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Abstract

Background: Recent epidemics and measures taken to control them – through
vaccination or other actions – have highlighted the role and importance of uncertainty
in public health. There is generally a trade-off between information collection and
other uses of resources. Explicitly or more implicitly, the concept of expected value of
perfect information (EVPI) is central in order to inform policy makers in an uncertain
environment.

Method: We use a simple SIR disease emergence and transmission model with
vaccination that can be administered as one or two doses. The disease parameters and
vaccine characteristics are uncertain. We study the trade-offs between information
acquisition and two other measures: bringing vaccination forward, and acquiring more
vaccine doses. To do this, we quantify the EVPI under different constraints faced by
public health authorities, i.e. the time of the vaccination campaign implementation
and the number of vaccine doses available.

Results: We discuss the appropriateness of different responses under uncertainty.
We show that in some cases, vaccinating later or with less vaccine doses but more
information may bring better results than vaccinating earlier or with more doses and
less information respectively.

Conclusion: In the present methodological paper, we show in an abstract setting
how clearly defining and treating the trade-off between information acquisition and
the relaxation of constraints can improve public health decision making.
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uncertain environment.
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1 Introduction

Infectious disease control is steeped in uncertainty. Uncertainty may concern the natural
history of the pathogen, the successful development of prophylactic or curative treatments,
the ability to deliver control interventions, or the population characteristics, including
contact patterns and individual behaviors [1]. Since the spread of an infectious disease
is a dynamic and nonlinear phenomenon, uncertainties can seriously hinder control ef-
forts. Control measures taken at a certain time given available information may prove
sub-optimal as more information is gathered about the epidemic, but these measures are
usually irreversible and their cost is sunk.

Yet learning about an epidemic costs both money and time, so there is a trade-off
between gaining information and allocating these resources to other uses. Money, of course,
can be used to produce medical supplies or build up intervention capacity in general. As
for time, it may seem sensible to act earlier rather than later to minimize the impact of
an epidemic, insofar as it can spread as time goes by. How, then, to balance the benefit
of gaining information against the benefit of alternative resource uses? This can be done
through value of information analyses, which allow to quantify the benefit of reducing
uncertainties.

Value of information analyses are widely used in the fields of public health and health
economics [2, 3]. One popular value of information metric is the expected value of perfect
information (EVPI), which is computed as follow. Put generally, a decision-maker chooses
a strategy a in a set A of alternatives to maximize a value function V (e.g. the number of
averted cases or averted costs over the course of the epidemic) that also depends on uncer-
tain parameters denoted ξ. Under uncertainty about the true value of ξ, an alternative a0
is usually picked that maximizes the expected value over possible realizations of ξ: a0 =

argmax
a∈A

Eξ [V (a, ξ)]. If there is no uncertainty and the true value ξ∗ of ξ is known, an alter-

native a∗ can be picked that simply maximizes the value V given ξ∗: a∗ = argmax
a∈A

V (a, ξ∗).

The difference V (a∗, ξ∗)−V (a0, ξ
∗) = max

a∈A
V (a, ξ∗)−V (a0, ξ

∗) is the value loss due to mak-
ing a decision under uncertainty. EVPI is the expected value loss over possible realizations

of ξ: Eξ
[
max
a∈A

V (a, ξ)− V (a0, ξ)

]
= Eξ

[
max
a∈A

V (a, ξ)

]
−max

a∈A
Eξ [V (a, ξ)]. In other words,

EVPI quantifies uncertainty as the expected benefit of resolving it, and hence gives an
upper bound on the cost one should be willing to pay to reduce it.

A simple tweak allows to use an EVPI framework to balance information acquisition
against other resource uses. The two terms of EVPI can be computed separately:

1. the ex ante maximum expected value max
a∈A

Eξ [V (a, ξ)], that is the expected value of
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controlling the epidemic without collecting more information (i.e. before the true
value of ξ is known), and

2. the expected ex post maximum value Eξ
[
max
a∈A

V (a, ξ)

]
, that is the expected value of

controlling the epidemic with perfect knowledge of ξ (i.e. after the true value of ξ is
known).

Using resources for other uses than collecting information may, for instance, broaden the
set A of feasible policies. Thus, computing the two terms of the EVPI for different sets
A of feasible policies allows to explore the trade-off between collecting information and
alternative uses of resources. More generally, these alternative uses of resources could also
improve the performance of a previously feasible policy. For clarity, in the present paper,
we formulate “the same policy, but more efficient” as “another policy” and discuss all results
in terms of the set of feasible policies.

Importantly, EVPI depends on modeling choices, some of which involve not only sci-
entific but also political and ethical considerations. Determining the possible values of
uncertain parameters and their likelihood is primarily a scientific or technical issue. The
choice of a policy performance metric, by contrast, is also a political and ethical question:
consider for instance the difference between maximizing the number of avoided deaths and
saving a maximum of life-years. The same applies to the chosen objective. In the previous
computations, we assumed that the objective is to maximise the expected value over uncer-
tain parameter values. The value of information framework can be adapted to alternative
objectives such as minimizing the probability of extreme adverse events (see the examples
provided by Shea et al. [4]).

Policy-oriented studies in the field of infectious disease control rarely consider the value
of acquiring more information (see [5] for an example of study which does), and considering
information collection as a strategic choice among others is even less common. Most studies
focus on available information only and disregard the possibility of resolving uncertainties.
A typical approach consists in using available data to fit a disease transmission model. This
task can be resource intensive and is the main contribution of many studies. It results in
estimates of the uncertain parameters (point estimates or distribution estimates depending
on the method used). In a second step, these estimates are used to determine the best
policy either by comparing all relevant options exhaustively or via optimization methods.
Finally, the robustness of the chosen policy is tested by performing sensitivity analyses.
The objective of these sensitivity analyses is not so much to quantify uncertainties (e.g. by
using value of information metrics to estimate the benefit of reducing them) as to justify
the choice of a policy based on available data and the corresponding model fit. Available
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information is assumed to be fixed and is used both to pick a policy, and to derive scenarios
in which to test the performance of that policy.1 Even considering the objective of justifying
a policy given available information, sensitivity analyses can easily be incomplete (limited
sampling of the parameter space) or use misleading metrics (e.g. the probability that a
given policy will be the best instead of the expected value of that policy). We refer to
Houy and Flaig [6] for a discussion of these issues and examples from the field of hospital
epidemiology.

Other studies assume that more information is acquired over time and propose algo-
rithms to estimate parameters (see [7] and the articles reviewed therein) or adapt interven-
tions (see [8, 9], for instance) in real-time. Yet in these studies just as in studies assuming
fixed information, information acquisition is seen as a passive process, and is not stemming
from active strategic decisions. Namely, there is no trade-off between data collection and
other uses of resources. Data is simply assumed to become available “for free” over time,
and the point of these articles is to show how to use it. In this respect, whether information
is assumed to be available at one point in time or to become available over time makes
little difference.

To some extent, testing or screening optimization could be seen as strategic (or ac-
tive) acquisition of information, however not in the sense of solving the trade-off between
collection of information and alternative uses of resources as it does not entail assessing
the value of information (at least not explicitly). In the context of infectious disease con-
trol, the objective of testing optimization is usually to control the spread of a disease by
finding and isolating infectious individuals [10–14] or, less frequently, by finding recovered
and immune individuals to end their isolation [15, 16]. Framing the problem in terms of
value of information, the uncertain parameters ξ would be the health statuses (susceptible,
infectious, or recovered) of individuals. Yet the decision a∗ made once this information is
available is typically predefined and fixed: it often simply consists in, say, isolating tested
individuals found to be infectious, or in following a more sophisticated threshold-based
rule by isolating a tested individual based also on other individuals’ test results. In both
cases, the problem is to find how to test (who and when) given that such or such prede-
fined decision (isolate or not) rule is applied depending on test results, while a value of
information analysis would rather address the issue of whether to test or not given that
test information could be used to make better decisions.

In the present conceptual and methodological article, we use a generic deterministic
1This amounts to picking a0 = argmax

a∈A
Eξ [V (a, ξ)], and then testing the robustness of a0 by computing

Eξ [V (a0, ξ)]. Contrast this with value of information approaches: a0 is deemed robust if the value V cannot
be much improved by knowing the true value ξ∗ of ξ.
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SIR infectious disease transmission model to make explicit and illustrate the trade-off be-
tween collecting information about an epidemic, and using resources to control it without
collecting more information. The control intervention is vaccination, and the value V of a
vaccination policy is the number of averted symptomatic individual-days over the course
of the epidemic compared to the no intervention scenario. We want to illustrate, first, how
vaccinating earlier with less information compares to vaccinating later with more informa-
tion and, second, how vaccinating with more vaccine doses but less information compares
to vaccinating with less doses and more information. To do this, we compute the ex ante
maximum value and and the expected ex post maximum value under different time (inter-
vention date) and logistical (available vaccine doses) constraints. This allows to illustrate
graphically the trade-off between relaxing these constraints and resolving uncertainties
about the epidemic.

Our work is related to several previously published studies. Following a similar line of
thought, some authors proposed multi-stage control strategies allowing to actively include
information collection in decision making rather than passively adapt to new information.
In the first example developed in their study, Shea et al. [4] showed how anticipating that
uncertainty will be resolved at a later stage can influence decisions in earlier stages. The
trade-off between acting early or collecting information and acting later is solved implicitly,
but it is not the main focus of the article – the trade-off is solved for a single late (informed)
intervention date. Similarly, Atkins et al. [17] considered a scenario in which the efficacy
of a vaccine is uncertain but can be learned through vaccination campaigns. In this study
as well, the focus is on the comparison of active information collection versus passive
adaptation, and trade-offs are solved implicitly. The trade-off between trying to control an
epidemic early with less information and later with more information is treated explicitly
and in more details by Thompson et al. [18]. However they did not used an EVPI framework
but proposed an heuristic algorithm allowing to anticipate future learning. We want to
bring the discussion to a more general and elemental level. The relationship between
logistical constraints (or equivalently resource or budget constraints) and the value of
information was investigated by Shea et al. [4] (second example of the paper) and by Li
et al. [19], however not in terms of the trade-off between relaxing these constraints and
collecting information about the epidemic. This trade-off is illustrated by Woods et al. [20]
in the case of HIV, but not for the full range of resource constraints. In this article, we
address both implementation time and resource constraints and focus on trade-offs more
in-depth.

The remainder of the paper is structured as follows. We introduce the generic disease
transmission model and the control interventions to be used in simulations in Section 2.
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The simulation results are shows and discussed in Section 3. Section 4 concludes.

2 Materials and methods

We consider the emergence of an infectious disease in a closed population of N = 10,000

individuals. The spread of the disease is described by a SIR model with symptomatic
and asymptomatic infections, and vaccination. Individuals may receive 0, 1, or 2 doses of
vaccine. Vaccination is assumed to reduce infectiousness, susceptibility, and the probability
of symptomatic infection. For concision and illustrative purposes, we use a deterministic
model and leave aside stochastic effects, although they can be critical in the context of
infectious disease emergence (see [18]). At time 0, no individual is vaccinated and 1/10,000
of the total number of individuals is assumed to be infected. Simulations are run until
i) all vaccination interventions have taken place, and ii) the epidemic is extinct. In our
continuous framework, we define that the epidemic is extinct when the number of infectious
individuals is less than N × 10−8 = 10−4 individuals.

We assume the model structure to be known and focus on parameter uncertainties.
The model equations are given in Appendix A and the model parameters in Table 1.
The unit of time is the day throughout the article. We assume prior distributions to be
available for all uncertain parameters. A set of prior distributions for parameters (PDP)
represents i) the level of information about parameter values, and ii) expectations about
these values at the time of decision. In the main text, we focus on PDP0, which assumes
that some information is available about the parameters and that single dose and double
dose vaccination are expected to provide intermediate protection. The details of PDP0 are
given in Appendix B and Figure 1 shows 10,000 draws from PDP0.2 We also provide results
for two other PDPs in appendix. The first, PDP1, assumes a low level of information about
the parameters. The second, PDP2, assumes that some information is available and that
two doses of vaccine are expected to offer markedly more protection than a single dose.
Details and draws from PDP1 and PDP2 are given in Appendix B.

Our objective is to vaccinate the population so as to minimize the total number of
symptomatic infected individual-days over the course of the epidemic. We define a vacci-
nation session as a tuple (t, d, d′, n) where t is the vaccination date of the target population,
d is the number of doses received by individuals in the target population prior to the vac-
cination session, d′ > d is the number of doses received by each individual in the target
population after the vaccination session, and n is the total number of doses administered
in the target population. For instance, (2, 0, 2, 4000) reads: at time t = 2, give d′ − d = 2

2Notice that the prior distributions for parameters are not necessarily independent.
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Parameter Description
R0 Reproduction number of unvaccinated individuals.
γ Rate of recovery.
ρ1 Relative infectiousness of individuals having received 1 dose of

vaccine.
ρ2 Relative infectiousness of individuals having received 2 doses of

vaccine.
σ1 Relative susceptibility of individuals having received 1 dose of

vaccine.
σ2 Relative susceptibility of individuals having received 2 doses of

vaccine.
p0 Probability of symptomatic infection of unvaccinated individu-

als.
p1 Probability of symptomatic infection of individuals having re-

ceived 1 dose of vaccine.
p2 Probability of symptomatic infection of individuals having re-

ceived 2 doses of vaccine.

Table 1: Transmission model parameters.

doses to n/(d′− d) = 2, 000 individuals that have not received any dose previously (d = 0)
– a total of n = 4000 doses of vaccine are administered for this session.

Notice that a target population is only defined by the number d of previously received
doses. For simplicity, individuals to be vaccinated during the session are randomly drawn
in the target population. In practice, though, vaccination campaigns could be made more
efficient by using information on who is symptomatically infected and who recovered from
a symptomatic infection and targeting individuals accordingly.

In general, a vaccination policy is made up of several consecutive or simultaneous
vaccination sessions. Vaccination session and policies are subject to several feasibility con-
straints (e.g. there should be enough individuals in target populations). These constraints
are given formally in Appendix C. In this article, we consider the sets of feasible alternative
policies

A(t, nmax) = {{(t, 0, 1, n1) , (t, 0, 2, n2)} |
n1 ∈ {k × 2, 000 | k ∈ N},
n2 ∈ {k × 2, 000 | k ∈ N},

n1 +
n2

2
≤ N,

n1 + n2 ≤ nmax} .

where t ∈ N is the date at which the vaccination sessions are implemented and nmax is the
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(a) R0 (b) γ

(c) ρ1 (d) ρ2

(e) σ1 (f) σ2

(g) p0 (h) p1/p0 (i) p2/p0

Figure 1: Parameters drawn from PDP0 (10,000 draws).

maximum number of vaccination doses administered.
Notice that we assume that vaccine distribution is done by bundles of 2,000 doses,

and that n1 doses are administered as single doses and n2 doses as double doses (to n2/2

individuals) at a single date t. Depending on the values of uncertain parameters (the
relative efficacy of single and double dose vaccination in particular) and on feasible policies
(nmax in particular), it is better to vaccinate more individuals with a single dose, or less
individuals with a double dose.
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For each of the 10,000 draws of parameter values ξ (e.g. Figure 1 for PDP0), we compute
the reduction in symptomatic individual-days V (a, ξ) allowed by each alternative policy in
A(t, nmax). Then, we estimate the maximum ex ante expected value and the expected ex
post maximum value of epidemic control, that is the value of resolving uncertainties given
the set A(t, nmax) of feasible policies. By considering different values for t and nmax, we show
the trade-off between relaxing these constraints and resolving parameter uncertainties.

3 Results

Without vaccination, the expected number of symptomatic infected individual-days is
9,214.3 with 95 % confidence interval (CI) 8,992.0 – 9,436.6 for PDP0. Figure 2 shows
the EVPI, that is the difference between the ex ante maximum expected value of control
and the expected ex post maximum value of control, as a function of the set A(t, nmax)

of feasible policies with variable time of implementation t and number of available doses
nmax. The EVPI is lower for later policy implementation dates t (x-axis in Figure 2a). As
time passes, the epidemic spreads and resolving uncertainties has less value. The number of
available vaccine doses nmax is shown on the y-axis in Figure 2a and the x-axis in Figure 2b.
When there is no vaccine dose available (nmax = 0), no individual can get vaccinated with
or without information, and the EVPI is zero. With 20,000 available vaccine doses, each
of the N = 10,000 individuals in the population can receive two doses, so that collecting
information does not bring additional value and the EVPI is zero. The EVPI is maximal
for nmax = 10,000 available vaccine doses. Here, 10,000 individuals can receive one dose or
5,000 individuals two doses. When less than 10,000 doses are available, the EVPI is lower
because additional information cannot be fully taken advantage of due to a lack of doses.
When more than 10,000 doses are available, the EVPI is lower because all individuals
can receive a single dose and some of them a double dose, so the performance of policies
picked based on additional information is closer to that of policies picked without resolving
uncertainties. Similar results are provided for PDP1 and PDP2 in Appendix D.

We illustrated how the set of available policy options, that is constraints on policies,
has an influence on the value of resolving uncertainties. In order to show the trade-off
between resolving uncertainties and relaxing policy constraints, we need to compute the
ex ante maximum expected value and the expected ex post maximum value separately.

Figure 3 shows the ex ante maximum expected value and the expected ex post max-
imum value of control as a function of policy implementation date t, for 10,000 available
vaccine doses and PDP0 (see Appendix E for heatmaps and results for PDP1 and PDP2).
For any implementation time, more information is better than less information (EVPI is
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(a) x-axis: t, y-axis: nmax, color axis: EVPI
in averted symptomatic individual-days for
PDP0.

(b) t = 0, x-axis: nmax, y-axis: EVPI
in averted symptomatic individual-days for
PDP0. Thin lines: 95% CI.

Figure 2: EVPI in averted symptomatic individual-days for PDP0 as a function of
A(t, nmax).

positive or null by definition). For a given level of information, vaccinating earlier is better
than vaccinating later. This corresponds to the common intuition that early interventions
prevent the subsequent spread of pathogens. However, the figure also shows that vaccinat-
ing at time t = 0 without additional information has the same value as vaccinating 4–5
days later with perfect information. Thus, starting from t = 0, collecting information is a
better option than vaccinating at t = 0 without additional information as long as collecting
information allows to resolve uncertainties in less than 4–5 days. The graph can also be
read the other way round. Assume that vaccination was initially planned at t = 4, e.g.
because the 10,000 vaccine doses will only be ready at time t = 4. In our scenario, it is
better to spend additional resources to resolve uncertainties before t = 4 and vaccinate at
t = 4 with perfect information, rather than spend them to accelerate vaccine production
and bring vaccination forward (but without additional information). The same reasoning
applies starting from t = 6. Vaccinating at time t = 6 with perfect information brings
approximately the same value as vaccinating at time t = 4 without additional information.
If vaccine production can be accelerated so as to vaccinate before t = 4, then accelerating
vaccine production is the preferred option. Otherwise, it is better to resolve uncertainties
and vaccinate at t = 6 with perfect information.

Similarly, Figure 4 shows the ex ante maximum expected value and the expected ex
post maximum value of control as a function of the number of available vaccine doses nmax

for implementation date t = 0 and PDP0. For any number of available vaccine doses,
more information is better than (or equivalent to, for nmax = 0 and nmax = 20,000) less
information. For a given level of information, vaccinating with more doses is better than
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Figure 3: Ex ante maximum expected value (grey) and expected ex post maximum value
(black) for PDP0 as a function of t for nmax = 10,000. Thin lines: 95% CI.

vaccinating with less doses. However, starting for instance from nmax = 10,000 available
doses and ex ante level of information, approximately the same value can be achieved by
resolving uncertainties or by acquiring approximately 2,000 more doses. Thus, resolving
uncertainties is a better option if it is less expensive than acquiring or producing 2,000
doses. Finally, though this is a rather far-fetched scenario, up to 2,000 doses out of 12,000
can be sold if the benefit allows to resolve uncertainties. Notice that our results remain
unchanged with smaller dose bundles, see Figure App-6 in appendix.

Figure 4: Ex ante maximum expected value (grey) and expected ex post maximum value
(black) for PDP0 as a function of nmax for t = 0. Thin lines: 95% CI.
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4 Conclusion

EVPI is typically used to estimate the value of resolving uncertainties regarding an
epidemic given a set of feasible control policies. In this article, we used an EVPI framework
to explore the trade-off between resolving uncertainties and relaxing policy constraints. We
focused on two constraints: the implementation date, and the number of available vaccine
doses. We asked respectively “is it better to use resources to bring vaccination forward
or to resolve uncertainties?”, and “is it better to use resources to acquire more vaccine
doses or to resolve uncertainties?”. We first showed how the EVPI depends on policy
constraints. Then, we compared the expected ex post value of control (after uncertainties
are resolved) with the ex ante expected value of control (before uncertainties are resolved)
for different policy constraints in order to show how relaxing constraints compares to
resolving uncertainties.

Similar trade-offs have been presented in previously published studies, but most often
implicitly in the context of multi-stage epidemic control. Other studies discussed such
trade-offs explicitly, but only for a given type of policy constraint, not over the full range
of constraints, or in very special cases. We believe that the trade-offs between relaxing
policy constraints and resolving uncertainties deserved a more thorough discussion at a
more abstract level.

We used a generic transmission model and a generic value of information metric to
make a very general argument. We must emphasize that the EVPI is only one value of
information metric among others. It assumes that uncertainties can be entirely resolved,
which is unlikely to be the case in real life. Thus it only provides upper bounds on the
value of collecting information. Besides, as noted by other authors [1], the time and
effort required to collect information may depend on the parameters. The success of data
collection may also be uncertain. To remain general, we did not look into the details of
the cost of data collection and of vaccination campaigns, including the fact that producing
vaccine doses may take time. These costs can be critical in practice and will depend on
each specific case. Overlooking the cost details here does not make our results any less
relevant since we give results in terms of upper bounds of the value of information. We
also assumed that collection of information and, say, vaccination with more doses, are two
mutually exclusive uses of resources. Yet vaccinating more could actually bring information
about the vaccine’s properties [17]. We left this scenario aside because it mostly concerns
uncertainty on some of the parameters (the vaccine’s properties), and because it raises the
question of how to infer information from specific data, which is not the point of our article
(we merely look at the value of information).
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Hitting fast and hard is commonly regarded as a sensible policy in the face of an
epidemic. Using resources to acquire information instead, it might be argued, raises issues
of ethical and political acceptability somewhat reminding of the colloquial trolley problem.
Yet arguably any political or ethical constraint (or objective) can be included in a value
of information analysis e.g. by choosing a performance metric and setting an objective
(maximizing the expected value over uncertain parameters, minimizing the probability of
adverse outcome, etc.). Thus, waving information collection aside a priori and without
further consideration can hardly be passed off as a deliberate ethical or political stance. It
rather indicates flawed decision making.
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Appendix
A Compartmental model

Let Si and Ii denote the number of susceptible and infectious individuals who received
i ∈ {0, 1, 2} doses of vaccine, and R the number of recovered individuals. We assume a
closed population of N individuals.

Individuals get infected with contact rate β and they recover at rate γ. The basic
reproduction number is R0 = β/γ. Individuals who received i ∈ {1, 2} vaccine doses are
less susceptible by a factor σi and less infectious by a factor ρi compared to unvaccinated
individuals. We assume that vaccination is instantaneous and that there is no waning of
vaccine protection. The epidemic dynamics is described by Equations (1)–(5).

dS0

dt
=− λS0 (1)

dI0
dt

=λS0 − γI0 (2)

dSi
dt

=− σiλSi (3)

dIi
dt

=σiλSi − γIi (4)

dR

dt
=γ

2∑
j=0

Ij (5)

where

λ = β(I0 + ρ1I1 + ρ2I2)/N. (6)

Let pi the probability of symptomatic infection for infected individuals who received
i doses of vaccine. The incidence rates of symptomatic and asymptomatic cases among
unvaccinated individuals are Is

0 = p0λS0 and Ias
0 = (1 − p0)λS0 respectively. Among

individuals who received i ∈ {1, 2} doses of vaccine, incidence rates are Is
i = piσiλSi and

Ias
i = (1− pi)σiλSi.
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Parameter Distribution Valid values
R0 N (6, 3) [1.2,∞[
γ N (0.2, 0.1) [0.05,∞[
ρ1 N (0.75, 0.25) [ρ2, 1]
ρ2 N (0.75, 0.25) [0.05, ρ1]
σ1 N (0.75, 0.25) [σ2, 1]
σ2 N (0.75, 0.25) [0.05, σ1]
p0 N (0.1, 0.05) [0, 1]

p1/p0 N (0.75, 0.25) [p2/p0, 1]
p2/p0 N (0.4, 0.25) [0, p1/p0]

Table App-1: Prior distributions for parameters 0 (PDP0). N (µ, σ2): normal distribution
with mean µ and variance σ2.

Parameter Distribution
R0 U(1.2, 10)
γ U(0.05, 0.5)
ρ1 U(ρ2, 1)
ρ2 U(0.05, ρ1)
σ1 U(σ2, 1)
σ2 U(0.05, σ1)
p0 U(0, 1)

p1/p0 U(p2/p0, 1)
p2/p0 U(0, p1/p0)

Table App-2: Prior distributions for parameters 1 (PDP1). U(a, b): uniform distribution
on [a, b].

B Prior distributions for parameters
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Parameter Distribution Valid values
R0 N (6, 3) [1.2,∞[
γ N (0.2, 0.1) [0.05,∞[
ρ1 N (0.9, 0.25) [ρ2, 1]
ρ2 N (0.2, 0.25) [0.05, ρ1]
σ1 N (0.9, 0.25) [σ2, 1]
σ2 N (0.2, 0.25) [0.05, σ1]
p0 N (0.1, 0.05) [0, 1]

p1/p0 N (0.9, 0.25) [p2/p0, 1]
p2/p0 N (0.2, 0.25) [0, p1/p0]

Table App-3: Prior distributions for parameters 2 (PDP2). N (µ, σ2): normal distribution
with mean µ and variance σ2.
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(a) R0 (b) γ

(c) ρ1 (d) ρ2

(e) σ1 (f) σ2

(g) p0 (h) p1/p0 (i) p2/p0

Figure App-1: Parameters drawn from PDP1 (10,000 draws).
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(a) R0 (b) γ

(c) ρ1 (d) ρ2

(e) σ1 (f) σ2

(g) p0 (h) p1/p0 (i) p2/p0

Figure App-2: Parameters drawn from PDP2 (10,000 draws).

5

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 30, 2022. ; https://doi.org/10.1101/2022.03.28.22273039doi: medRxiv preprint 

https://doi.org/10.1101/2022.03.28.22273039
http://creativecommons.org/licenses/by-nd/4.0/


C Feasibility of vaccination policies

Let a = {(t0, d0, d′0, n0), . . . (tK−1, dK−1, d
′
K−1, nK−1)} a vaccination policy made up of

K vaccination sessions. For the sake simplicity, we restrict to the case where time is
discontinuous – i.e. ∀si = (ti, di, d

′
i, ni) ∈ a, ti ∈ N – and where individuals can received

up to 2 vaccine doses – i.e. ∀si = (ti, di, d
′
i, ni) ∈ a, (di, d′i) ∈ {(0, 1), (1, 2), (0, 2)}.

For the sake of simplicity and with a slight abuse of notation, we say that (t, d, d′) /∈ a
if ∀n ∈ N, (t, d, d′, n) /∈ a. We define A(t, d, d′) =

∑
si=(ti,di,d′i,ni)∈a

Iti=tIdi=dId′i=d′ni, where I

is the indicator function. Hence, A(t, d, d′) is the number of doses administered at time t
to individuals who previously received d doses and currently receive d′ − d doses.

We call N (d, t) with d ∈ {0, 1, 2} and t ∈ {−1} ∪ N, the number of individuals who
received d doses before date t. Formally, we define N recursively with:

N (0,−1) = N,
N (1,−1) = 0,
N (2,−1) = 0,

∀t ∈ N, N (0, t) = N (0, t− 1)−A(t, 0, 1)−A(t, 0, 2)/2,
∀t ∈ N, N (1, t) = N (1, t− 1) +A(t, 0, 1)−A(t, 1, 2),
∀t ∈ N, N (2, t) = N (2, t− 1) +A(t, 1, 2) +A(t, 1, 2)/2.

We say that a is feasible if the following constraint is met: ∀t ∈ N,N (0, t) ≥ 0,N (1, t) ≥
0,N (2, t) ≥ 0. Notice that by definition ∀t ∈ N,N (0, t) +N (1, t) +N (2, t) = N so that it
is unnecessary to check that each vaccination state subpopulation is inferior to N .
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D Additional figures: EVPI

The expected total infected individual-days is 24,051.9 (95 % CI : 23,569.0 – 24,534.7)
with PDP1. The expected total infected individual-days is 9,342.8 (95 % CI : 9,117.0 –
9,568.6) with PDP2.

Figure App-3 shows the EVPI as a function of feasible policies A(t, nmax) for PDP1 and
PDP2.

(a) PDP1, x-axis: t, y-axis: nmax.
(b) PDP1, t = 0, x-axis: nmax. Thin lines:
95% CI.

(c) PDP2, x-axis: t, y-axis: nmax.
(d) PDP2, t = 0, x-axis: nmax. Thin lines:
95% CI.

Figure App-3: EVPI in averted symptomatic individual-days for PDP1 and PDP2 as a
function of A(t, nmax).
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E Additional figures: ex ante maximum expected value
v. expected ex post maximum value

Figure App-4 shows the ex ante maximum expected value max
a∈A

Eξ [V (a, ξ)] and the

expected ex post maximum value Eξ
[
max
a∈A

V (a, ξ)

]
as a function of A(t, nmax).
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(a) PDP0, ex ante. (b) PDP0, ex post.

(c) PDP1, ex ante. (d) PDP1, ex post.

(e) PDP2, ex ante. (f) PDP2, ex post.

Figure App-4: Ex ante maximum expected value and expected ex post maximum value for
PDP0, PDP1, and PDP2 as a function of A(t, nmax). x-label: policy implementation date
t. y-label: nmax.
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(a) PDP1, nmax = 10,000, x-axis: t. (b) PDP1, t = 0, x-axis: nmax.

(c) PDP2, nmax = 10,000, x-axis: t. (d) PDP2, t = 0, x-axis: nmax.

Figure App-5: Ex ante maximum expected value (grey) and expected ex post maximum
value (black) for PDP1 and PDP2, as a function of t for nmax = 10,000 and as a function
of nmax for t = 0. Thin lines: 95% CI.
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(a) PDP0. (b) PDP1.

(c) PDP2.

Figure App-6: Ex ante maximum expected value (grey) and expected ex post maximum
value (black) for PDP0, PDP1, and PDP2 as a function of nmax for t = 0. Thin lines: 95%
CI.
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