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Abstract 
Host genetics is a key determinant of COVID-19 outcomes. Previously, the COVID-19 
Host Genetics Initiative genome-wide association study used common variants to 
identify multiple loci associated with COVID-19 outcomes. However, variants with the 
largest impact on COVID-19 outcomes are expected to be rare in the population. Hence, 
studying rare variants may provide additional insights into disease susceptibility and 
pathogenesis, thereby informing therapeutics development. Here, we combined whole-
exome and whole-genome sequencing from 21 cohorts across 12 countries and 
performed rare variant exome-wide burden analyses for COVID-19 outcomes. In an 
analysis of 5,048 severe disease cases and 571,009 controls, we observed that carrying 
a rare deleterious variant in the SARS-CoV-2 sensor toll-like receptor TLR7 (on 
chromosome X) was associated with a 5.3-fold increase in severe disease (95% CI: 
2.75-10.05, p=5.41x10-7). These results further support TLR7 as a genetic determinant 
of severe disease and suggest that larger studies on rare variants influencing COVID-19 
outcomes could provide additional insights. 
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Introduction 
Despite successful vaccine programs, SARS-CoV-2 is still a major cause of mortality 
and widespread societal disruption1,2. While disease severity has correlated with well 
established epidemiological and clinical risk factors (e.g., advanced age, obesity, 
immunosuppression), these do not explain the wide range of COVID-19 presentations3. 
Hence, individuals without one of these known risk factors may have a genetic 
predisposition to severe COVID-194. These genetic determinants to severe disease can, 
in turn, inform about the pathophysiology underlying COVID-19 severity and accelerate 
therapeutics development5,6. 
 
Previous work on COVID-19 host genetics using genome-wide association studies 
(GWASs) revealed 23 statistically robust genetic loci associated with either COVID-19 
severity or susceptibility7–11. Given that most GWASs use genetic data obtained from 
genome-wide genotyping followed by imputation to measure the association between a 
phenotype and genetic variation, their reliability and statistical power declines as a 
variant’s frequency decreases, especially at allele frequencies of less than 1%12. 
Ascertainment of rare genetic variation can be improved with sequencing technology13. 
Rare variants are expected to be enriched for larger effect sizes, due to evolutionary 
pressure on highly deleterious variants, and may therefore provide unique insights into 
genetic predisposition to COVID-19 severity. Identifying such genes may highlight critical 
control points in the host response to SARS-CoV-2 infection. 
 
Measuring the effect of rare genetic variants on a given phenotype (here COVID-19) is 
difficult. Specifically, while variants of large effect on COVID-19 are more likely to be 
rare, the converse is not true, and most rare variants are not expected to strongly impact 
COVID-19 severity14. Therefore, unless large sample sizes and careful statistical 
adjustments are used, most rare variant genetic associations studies risk being 
underpowered, and are at higher risk of false or inflated effect estimates if significant 
associations are found between COVID-19 and genetic loci. This is exemplified by the 
fact that several rare variant associations reported for COVID-19 have not been 
replicated in independent cohorts15–17. 
 
Here, we investigated the association of rare genetic variants on the risk of COVID-19 by 
combining gene burden test results from whole exome and whole genome sequencing. 
To our knowledge, this is the first rare genetic variant burden test meta-analysis ever 
performed on a worldwide scale, including 21 cohorts, in 12 countries, including all main 
continental genetic ancestries. 
 
Results 
Study population and outcome 
The final analysis included up to 28,159 individuals infected with SARS-CoV-2, and up to 
596,189 controls from 21 cohorts in 12 countries (Figure 1). Most participants were of 
European genetic ancestry (n=576,389), but the consortium also included participants of 
Admixed American (n=4,529), African (n=25,465), East Asian (n=4,058), Middle Eastern 
(n=4,977) and South Asian ancestries (n=9,943). Participating cohorts enrolled patients 
based on local protocols, and both retrospective and prospective designs were used. 
Genetic sequencing was also performed locally, and cohorts were provided with a 
specific framework for quality control analyses, but each were allowed to deviate based 
on individual needs. Both exome (n = 11 cohorts) and genome sequencing (n = 10 
cohorts) were included in the meta-analyses. The mean age of participants was 55.7, 
and 55.9% were females. 
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We studied three separate outcome phenotypes, as previously described by the COVID-
19 Host Genetics Initiative (COVID-19 HGI)8. Briefly, the outcome cases were defined 
according to three standard COVID-19 HGI outcomes: A) severe disease: individuals 
with SARS-CoV-2 infection who died or required invasive respiratory support 
(extracorporeal membrane oxygenation, intubation with mechanical ventilation, high-flow 
oxygen support, or new bilevel or continuous positive airway pressure ventilation), B) 
hospitalisation: individuals with SARS-CoV-2 who died or required hospitalisation, and 
C) susceptibility to infection: any individual with SARS-CoV-2 infection. These are also 
referred to as A2, B2, and C2, respectively, in the COVID-19 HGI meta-analyses8. For all 
three phenotypes, controls were all individuals not classified as cases (including 
population controls with unknown COVID-19 status). The final meta-analyses included 
up to 5,048 cases and 571,009 controls for the severe disease outcome, 12,267 cases 
and 589,175 controls for the hospitalisation outcome, and 28,159 cases and 596,189 
controls for the susceptibility outcome. 
 
Burden test definition 
Given the expected paucity of large-effect size rare deleterious variants, strategies have 
been devised to increase statistical power to test associations between rare variants and 
biomedically-relevant outcomes. One such strategy is to use burden tests18, where each 
variant is collapsed into larger sets of variants, and association is tested between groups 
of variants and an outcome. Here, we collapsed deleterious variants in each gene and 
devised the following burden test: for each gene, an individual received a score of 0 if 
they do not carry any deleterious variant, a score of 1 if they carry at least one non-
homozygous deleterious variant, and a score of 2 if they carry at least 1 homozygous 
deleterious variant. Similar to previous studies on burden testing of rare variants17,19 
deleterious variants were chosen using three masks: 1) “pLoF" which uses only 
predicted loss of function variants, 2) “coding5” which uses all variants in pLoF, as well 
as indels of moderate consequence as predicted by Ensembl20, and missense variants 
classified as deleterious in 5 in-silico algorithms (see Methods), and 3) “coding1”, which 
uses all variants in coding5 and coding5, and also adds all missense variants classified 
as deleterious in at least 1 of the in-silico algorithms. The analyses were performed for 
variants with minor allele frequency (MAF) between < 1% and < 0.1%. MAFs were 
obtained from a combination of gnomAD21 and cohort-specific common variant exclusion 
lists. These common variant lists included variants that achieved a MAF of >1 % or > 0.1 
% in at least one study population within the consortium. To reduce the effect of 
fluctuations due to sampling, a minor allele count (MAC) ≥ 6 in the corresponding study 
was required for inclusion in the common variant list. Such “blacklists” have been shown 
to increase statistical power by removing variants at lower risk of being highly 
deleterious, and it reduces the risk of having cohort-specific false-positive variants being 
retained on the overall analysis22. 
 
The resulting score (either 0, 1, or 2) for each mask was then regressed on each of our 
three phenotypes using logistic regression, controlling for age, age^2, sex, sex*age, 
sex*age^2, and 10 common variant (MAF > 1%) genetic principal components (the same 
covariates as for COVID-19 HGI GWASs7,8). Additionally, given that population genetic 
structure and its confounding effect on phenotypes is different at the rare variant level23, 
we also used the first 20 genetic principal components from rare variants (MAF<1%) as 
covariates in all our analyses. Analyses were performed separately by each cohort and 
each ancestry using Firth regression as applied in the Regenie software24. Firth 
regression is a penalized likelihood regression method that provides unbiased effect 
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estimates even in highly unbalanced case-control analyses, as expected with rare 
variants25. The summary statistics were then meta-analyzed with a fixed effect inverse-
variance weighted model within each ancestry, and then with a DerSimonian-Laird 
random effect model across ancestries.  
 
Main analysis results 
Our meta-analysis included a total of 18,883 protein-coding genes, and all burden test 
genetic inflation factors, for all masks, were less than 1, suggesting that our results were 
not biased by population stratification and that Firth regression adequately adjusted for 
unbalanced case-control counts. Using an exome-wide significance p-value threshold of 
0.05/20,000 = 2.5x10-6, we found 3 genes associated with one of the COVID-19 
phenotypes in at least one mask in our meta-analyses (Table 1). Of specific interest, we 
observed that carrying a predicted loss of function (pLoF) or missense variant (mask 
coding5) in the toll-like receptor 7 (TLR7) gene was associated with a 5.3-fold increase 
(95% CI: 2.7-10.1, p=5.41x10-7) in odds of severe COVID-19. TLR7 is an important part 
of the innate viral immunity, encoding a protein that recognizes coronaviruses and other 
single-stranded RNA viruses, leading to upregulation of the type-1 and type-2 interferon 
pathway26. Results from the severe COVID-19 outcome analyses of TLR7 with other 
masks also nearly reach our statistical significance threshold, with larger effects found in 
the pLoF mask (OR: 13.6, 95% CI: 4.41-44.3, p=1.64x10-5) and smaller effect in the 
coding1 mask (OR: 3.12, 95% CI: 1.91-5.10, p=5.30x10-6), though the latter was 
balanced by smaller standard errors due to the larger number of cases (3275 cases in 
coding1 vs 1577 in pLoF), as expected. These findings further support previous reports 
of TLR7 errors of immunity underlying severe COVID-19 presentations17,27–30.  
 
In the meta-analyses, we also found that pLoFs in MARK1 were associated with a 23.9-
fold increase in the odds of severe COVID-19 (95% CI: 6.5-88.2, p=1.89x10-6), and a 
12.3-fold increase in the odds of hospitalisation due to COVID-19 (95% CI: 4.8-31.2, 
p=1.43x10-7). While the number of MARK1 pLoFs found in severe and hospitalized 
cases was small (MAC=4 and MAC=8, respectively), the signal was consistent in our 
three largest cohorts: UK Biobank, Penn Medicine, and Geisinger Health Services. 
MARK1 is a member of the microtubule affinity-regulating kinase family, and is involved 
in multiple biological processes, chief among which is the promotion of microtubule 
dynamics31. MARK1 has previously been shown to interact with the SARS-CoV-2 
ORF9b protein32, further supporting its potential role in COVID-19. Lastly, our meta-
analyses also found marginal evidence for an association between severe COVID-19 
and pLoFs in RILPL1 (OR: 20.2, 95% CI: 5.8-70.7, p=2.42x10-6), a gene that, like 
MARK1, is associated with microtubule formation and ciliopathy33. 
 
When we meta-analyzed p-values using the aggregated Cauchy association test34 
(ACAT), the association between TLR7 and severe COVID-19 (p=1.58x10-6), and 
between MARK1 and hospitalisation (p=4.30x10-7) remained exome-significant (Figure 
2). Full summary statistics are available in Supp. Table 6. 
 
Rare variants in interferon-related genes and at previously reported genome-wide 
significant loci  
Despite a 7.7-fold increase in number of cases, and a 1,069-fold increase in number of 
controls, the previously reported associations of genes in the interferon pathway with 
COVID-19 outcomes15,16 could not be replicated with either our exome-wide significance 
threshold (Supp. Table 7) or a more liberal one of p=0.05/10=0.005 (based on 
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Bonferroni correction by the number of genes in the interferon pathway defined in a 
previous study15).  
 
We also tested for rare variant associations between GWAS candidate genes from 
genome-wide significant loci in the COVID-19 HGI GWAS meta-analyses, but observed 
no exome-wide significant associations (Supp Table 8). However, at a more liberal 
Bonferroni threshold of p=0.05/46=0.001 (correcting for the 46 genes in the COVID-19 
HGI GWAS associated loci), we observed an increased burden of pLOF or missense 
variants (coding5 mask) in ABO gene among those susceptible to SARS-CoV-2 
infection. For example, individuals carrying a pLoF with MAF<0.1% in ABO were at a 
2.34-fold higher risk of having a positive SARS-CoV-2 infection (95% CI: 1.50-3.64, 
p=1.6x10-4). Note that deleterious variants in ABO often lead to blood groups A and 
B35,36, which is consistent with the epidemiological association that non-type-O 
individuals are at higher risk of COVID-1937. However, more work is required to better 
understand the genetics of this locus as it relates to COVID-19 outcomes. Lastly, 
missense variants in NSF (mask coding1, MAF<1%) were also associated with higher 
susceptibility to SARS-CoV-2 (OR: 1.48, 95% CI: 1.21-1.82, p=1.4x10-4), but this 
association was not present in other masks (Supp Table 8). 
 
Replication in GenOMICC 
Data for the pLoF mask for TLR7 and MARK1 in the severe COVID-19 phenotype was 
then replicated with the GenOMICC cohort11, a prospective study enrolling critically ill 
individuals with COVID-19, with controls selected from the 100,000 genomes cohort38. 
Results are shown in Table 2. For TLR7, European ancestry individuals with a pLoF had 
a 4.70-fold increase in odds of severe disease (95% CI: 1.58 to 14.0, p=0.005). In the 
sample of South Asian ancestry individuals, a pLoF was associated with a 1.90-fold 
increase in odds of severe disease, but the 95% confidence interval crossed the null 
(0.23 to 15.6, p=0.55), which was likely due to a much smaller sample size than in the 
European ancestry subgroup (1,202 vs 10,645). Of interest, in both Europeans and 
South Asians, no pLoFs were observed in either of the control groups.  
 
On the other hand, we could not replicate an effect from MARK1, which demonstrated 
an OR of 1.21 in European ancestry participants (95% CI 0.075 to 19.7, p=0.89) and an 
OR of 4.21 in South Asian ancestry individuals (95% CI 0.058 to 307, p=0.51).  
 
Single-variant analysis 
We performed an exome-wide association study using single variants with MAF higher 
than 0.1% and allele count of 6 or more, with the same analysis design used in the 
COVID-19 HGI GWAS8, and the same outcome phenotypes used in the burden testing 
above. The previously described Neanderthal chromosome 3 locus associated with 
COVID-19 outcomes was also found in all three phenotypes, with lead variants in the 
FYCO1 gene for the severe COVID-19 and hospitalisation phenotypes (rs13059238 and 
rs41289622, respectively), and for the LIMD1 gene in the susceptibility phenotype 
(rs141045534). One other variant was found in the hospitalisation phenotype in SRRM1 
(rs1479489847); this association was found in only two of our smaller cohorts 
(Genentech EUR and AMR ancestries, and Vanda EUR ancestry), and was not 
replicated in the larger ones (p=0.30 in the UK Biobank EUR ancestry). Summary 
statistics for genome-wide significant variants can be found in Supp. Table 9, and 
Manhattan plots can be found in the Supp. Figures. 
 
Discussion 
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Whole genome and whole exome sequencing can provide unique insights into genetic 
determinants of COVID-19, by uncovering associations between rare genetic variants 
and COVID-19. Specifically, burden tests can be particularly helpful, because they test 
for coding variants, thereby pointing directly to a causal gene and often suggesting a 
direction of effect. However, such studies require careful control for population 
stratification and an adapted analysis method such as burden testing, in order to have 
enough statistical power to find those associations. In our study, we observed that 
individuals with rare deleterious variants at TLR7 are at increased risk of severe COVID-
19 (up to 13.1-fold increase in odds in those with pLoFs). Although this association was 
suggested by previous studies27–29, our study provides the most definitive evidence for 
the role of TLR7 in COVID-19 pathogenesis, with exome-wide significance for this gene 
in the discovery phase followed by strong replication in a large independent cohort. 
TLR7 is a well-studied part of the antiviral immunity cascade and stimulates the 
interferon pathway after recognizing viral pathogen-associated molecular patterns.  
 
We also uncovered a potential role for cellular microtubule disruption in the 
pathogenesis of COVID-19 and the microtubule network is known to be exploited by 
other viruses during infections39. Indeed, the MARK1 protein has been shown to interact 
with SARS-CoV-2 in previous in-vitro experiments32. Nevertheless, these findings at 
MARK1 were not replicated in the GenOMICC cohort and will need to be tested in larger 
cohorts, especially given the small number of highly deleterious variants that we found in 
our consortium. 
 
To our knowledge, this is the first time a rare variant burden test meta-analysis has been 
attempted on such a large scale. Our framework allowed for easy and interpretable 
summary statistics results, while at the same time preventing participant de-identification 
or any breach of confidentiality that stems from sharing results of rare genetic variant 
analyses40. It also provides important insights into how these endeavours should be 
planned in the future. First, our burden test operated under the assumption that the 
effect of any of the deleterious variants on the phenotype would be in the same direction 
and did not account for compound deleterious variant heterozygosity. This allowed for 
easier meta-analysis across cohorts but may have decreased statistical power. Other 
methods may be needed in future analysis to soften this assumption, though some of 
these cannot be easily meta-analyzed across multiple cohorts directly from summary 
statistics (e.g., SKAT-O41). Similarly, methods that combine both rare and common 
variants might also provide additional insights into disease outcomes30,42. Second, our 
results highlight the importance at looking at different categories of variants through 
different masks to increase sensitivity and specificity of our burden tests. Lastly, work 
remains to be done to standardize sequencing and annotation pipelines to allow 
comparisons of results easily across studies and cohorts. Here, we provided a pipeline 
framework to evert participating cohorts, but there remains room for process 
harmonization in the future. 
 
Our study had limitations. First, even if this is one of the world’s largest consortia using 
sequencing technologies for the study of rare variants, we remain limited by a relatively 
small sample size. For example, in a recent analyses of UK Biobank exomes, many of 
the phenotypes for which multiple genes were found using burden tests had a much 
higher number of cases than in our analyses (e.g. blonde hair colour, with 48,595 
cases)19. Further, rare variant signals were commonly found in regions enriched in 
common variants found in GWASs. The fact that ABO and NSF were the only genes 
from the COVID-19 HGI GWAS that were also identified in our burden test (albeit using 
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a more liberal significance threshold), also suggests a lack of statistical power. Similarly, 
GenOMICC, a cohort of similar size, was also unable to find rare variant associations 
using burden tests11. However, their analysis methods were different from ours, making 
further comparisons difficult. Nevertheless, this provides clear guidance that smaller 
studies looking at the effect of rare variants across the genome are at considerable risk 
of finding both false positive and false negative associations.  Second, many cohorts 
used population controls, which may have decreased statistical power given that some 
controls may have been misclassified. However, given that COVID-19 critical illness 
remains a rare phenomenon43, our severe disease phenotype results are unlikely to be 
strongly affected by this. Further, the use of population control is a long-established 
strategy in GWAS burden tests7,8,11,19,44, and the statistical power gain from increasing 
our sample size is likely to have counter-balanced the misclassification bias. 
 
In summary, we reproduced an exome-wide significant association with severe COVID-
19 outcomes in carriers of rare deleterious variants at TLR7. Our results also suggest an 
association between the cellular microtubule network and severe disease, which 
requires further validation. More importantly, our results underline the fact that future 
genome-wide studies of rare variants will require considerably larger sample size, but 
our work provides a roadmap for such collaborative efforts. 
 
Methods 
COVID-19 outcome phenotypes 
For all analyses, we used three case-control definitions: A) Severe COVID-19, where 
cases were those who died, or required either mechanical ventilation (including 
extracorporeal membrane oxygenation), high-flow oxygen supplementation, new 
continuous positive airway pressure ventilation, or new bilevel positive airway pressure 
ventilation, B) Hospitalized COVID-19, where cases were all those who died or were 
admitted with COVID-19, and C) Susceptibility to COVID-19, where cases are anyone 
who tested positive for COVID-19, self-reported an infection to SARS-CoV-2, or had a 
mention of COVID-19 in their medical record. For all three, controls were individuals who 
did not match case definitions, including population controls for which case status was 
unknown (given that most patients are neither admitted with COVID-19, nor develop 
severe disease45). These three analyses are also referred to as analyses A2, B2, and C2 
by the COVID-19 Host Genetics Initiative8, respectively. 
 
Cohort inclusion criteria and genetic sequencing 
Any cohort with access to genetic sequencing data and the associated patient level 
phenotypes were allowed in this study. Specifically, both whole-genome and whole-
exome sequencing was allowed, and there were no limitations in the platform used. 
There were no minimal number of cases or controls necessary for inclusion. However, 
the first step of Regenie, which was used to perform all tests (see below), uses a 
polygenic risk score which implicitly requires that a certain sample size threshold be 
reached (which depends on the phenotype and the observed genetic variation). Hence, 
cohorts were included if they were able to perform this step. All cohorts obtained 
approval from their respective institutional review boards, and informed consent was 
obtained from all participants. More details on each cohort’s study design and ethics 
approval can be found in the Supp Tables 1-2. 
 
Variant calling and quality control 
Variant calling was performed locally by each cohort, with the pre-requisite that variants 
not be joint-called separately between cases and controls. Quality control was also 
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performed individually by each cohort according to individual needs. However, a general 
quality control framework was made available using the Hail software46. This included 
variant normalization and left alignment to a reference genome, removal of samples with 
call rate less than 97% or mean depth less than 20. Genotypes were set to unknown if 
they had genotype quality less than 20, depth less than 10, or poor allele balance (more 
than 0.1 for homozygous reference calls, less than 0.9 for homozygous alternative calls, 
and either below 0.25 or above 0.75 for heterozygous calls. Finally, variants were 
removed from if the mean genotype quality was less than 11, mean depth was less than 
6, mean call rate less than or equal to 0.8, and Hardy-Weinberg equilibrium p-value less 
than or equal to 5x10-8 (10-16 for single variant association tests). Details on variant 
calling and quality control is described for each cohort in the Supp. Table 1. 
 
Variant exclusion list 
For the burden tests, we also compiled a list of variants that had a MAF > 1 % or > 0.1 % 
in any of the participating cohorts. This list was used to filter out variants that were less 
likely to have a true deleterious effect on COVID-19, even if they were considered rare in 
other cohorts, or in reference panels22. We created two such variant exclusion lists: one 
to be used in our burden test with variants of MAF less than 1%, and the other for the 
analysis with MAF less than 0.1%. In any cohort, if a variant had a minor allele count of 6 
or more, and a MAF of more than 1% (or 0.1%), this variant was added to our exclusion 
list. This list was then shared with all participating cohorts, and all variants contained 
were removed from our burden tests. 
 
Gene burden tests 
The following analyses generally followed the methods used by recent literature on 
large-scale whole-exome sequencing19 and the COVID-19 HGI8. 
 
The burden tests were performed by pooling variants in three different variant sets 
(called masks): “pLoF” which included loss of functions as defined by high impact 
variants in the Ensembl database20 (i.e. transcript ablation, splice acceptor variant, splice 
donor variant, stop gained, frameshift variant, stop lost, start lost, transcript 
amplification), “coding5” which included all variants in pLoF as well as moderate impact 
indels and any missense variants that was predicted to be deleterious based on all of the 
in-silico pathogenicity prediction scores used, and “coding1” which included all variants 
in coding5 as well as all missense variants that were predicted to be deleterious in at 
least one of the in-silico pathogenicity prediction scores used. For in-silico prediction, we 
used the following five tools: SIFT47, LRT48, MutationTaster49, PolyPhen250 with the HDIV 
database, and PolyPhen2 with the HVAR database. Protein coding variants were 
collapsed on canonical gene transcripts. Masks pLoF, coding5, and coding1 are 
equivalent to masks M1, M3, and M4, respectively, from the recent UK Biobank whole-
exome sequencing paper by Backman et al.19 and Kosmicki et al.17. 
 
Once variants were collapsed into genes in each participant, for each mask, genes were 
given a score of 0 if the participant had no variants in the mask, a score of 1 if the 
participant had one or more heterozygous variant in this mask, and a score of 2 if the 
participant had one or more homozygous variant in this mask. These scores were used 
as regressors in logistic regression models for the three COVID-19 outcomes above. 
These regressions were also adjusted for age, age*age, sex, age*sex, age*age*sex, 10 
genetic principal components obtained from common genetic variants (MAF>1%), and 
20 genetic principal components obtained from rare genetic variants (MAF<1%). The 
Regenie software24 was used to perform all burden tests, and generate the scores 
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above. Regenie uses Firth penalized likelihood to adjust for rare or unbalanced events, 
providing unbiased effect estimates. 
 
All analyses were performed separately for each of 6 genetic ancestries (African, 
Admixed American, East Asian, European, Middle Eastern, and South Asian). Summary 
statistics were then meta-analyzed using a fixed effect model within each ancestry and 
using a DerSimonian-Laird random effect model across ancestries with the Metal 
package51 and its random effect extension52. Participant assignment to genetic ancestry 
was done locally by each cohort, more details on the methods can be found in the Supp. 
Table 1. 
 
Lastly, we used ACAT34 to meta-analyze p-values across masks, within each phenotype 
separately. ACAT is not affected by lack of independence between tests. These values 
were used to draw Manhattan and QQ plots in Figure 2.  
 
Single variant association tests 
We performed single variant association tests using a GWAS additive model framework. 
We used the same COVID-19 outcomes and covariates as above, except for the 
addition of the 20 rare genetic variant principal components. Once again, each cohort 
performed their analyses separately for each genetic ancestry, but also restricted their 
variants to those with MAF>0.01% and MAC>6. Summary statistics were meta-analyzed 
as above. Lastly, given that multiple technologies were used for sequencing, and that 
whole-exome sequencing can provide variant calls of worse quality in its off-target 
regions53, we used the UKB, GHS, and Penn Medicine whole-exome sequencing 
variants as our “reference panel” for whole-exome sequencing. Hence, only variants 
reported in at least one of these biobanks were used in the final analyses. 
 
Code availability 
Code guidance is available at https://github.com/DrGBL/WES.WGS.  
 
Data availability 
The exome-wide burden test summary statistics are available in the Supplements. The 
single variant association studies summary statistics will be made available openly on 
the GWAS Catalog54. 
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Figure 1: Maps of countries contributing data to the consortium. Sample sizes (cases and controls) for each 
phenotype were added and represented on the logarithmic scale by each circle. Relative contribution to each 
phenotype is represented by the three colors. 
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Figure 2: Exome burden test ACAT p-value meta-analysis Manhattan plots and QQ plots.
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Gene Mask Phenotype MAF Beta Standard 
Error 

Odds 
Ratio 

95% 
Confidence 

Interval 
P-value Heterogeneity p-

value 
N Cases 0|1|2 
Burden Test 

N Controls 0|1|2 
Burden Test 

Meta-Analysis Across Ancestries 

MARK1 pLoF Severe COVID-19 <0.1% 3.17 0.67 23.9 6.5-88.2 1.89x10-6 0.883 1935|4|0 540031|92|0 

MARK1 pLoF Severe COVID-19 <1% 3.17 0.67 23.9 6.5-88.2 1.89x10-6 0.883 1935|4|0 540031|92|0 

MARK1 pLoF Hospitalisation <0.1% 2.51 0.48 12.3 4.8-31.2 1.43x10-7 0.893 6132|8|0 547943|93|0 

MARK1 pLoF Hospitalisation <1% 2.51 0.48 12.3 4.8-31.2 1.43x10-7 0.893 6132|8|0 547943|93|0 

RILPL1 pLoF Severe COVID-19 <0.1% 3.01 0.64 20.2 5.8-70.7 2.42x10-6 0.941 1745|4|0 558448|121|0 

TLR7 coding5 Severe COVID-19 <0.1% 1.66 0.33 5.25 2.75-10.05 5.41x10-7 0.755 3101|2|5 519047|83|47 

TLR7 coding5 Severe COVID-19 <1% 1.63 0.33 5.10 2.67-9.72 7.48x10-7 0.760 3275|2|5 519834|85|47 

Other TLR7 results for severe phenotype 

TLR7 pLoF Severe COVID-19 <0.1% 2.61 0.60 13.6 4.14-44.4 1.64x10-5 0.820 1577|0|2 508987|13|11 

TLR7 pLoF Severe COVID-19 <1% 2.61 0.60 13.6 4.14-44.4 1.64x10-5 0.820 1577|0|2 508987|13|11 

TLR7 coding1 Severe COVID-19 <0.1% 1.14 0.25 3.12 1.91-5.10 5.30x10-6 0.854 3275|3|7 519616|210|139 

TLR7 coding1 Severe COVID-19 <1% 1.11 0.24 3.03 1.90-4.85 3.43x10-6 0.956 3273|5|8 521166|221|144 

 
Table 1: Exome-wide significant findings, as well as other TLR7 results (for the severe phenotype only). Note that for Masks pLoF, all deleterious 
variants had a MAF<0.1%, and hence both burden tests (MAF<1% and 0.1%) gave the same results. Full results available in Supp. Table 6. 
 
 
 

Gene Ancestry Beta Standard 
Error Odds Ratio 95% Confidence Interval P-value N Cases 0|1|2 Burden Test N Controls 0|1|2 Burden Test 

MARK1 EUR 0.195 1.42 1.21 0.075-19.7 0.891 5988|1|0 4655|1|0 

MARK1 SAS 1.44 2.19 4.21 0.058-307.6 0.511 787|1|0 414|0|0 

TLR7 EUR 1.55 0.555 4.70 1.58-14.0 0.005 5980|1|8 4566|0|0 

TLR7 SAS 0.640 1.08 1.90 0.230-15.6 0.552 786|0|2 414|0|0 

 
Table 2: Replication of pLoF mask, severe COVID-19, MARK1 and TLR7 results in the GenOMICC cohort. Note that the same variants were 
included in both the MAF<1% and MAF<0.1% replication, and the same results were obtained (shown here). 
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Gene Mask Phenotype MAF Beta Standard 
Error 

Odds 
Ratio 

95% 
Confidence 

Interval 
P-value Heterogeneity 

p-value 
N Cases 0|1|2 
Burden Test 

N Controls 0|1|2 
Burden Test 

NSF coding1 Susceptibility <1% 0.395 0.104 1.484 1.21-1.82 1.44x10-4 0.866 25752|127|2 585642|1907|5 

ABO pLoF Susceptibility <0.1% 0.851 0.226 2.341 1.50-3.65 1.68x10-4 0.498 22778|27|0 572310|296|0 

ABO pLoF Susceptibility <1% 0.784 0.209 2.19 1.45-3.30 1.75x10-4 0.826 23460|34|0 574608|364|0 

ABO coding5 Susceptibility <1% 0.729 0.195 2.073 1.41-3.04 1.89x10-4 0.869 24455|42|0 575051|434|0 

ABO pLoF Hospitalisation <0.1% 1.33 0.395 3.78 1.74-8.20 7.56x10-4 0.542 7859|12|0 561642|291|0 

ABO pLoF Susceptibility <0.1% 0.736 0.222 2.088 1.35-3.23 9.35x10-4 0.512 23779|29|0 572799|320|0 

 
Table 3: Results of burden tests at genes identified from common variants GWAS in the COVID-19 HGI. Only genes with p<0.05/46 are shown 
here. Full results available in Supp. Table 8. 
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