senior author
12	
13	Corresponding author:
14	Sanghyuk Shin, PhD
15	Associate Professor, Sue & Bill Gross School of Nursing
16	Director, UCI Infectious Disease Science Initiative
17	University of California Irvine
18	106F Berk Hall
19	Irvine, CA 92697
20	Email: ssshin2@uci.edu
21	Phone: 949-576-8675
22	
23	

2

24 Abstract:

25 HIV co-infection has been shown to be associated with lower tuberculosis (TB) bacterial load in 26 studies conducted prior to widespread availability of antiretroviral therapy (ART). We 27 investigated associations between HIV co-infection and TB bacterial load, accounting for differences in time to TB diagnosis, in a high prevalence setting with widespread ART use. In 28 29 Gaborone, Botswana, 268 sputum samples from people with newly diagnosed TB were tested 30 with Xpert MTB/RIF Ultra (Xpert). TB bacterial load and time to TB diagnosis were estimated 31 using mean Xpert cycle threshold (CT) and symptom duration, respectively. Multiple linear 32 regression models and causal mediation analysis were used to determine the associations 33 between HIV and Xpert CT and assess the mediating effect of symptom duration. Mean CT 34 values were higher in people living with HIV compared to people without HIV (22.7 vs 20.3, p < p35 0.001). Among those living with HIV, there was a negative relationship between CD4 count and 36 mean CT value (Spearman's rho -0.20, p = 0.06). After controlling for gender, age, and symptom 37 duration, HIV status remained associated with CT value, with an average increase of 1.6 cycles (p = 0.009) among people with HIV and CD4 count > 200 cells/mm³ and 2.1 cycles (p = 0.002)38 in those with a CD4 count ≤ 200 cells/mm³ compared to individuals without HIV. Symptom 39 40 duration was also found to be associated with CT value (p < 0.05). We found an indirect effect of 41 HIV status on Xpert CT through the mediator, symptom duration ($\beta = 0.33$, p = 0.048), 42 accounting for 13.5% of the relationship. Our findings suggest that time to TB diagnosis partially 43 mediates the relationship between HIV status and CT value, but differences in pathophysiology 44 between people with and without HIV likely play a dominant role in affecting TB bacterial 45 burden.

3

47 Introduction

48 Globally, tuberculosis (TB) has remained a leading cause of death due to an infectious 49 disease with an estimated incidence of 10.0 million people with TB and 208,000 TB deaths 50 among people living with HIV (1). While the World Health Organization (WHO) has provided 51 goals to end the global TB epidemic, recent data indicate that targets for reduced incidence rates and deaths are not being met (2). In high burden areas, HIV poses as the greatest risk factor for 52 53 developing TB, exacerbating existing susceptibility to primary infection or reactivation of latent 54 TB (3). Southern Africa continues to report the highest prevalence of TB/HIV co-infection, 55 demonstrating an urgent need to better understand TB transmission dynamics to reduce TB 56 incidence and mortality (4). 57 The likelihood of TB transmission depends in part on the degree of infectiousness, which 58 is often measured in clinical settings using bacterial load present in sputum (5). While this is 59 commonly done using smear microscopy, Xpert MTB/RIF assays (Xpert) have been suggested 60 as an alternative (6,7). Xpert is a diagnostic test that uses real-time polymerase chain reaction 61 (PCR). Quantitative estimation of TB bacterial load can be inferred through cycle threshold (CT) 62 values (8). CT values convey an inverse relationship to bacterial load as a higher CT value 63 signifies lower bacterial load and lower CT value signifies higher bacterial load. 64 Sputum bacterial load is influenced by pathophysiology of active TB disease, which involves destruction of lung tissue, generating cavities that pass *M. tuberculosis* bacteria to 65 airways (9). Therefore, the level of lung damage contributes to the transmission potential of a 66 67 TB-infected individual. However, among people with HIV and TB, lower CD4+ T cell counts 68 have been associated with reduced lung inflammation (9). The reduced inflammation can result 69 in decreased cavitation, sputum bacterial load, and ultimately reduced infectiousness, as

4

70	suggested by the higher frequency of smear-negative pulmonary TB within untreated people
71	living with HIV (9,10). For example, a previous study has corroborated the findings that
72	increased immunosuppression, defined as CD4 count < 200 cells/mm ³ , was associated with
73	decreased bacterial burden, measured through CT values (6). Consequently, untreated HIV
74	infection can change TB disease presentation and reduce TB infectiousness.
75	Bacterial burden may be impacted by delays in diagnosis, as the active disease state
76	involves bacilli replication. Decreased TB bacterial burden with HIV co-infection may be
77	partially related to early TB diagnosis and treatment initiation (9,10). Treatment for HIV
78	typically involves frequent contact with the healthcare system, including increased opportunities
79	for TB case finding and prompt treatment (9). Therefore, the association between HIV status and
80	TB bacterial burden may be mediated by earlier TB diagnosis among people living with HIV.
81	Antiretroviral therapy (ART), the treatment of choice for managing HIV/AIDS, has
82	significantly improved the quality of life of people living with HIV since it decreases the viral
83	load and restores normal immune function against opportunistic pathogens (11). Access to
84	effective treatment for HIV has greatly expanded, and as of 2020 an estimated 75% of people
85	living with HIV (with known HIV status) were receiving ART (12). Further research is needed to
86	understand its effect in settings with a high burden of both HIV and tuberculosis (9). As ART
87	alters the disease process of HIV, there is a gap in knowledge of whether HIV-coinfection
88	remains associated with reduced TB infectiousness during the present time when ART is widely
89	available.
90	The purpose of this study was to determine associations between HIV co-infection and

92 association, in a high prevalence setting. This study could contribute to understanding how HIV-

5

93 coinfection affects infectiousness and transmission risk of TB in the current era of widespread94 ART use.

- 95
- 96 Methods
- 97 Study Design, Setting, and Population

98 Botswana is a country in southern Africa with a high burden of TB and among the 99 highest rates of TB-HIV co-infection in the world. This cross-sectional analysis is part of an 100 ongoing population-based TB transmission study in Gaborone, the capital city of Botswana. 101 Participants were sequentially enrolled after diagnosis of TB from community or health care 102 facilities. All participants were recruited in accordance with Botswana national guidelines. 103 Active case finding, involving the screening of all patients, and passive case finding, involving 104 clinical diagnosis of patients presenting with TB symptoms, were utilized in 26 public health 105 facilities. Participants included male and female patients of all ages. Clinical and demographic 106 data were collected through a standardized questionnaire that captured information about TB 107 symptoms and their duration (< 1 month, 1-2 months, 2-3 months, and > 3 months prior to 108 diagnosis). Smoking and alcohol use were collected as these variables are known to impact TB 109 transmission as well as the immune system. Smoking has been shown to increase infectiousness 110 by increasing the aerosolization of bacilli through changes in mucus and increased cough 111 frequency (13). Furthermore, alcohol impairs the immune system leading to increased 112 susceptibility to TB as well as reactivation and is associated with social environments that 113 facilitate TB transmission (14). Participants provided their consent for us to access their medical 114 records to collect TB and HIV history, including CD4 cell counts, viral load, and ART history. 115 We recorded CT values for five probes in the Xpert (Xpert MTB/RIF Ultra) test used for clinical

6

diagnosis. Mean CT values across all probes was used as the primary measure of bacterial load.
Participant-reported duration of symptoms was used as an approximate measure of time to
diagnosis.

119 Statistical Analysis

120 Standard descriptive statistics were used to characterize the data. The sample population 121 of CT values was compared between groups of participants by HIV status and CD4 count using 122 the nonparametric Wilcoxon test. CT values were also compared between groups of participants 123 by symptom duration using the Wilcoxon test to determine significant difference. Odds ratios 124 were estimated using a dichotomous variable for symptom duration (< 1 month and \geq 1 month) 125 by HIV status and CD4 count category. Spearman correlation was used to assess the relationship 126 between CD4 counts and mean CT values among participants living with HIV since values were 127 not normally distributed. Bivariate linear regression was used to examine the association 128 between mean CT value as the outcome variable and selected patient characteristics as predictor 129 variables. Multivariate linear regression models were used to control for confounding variables 130 including age and gender to examine the relationship with HIV status as the primary exposure 131 variable of interest. We also compared multivariate models with and without symptom duration 132 to estimate the extent to which the association between HIV status and bacterial load is explained 133 by differences in time to diagnosis. Causal mediation analysis was performed using the R 134 package mediation to determine the mediation effects of symptom duration, as a dichotomous 135 variable, on the relationship between HIV status and CT value (15). Bootstrapping was used to 136 test the significance of the indirect effect, using 500 samples. All statistical analyses were 137 conducted using the R statistical software version 4.1.2 (16).

138 **Ethics Approval**

139	This study was approved by institutional review boards at the University of Irvine,
140	California and Botswana Ministry of Health and Wellness Human Research Development
141	Committee. All participants provided written consent for research use of clinical data.
142	
143	Results
144	Sample Population
145	During January 2021 to August 2022, 379 participants had positive Xpert results, of
146	which 338 participants had valid corresponding Xpert CT value results. Of those, 70 individuals
147	(20.7%) were excluded from analysis due to missing HIV results (n=12), CD4 counts that were
148	either missing (n=42) or taken greater than six months from the initial interview (n=13), or
149	missing symptom duration (n=3). A total of 268 participants were included in our analysis.
150	Overall, 68.7% were male, and the median age was 34 (interquartile range [IQR]: 25-45.25)
151	(Table 1). People with HIV comprised 33.2% with a CD4 count median of 263 cells/mm ³ (IQR:
152	100-523). At the time of enrollment, 25% and 43.3% reported smoking and alcohol use,
153	respectively. The proportion of participants reporting TB symptoms for < 1 month was 55.1%
154	and 38.5% among people with and without HIV, respectively. Among individuals with HIV,
155	43.8% had CD4 counts of \leq 200 cells/mm ³ , 61.8% reported taking ART at the time of TB
156	diagnosis, and median viral load was 30.0 copies/mL (IQR: ≤20-400; Figure 1).
	Table 1. Demographic and Clinical Information by HIV Status of Individuals

Tuble 1. Demographie and	Tuble 1. Demographic and enheur mornation by 111 Status of marviauus						
in Botswana 2021-2022							
	Negative	Positive	Overall				
	(N=179)	(N=89)	(N=268)				
Gender							
Female	57 (31.8%)	27 (30.3%)	84 (31.3%)				
Male	122 (68.2%)	62 (69.7%)	184 (68.7%)				
Age							
0-19	18 (10.1%)	0 (0%)	18 (6.7%)				
20-29	72 (40.2%)	10 (11.2%)	82 (30.6%)				

8

30-39	42 (23.5%)	29 (32.6%)	71 (26.5%)
40-49	19 (10.6%)	28 (31.5%)	47 (17.5%)
50-65	17 (9.5%)	22 (24.7%)	39 (14.6%)
65+	11 (6.1%)	0 (0%)	11 (4.1%)
Currently Smoking			
Yes	44 (24.6%)	23 (25.8%)	67 (25.0%)
No	135 (75.4%)	66 (74.2%)	201 (75.0%)
Currently Drinking Alcohol			
Yes	78 (43.6%)	38 (42.7%)	116 (43.3%)
No	101 (56.4%)	51 (57.3%)	152 (56.7%)
Symptom Duration			
<1 month	69 (38.5%)	49 (55.1%)	118 (44.0%)
1-2 months	70 (39.1%)	27 (30.3%)	97 (36.2%)
2-3 months	16 (8.9%)	9 (10.1%)	25 (9.3%)
3+ months	24 (13.4%)	4 (4.5%)	28 (10.4%)
HIV Status			
HIV-	179 (100%)	0 (0%)	179 (66.8%)
HIV+CD4 > 200	0 (0%)	50 (56.2%)	50 (18.7%)
$HIV+CD4 \le 200$	0 (0%)	39 (43.8%)	39 (14.6%)

157

Figure 1: (A) Histogram of individuals' mean CT values among all participants. (B) Histogram
of individuals' CD4 counts among participants living with HIV. (C) Histogram of individuals'
viral load among participants living with HIV. (D) Bar graph of frequency, measured in percent,
of ART history among participants living with HIV.

162 Symptom Duration

163 The percentage of participants experiencing symptoms >1 month was 61.5% among

164 people without HIV, 48% among those with HIV and CD4 counts > 200 cells/mm³, and 41%

among those with HIV and CD4 counts ≤ 200 cells/mm³ (Figure 2). Participants living with HIV

166 with CD4 counts \leq 200 cells/mm³ had significantly decreased odds of symptom duration >1

- 167 month compared to those without HIV (OR 0.44, p = 0.021), but no statistically significant
- 168 difference was found between people with HIV and CD4 count >200 cells/m3 and people
- 169 without HIV (Table 2).
- 170 **Figure 2:** Comparison of symptom duration length between HIV status.

9

and CD4 Count Breakdown						
Characteristic	OR^1	95% CI ¹	p-value			
HIV status						
HIV-						
HIV+CD4 > 200	0.58	0.31, 1.09	0.090			
HIV+ CD4 ≤ 200	0.44	0.21, 0.88	0.021			
		-				

Table 2 Odds ratio for Symptom Duration Greater than 1 Month by HIV Status

 $^{1}OR = Odds Ratio, CI = Confidence Interval$

171

172 **Distribution of CT Value**

173 The mean CT value across all participants was 21.1 (IQR: 18.1-23.1) with a range of

174 17.1-33.9 (Figure 1A). Mean CT values were higher among people living with HIV in

175 comparison to people without HIV (22.7 vs 20.3, p < 0.001) (Figure 3A). This was noted for

those with CD4 >200 cells/mm³ (p = 0.009) as well as ≤ 200 cells/mm³ (p < 0.001). However, 176

the difference between participants in the two CD4 count categories was not significant (23.0 vs 177

23.3 for CD4 >200 cells/mm³ and \leq 200 cells/mm³, respectively, p = 0.34). 178

179 Figure 3: (A) Boxplot comparing mean CT values between HIV status and CD4 count, among

180 those living with HIV. (B) Boxplot comparing mean CT values between groups of symptoms

181 duration prior to diagnosis, measured in months. (C) Scatterplot comparing mean CT values and

182 CD4 cell counts among participants with HIV.

183 Among participants living with HIV, there was a weak negative correlation between CD4 184 count and mean CT value (Spearman's rho -0.2; p = 0.06; Figure 3C). Participants who reported

185 symptoms for < 1 month had higher mean CT values compared to those that reported symptoms

186 for 1-2 months, 2-3 months, and > 3 months prior to diagnosis (p = 0.013; p = 0.013; p = 0.017

187 respectively) (Figure 3B).

Individual Level Predictors of CT Value 188

10

189	In a bivariate linear regression model, compared to participants without HIV, mean CT
190	values were increased by 2.1 (p < 0.001) in participants living with HIV with CD4 counts >200
191	cells/mm ³ and by an average of 2.7 ($p < 0.001$) in participants living with HIV with CD4 counts
192	\leq 200 cells/mm ³ (Table 3). The bivariate linear regression model displays a decreasing trend in
193	mean CT values as the duration of symptoms increases.

Participants				mong An
Characteristic	N	Beta	95% CI ¹	p-value
Gender	268			
Female				
Male		-0.43	-1.4, 0.59	0.41
Age	268	0.06	0.03, 0.09	< 0.001
Currently Smoking	268			
Yes				
No		0.86	-0.23, 2.0	0.12
Currently Drinking Alcoh	nol 268			
Yes				
No		0.36	-0.59, 1.3	0.46
Symptom Duration	268			
<1 month				
1-2 months		-1.5	-2.5, -0.42	0.006
2-3 months		-2.6	-4.2, -0.92	0.002
3+ months		-2.4	-4.0, -0.81	0.003
HIV Status	268			
HIV-				
HIV+ CD4 > 200		2.1	0.89, 3.3	< 0.001
$HIV+CD4 \le 200$		2.7	1.3, 4.0	< 0.001
CD4 Count	89	0.00	-0.01, 0.00	0.11
Viral Load	77	0.00	0.00, 0.00	0.57
ART History	85			
Patient has never taken	ARTs			
Patient is taking ARTs		-0.42	-2.5, 1.7	0.70
Patient took ARTs but s	stopped	-3.7	-7.4, -0.02	0.049

 $^{1}CI = Confidence Interval$

196 multivariate linear regression model, HIV status, including the CD4 count breakdown for

197 participants with HIV, and symptom duration were significant predictors of mean CT (Table 4).

198 When controlling for gender, age, and symptom duration, the mean CT value was 1.6 cycles

199	higher (p = 0.009) among people with HIV and CD4 count > 200 cells/mm ³ and 2.1 cycles
200	higher (p = 0.002) in those with a CD4 count \leq 200 cells/mm ³ compared with the reference group
201	of individuals without HIV. After controlling for gender, age, and HIV status, the mean CT value
202	decreased by 1.1 cycles ($p = 0.026$), 2.2 cycles ($p = 0.007$), and 1.6 cycles ($p = 0.043$) for
203	participants that reported TB symptoms 1-2 months, 2-3 months, and > 3 months, respectively,
204	prior to diagnosis compared to those that reported symptoms < 1 month prior. The mean CT
205	value also increased by 0.04 cycles with age as a continuous variable ($p = 0.022$) in the
206	multivariate linear regression model controlling for gender, HIV status, and symptom duration.
207	In a multivariate linear regression model that only included people with HIV, the association
208	between CD4 count and CT did not reach statistical significance when controlling for gender,
209	age, CD4 count, viral load, and ART History ($p=0.2$; Table 5).

Table 4. Multivariate Regression Models for Mean CT among All Participants							
	Excl	Excluding Symptom			Including Symptom		
		Duration			Duration		
Characteristic	Beta	95%	p-value	Beta	95%	p-value	
		CI^1			CI^1		
Gender							
Female							
Male	-0.70	-1.7,	0.2	-0.69	-1.7,	0.2	
		0.28			0.29		
Age	0.04	0.01,	0.007	0.04	0.01,	0.022	
		0.08			0.07		
HIV Status							
HIV-							
HIV+ CD4 > 200	1.7	0.53,	0.005	1.6	0.40,	0.009	
		2.9			2.8		
HIV+ CD4 ≤ 200	2.3	1.0, 3.6	< 0.001	2.1	0.78,	0.002	
					3.4		
Symptom Duration	Symptom Duration						
<1 month							
1-2 months				-1.1	-2.2, -	0.026	
					0.14		
2-3 months				-2.2	-3.8, -	0.007	
					0.62		

1	\mathbf{a}
	· /
_	_

210	3+ months	-1.6	-3.2, -	0.043
			0.05	

 $^{1}CI = Confidence Interval$

Table 5. Multivariate Regression Model for Mean CT amongParticipants Living with HIV

Characteristic	Beta	$95\% \text{ CI}^1$	p-value
Gender	•		
Female			
Male	-0.44	-2.8, 1.9	0.7
Age	0.02	-0.09, 0.13	0.7
CD4 Count by 10	-0.03	-0.07, 0.02	0.2
Log10 Viral Load	0.31	-0.76, 1.4	0.6
ART History			
Patient has never taken ARTs			
Patient is taking ARTs	-0.03	-2.8, 2.7	>0.9
Patient took ARTs but stopped	-3.7	-8.0, 0.54	0.086

- $^{1}CI = Confidence Interval$
- 212

213 The mediation analysis found a total effect of HIV status of CT value of $\beta = 2.3$ (p <

214 0.001; Table 6). The indirect effect through the mediator, symptom duration, was statistically

significant ($\beta = 0.33$, p = 0.048) with mediation accounting for 13.5% of the relationship. The

216 direct effect of HIV status on Xpert CT remained statistically significant ($\beta = 2.1, p < 0.001$).

Table 6: Mediation Analysis of the association between HIV status and mean Xpert CT values with symptom duration as mediator among people newly diagnosed with tuberculosis in Botswana

	Estimate	p-value	
Indirect Effect	0.326	0.048	
Direct Effect	2.085	< 0.001	
Total Effect	2.411	< 0.001	
Prop. Mediated	0.135	0.048	

217

218 Discussion

219 Using mean CT as a measure of TB bacterial burden, we found an association between

220 decreased sputum bacterial burden and increased immunosuppression among people living with

HIV in a high burden setting during the time of widespread access to ART. Additionally,

13

222 increase in duration of symptoms was associated with decrease in mean CT values, indicating an 223 increase in sputum bacterial burden. Our findings are consistent with earlier findings that those 224 living with HIV experience lower TB sputum bacterial burden compared to those without HIV 225 (6, 8). For example, Burger et al. compared CT values from sputum and saliva from both people 226 living with and without HIV, and concluded that patients living with HIV had significantly lower 227 bacterial load than individuals without HIV (17). However, prior studies did not investigate the 228 mediating role of time to TB diagnosis. Our study findings support the observation that HIV 229 changes the presentation of TB with a lower sputum TB bacterial load, potentially due to less 230 inflammation and cavitation (6, 8). 231 As ART decreases the viral load and restores normal immune function, it has the 232 potential to shift the TB disease presentation to be similar to those without HIV. A study using 233 smear microscopy found that ART increased smear positivity and cavitation among participants 234 with HIV, with lower proportions compared to individuals without HIV (18). As ART has a 235 positive relationship with CD4 count, we expected higher CD4 counts among people with HIV 236 in our study and similar levels of TB bacterial load by HIV status. However, our data show a 237 significant proportion of people with HIV/TB co-infection have advanced immune suppression 238 and, therefore, TB bacterial load remains lower among people living with HIV compared to 239 those without HIV even in settings with widespread ART use. 240 Symptom duration prior to diagnosis can be used as a measure of diagnostic delay. Our

241 data suggests a negative correlation between symptom duration and CT values after controlling 242 for confounding variables. Previous studies suggest that people living with HIV are more likely 243 to be diagnosed for TB faster due to more severe symptoms or increased contact with healthcare 244 systems (9). Our data supports this finding since a significant difference was found between

245	participants with and without HIV with symptom duration for < 1 month before diagnosis. Our
246	findings suggest that the association between HIV-associated immunosuppression and CT values
247	is partially mediated by differences in timeliness of TB diagnosis between people with and
248	without HIV. However, 86.5% of this association was not mediated by TB symptom duration,
249	which suggests that differences in pathophysiology between people with and without HIV play a
250	dominant role in affecting TB bacterial burden.
251	Limitations to our study include the cross-sectional design, which limits our ability to
252	establish causal relationships. Predictors of CT values are important to understand since the level
253	of bacterial load has implications for transmission. Future studies should examine HIV status in
254	relation to TB transmission among close contacts to directly demonstrate the applicability of CT
255	values in determining transmission risks.
256	In conclusion, our data demonstrate that HIV status remains a predictor of TB
257	infectiousness even when ART is widely available. Duration of symptoms was found to partially
258	mediate this relationship. Individuals living without HIV may be at a greater risk of transmitting
259	TB to their contacts. Further research should directly assess TB outcomes and transmission based
260	on CT results to advance understanding of its utility in clinical and community health practice.
261	
262	
263	
264	
265	
266	
267	Acknowledgements

15

268	We are grateful	l to the study	participants v	who donated	their time a	nd clinical	specimens t	o make

this study possible.

270

271 References

- 1. World Health Organization. Global Tuberculosis Report 2021. [cited 2023 Jan 10]. Available
- from: https://www.who.int/teams/global-tuberculosis-programme/tb-reports/global-
- tuberculosis-report-2021
- 275 2. World Health Organization. Tuberculosis (TB) [Internet]. [cited 2022 Jan 10]. Available
- 276 from: https://www.who.int/news-room/fact-sheets/detail/tuberculosis
- 3. Bruchfeld J, Correia-Neves M, Källenius G. Tuberculosis and HIV Coinfection. Cold Spring
 Harb Perspect Med. 2015 Jul 1;5(7):a017871.
- 4. Akwafuo SE, Abah T, Oppong JR. Evaluation of the Burden and Intervention Strategies of
- 280 TB-HIV Co-Infection in West Africa. J Infect Dis Epidemiol. 2020 Jul 10. 6:143.
- 281 doi.org/10.23937/2474-3658/1510143
- 5. Dye C, Williams BG. The Population Dynamics and Control of Tuberculosis. Science. 2010
 May 14;328(5980):856–61.
- 6. Hanrahan CF, Theron G, Bassett J, Dheda K, Scott L, Stevens W, et al. Xpert MTB/RIF as a
- 285 Measure of Sputum Bacillary Burden. Variation by HIV Status and Immunosuppression. Am
- 286 J Respir Crit Care Med. 2014 Jun;189(11):1426–34.
- 287 7. Beynon F, Theron G, Respeito D, Mambuque E, Saavedra B, Bulo H, et al. Correlation of
- 288 Xpert MTB/RIF with measures to assess Mycobacterium tuberculosis bacillary burden in
- high HIV burden areas of Southern Africa. Sci Rep. 2018 Mar 26;8(1):5201.

- 290 8. Lawn SD, Nicol MP. Xpert® MTB/RIF assay: development, evaluation and implementation
- 291 of a new rapid molecular diagnostic for tuberculosis and rifampicin resistance. Future
- 292 Microbiol. 2011 Sep;6(9):1067–82.
- 293 9. Peters JS, Andrews JR, Hatherill M, Hermans S, Martinez L, Schurr E, et al. Advances in the
- 294 understanding of Mycobacterium tuberculosis transmission in HIV-endemic settings. Lancet
- 295 Infect Dis. 2019 Mar 1;19(3):e65–76.
- 296 10. Kwan CK, Ernst JD. HIV and Tuberculosis: a Deadly Human Syndemic. Clin Microbiol
- 297 Rev. 2011 Apr;24(2):351–76.
- 11. Treatment [Internet]. 2021 [cited 2023 Jan 10]. Available from:
- 299 https://www.cdc.gov/hiv/basics/livingwithhiv/treatment.html
- 300 12. UNAIDS data 2020 [Internet]. [cited 2022 Mar 27]. Available from:
- 301 https://www.unaids.org/en/resources/documents/2020/unaids-data
- 302 13. Turner RD, Bothamley GH. Smoking and the Transmission of Tuberculosis. Pediatr Infect
- 303 Dis J. 2015 Oct;34(10):1138.
- 304 14. Imtiaz S, Shield KD, Roerecke M, Samokhvalov AV, Lönnroth K, Rehm J. Alcohol
- 305 consumption as a risk factor for tuberculosis: meta-analyses and burden of disease. Eur
- 306 Respir J. 2017 Jul;50(1):1700216.
- 307 15. Tingley D, Yamamoto T, Hirose K, Keele L, Imai K. mediation □: *R* Package for Causal
- 308 Mediation Analysis. J Stat Softw [Internet]. 2014 [cited 2022 Dec 13];59(5). Available from:
- 309 http://www.jstatsoft.org/v59/i05/
- 310 16. R Core Team. R: A language and environment for statistical computing; 2018.

- 311 17. Burger ZC, Aung ST, Aung HT, Rodwell T, Seifert M. 658. Effect of HIV Status on
- 312 Tuberculosis Load as Detected by Xpert MTB/RIF in Sputum vs. Saliva Samples. Open
- 313 Forum Infect Dis. 2020 Oct 1;7(Supplement_1):S385–6.
- 314 18. Munthali L, Khan PY, Mwaungulu NJ, Chilongo F, Floyd S, Kayange M, et al. The effect of
- 315 HIV and antiretroviral therapy on characteristics of pulmonary tuberculosis in northern
- 316 Malawi: a cross-sectional study. BMC Infect Dis. 2014 Feb 25;14(1):107.

20

Distribution of CT Values

75

Distribution of CD4 Counts

log(viral load)

ART History

Percent with symptoms > 1 month by HIV status

