1	
Т	

TITLE PAGE

- 2 Full-length title:
- 3 A 21L/BA.2-21K/BA.1 "MixOmicron" SARS-CoV-2 hybrid undetected by qPCR that
- 4 screen for variant in routine diagnosis
- 5 Short title (for the running head):
- 6 Omicron BA.2-BA.1 SARS-CoV-2 recombinant
- 7 Author list: Philippe COLSON^{1,2,3}*, Jeremy DELERCE¹, Elise MARION-PARIS⁴, Jean-
- 8 Christophe LAGIER^{1,2,3}, Anthony LEVASSEUR^{1,2}, Pierre-Edouard FOURNIER^{1,2,5},
- 9 Bernard LA SCOLA^{1,2,3}, Didier RAOULT^{1,2} *
- 10 Affiliations: ¹ IHU Méditerranée Infection, 19-21 boulevard Jean Moulin, 13005 Marseille,
- 11 France; ² Aix-Marseille Univ., Institut de Recherche pour le Développement (IRD), Microbes
- 12 Evolution Phylogeny and Infections (MEPHI), 27 boulevard Jean Moulin, 13005 Marseille,
- 13 France; ³ Assistance Publique-Hôpitaux de Marseille (AP-HM), 264 rue Saint-Pierre, 13005
- 14 Marseille, France; ⁴ Assistance Publique-Hôpitaux de Marseille (AP-HM), Hôpital Timone,
- 15 Service de médecine du travail, 264 rue Saint-Pierre, 13005 Marseille, France; ⁴ Aix-Marseille
- 16 Univ., Institut de Recherche pour le Développement (IRD), Vecteurs Infections Tropicales et
- 17 Méditerranéennes (VITROME), 27 boulevard Jean Moulin, 13005 Marseille, France.
- 18 * Corresponding authors: Didier Raoult, IHU Méditerranée Infection, 19-21 boulevard Jean
- 19 Moulin, 13005 Marseille, France. Tel.: +33 413 732 401, Fax: +33 413 732 402; email:
- 20 didier.raoult@gmail.com; Philippe Colson, IHU Méditerranée Infection, 19-21 boulevard Jean
- 21 Moulin, 13005 Marseille, France. Tel.: +33 413 732 401, Fax: +33 413 732 402; email:
- 22 philippe.colson@univ-amu.fr
- 23 Key words: SARS-CoV-2; recombinant; variant; lineage; Omicron; 21L/BA.2; 21K/BA.1; ;
- 24 epidemic
- 25 Word counts: abstract, 250; text, 2,039; Figures: 2; Table: 1; References: 51 NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

2	6
_	\sim

ABSTRACT

27

Among the multiple SARS-CoV-2 variants identified since summer 2020, several have 28 29 co-circulated, creating opportunities for coinfections and potentially genetic recombinations that 30 are common in coronaviruses. Viral recombinants are indeed beginning to be reported more 31 frequently. Here, we describe a new SARS-CoV-2 recombinant genome that is mostly that of a 32 Omicron 21L/BA.2 variant but with a 3' tip originating from a Omicron 21K/BA.1 variant. Two 33 such genomes were obtained in our institute from adults sampled in February 2022 in university 34 hospitals of Marseille, southern France, by next-generation sequencing carried out with the 35 Illumina or Nanopore technologies. The recombination site was located between nucleotides 36 26,858-27,382. In the two genomic assemblies, mean sequencing depth at mutation-harboring 37 positions was 271 and 1,362 reads and mean prevalence of the majoritary nucleotide was 38 99.3±2.2% and 98.8±1.6%, respectively. Phylogeny generated trees with slightly different 39 topologies according to whether genomes were depleted or not of the 3' tip. This 3' terminal end 40 brought in the Omicron 21L/BA.2 genome a short transposable element of 41 nucleotides named 41 S2m that is present in most SARS-CoV-2 except a few variants among which the Omicron 42 21L/BA.2 variant and may be involved in virulence. Importantly, this recombinant is not 43 detected by currently used qPCR that screen for variants in routine diagnosis. The present 44 observation emphasizes the need to survey closely the genetic pathways of SARS-CoV-2 45 variability by whole genome sequencing, and it could contribute to gain a better understanding of 46 factors that lead to observed differences between epidemic potentials of the different variants. 47

TEXT

50

51 INTRODUCTION

52	Multiple SARS-CoV-2 variants have been identified since summer 2020 (Lemey et al.,
53	2021; Colson et al., 2022a; Hodcroft et al., 2021; Harvey et al., 2021). There were periods during
54	which two distinct variants co-circulated with a crossing of their incidence when an old variant
55	was vanishing and a new one was rising. Substantial rates of co-incidence over periods of several
56	weeks have thus been reported recently worldwide for the Delta [WHO denomination
57	(https://www.who.int/fr/activities/tracking-SARS-CoV-2-variants)]/21J [Nextclade classification
58	(Aksamentov et al., 2021) (https://nextstrain.org/)] and Omicron 21K/BA.1 [Pangolin
59	classification (Rambaut et al., 2020) (https://cov-lineages.org/resources/pangolin.html)] variants,
60	and thereafter, to a lesser extent, for the Omicron BA.1 and BA.2 variants
61	(https://covariants.org/per-country) (Hodcroft, 2021; Hadfield et al., 2018), including in our
62	geographical area (Figure 1). This created the opportunity for coinfections (Rockett et al., 2022;
63	Hosch et al., 2022; Bolze et al., 2022; Belen Pisano et al., 2022), and consequently for
64	homologous genetic recombinations, which constitute a major and very common mechanism of
65	evolution in viruses (Bentley and Evans, 2018). Such genetic recombinations are extremely
66	frequent for viruses of family Coronaviridae, and they have already been identified for endemic
67	human coronaviruses (Lai, 1996; Zhang et al., 2015; So et al., 2019; Gribble et al., 2020).
68	Regarding SARS-CoV-2, the occurrence of recombinations has been reported or suspected (Yi,
69	2019; Yeh and Contreras, 2020; Haddad et al., 2021; Ignatieva et al., 2021; Jackson et al., 2021;
70	Taghizadeh et al., 2021; Varabyou et al., 2021; Kreier, 2022; Wertheim et al., 2022; He et al.,
71	2022; Sekizuka et al., 2022; Colson et al., 2022b; Lacek et al., 2022; Lohrasbi-Nejad, 2022;
72	Bolze et al., 2022; Ou et al., 2022; Belen Pisano et al., 2022; Burel et al., 2022). Very recently,
73	we described the identification and culture of two SARS-CoV-2 recombinants, one between the

74	B.1.160 and Alpha/20I variants in a patient chronically-infected with SARS-CoV-2 (Burel et al.,
75	2022), and another between the Delta/21J AY.4 and Omicron 21K/BA.1 variants in patients
76	infected approximately 10 weeks after the start of the period of co-detection of these two variants
77	in our geographical area (Colson et al., 2022b). Here, we describe a new hybrid genome, which
78	consists of a Omicron 21L/BA.2 genome whose 3' tip originates from a Omicron 21K/BA.1.
79	
80	MATERIALS AND METHODS
81	Nasopharyngeal samples were tested for the presence of SARS-CoV-2 RNA by real-time
82	reverse transcription-PCR (qPCR) using the BGI real-time fluorescent RT-PCR assay (BGI
83	Genomics, Shanghai Fosun Long March Medical Science Co., Ltd., Shenzhen, China), as
84	previously described (Burel et al., 2022). Subsequently, qPCR assays that screen for SARS-
85	CoV-2 variants were carried out with the detection of mutations among which spike substitution
86	K417N (Thermo Fisher Scientific, Waltham, USA) and the targeting of viral genes S (spike), N
87	(nucleocapsid) and ORF1 with the TaqPath COVID-19 kit (Thermo Fisher Scientific), as
88	previously reported (Colson et al., 2022a; Colson et al., 2022b).
89	SARS-CoV-2 genomes were obtained and analyzed as described previously (Colson et
90	al., 2022a; Colson et al., 2022b). Briefly, next-generation sequencing was carried out with the
91	Illumina COVID-seq protocol on the NovaSeq 6000 instrument (Illumina Inc., San Diego, CA,
92	USA), or with the Oxford Nanopore technology (ONT) on a GridION instrument (Oxford
93	Nanopore Technologies Ltd., Oxford, UK) following multiplex PCR amplification with the
94	ARTIC nCoV-2019 Amplicon Panel v4.1 of primers (IDT, Coralville, IA, USA) and the ARTIC
95	procedure (https://artic.network/).
96	Sequence read processing and genome analysis were performed as described previously
97	(Colson et al., 2022a; Colson et al., 2022b). Briefly, for Illumina NovaSeq reads, base calling

98 was carried out using the Dragen Bcl Convert pipeline [v3.9.3;

99	https://emea.support.illumina.com/sequencing/sequencing_software/bcl-convert.html (Illumina
100	Inc.)], mapping was carried out using the bwa-mem2 tool (v2.2.1; https://github.com/bwa-
101	mem2/bwa-mem2) on the Wuhan-Hu-1 isolate genome (GenBank accession no. NC_045512.2)
102	before cleaning with the SAMtools program (v. 1.13; https://www.htslib.org/) (Danecek et al.,
103	2021). Variant calling was performed using FreeBayes (v1.3.5;
104	https://github.com/freebayes/freebayes) (Garrison et al., 2012), and consensus genomes were
105	built with the Bcftools program (v1.13; https://samtools.github.io/bcftools/bcftools.html). ONT
106	reads were processed with the ARTIC-nCoV-bioinformaticsSOP pipeline (v1.1.0;
107	https://github.com/artic-network/fieldbioinformatics). Nucleotide and amino acid changes
108	compared to the Wuhan-Hu-1 isolate genome were determined using the Nextclade tool
109	(https://clades.nextstrain.org/) (Hadfield et al., 2018; Aksamentov et al., 2021). Nextstrain clades
110	and Pangolin lineages were identified with the Nextclade web application
111	(https://clades.nextstrain.org/) (Hadfield et al., 2018; Aksamentov et al., 2021) and the Pangolin
112	tool (https://cov-lineages.org/pangolin.html) (Rambaut et al., 2020), respectively.
113	Phylogenetic analyses were performed the MEGA X software (v10.2.5;
114	https://www.megasoftware.net/) (Kumar et al., 2018) following sequence alignment with
115	MAFFT (https://mafft.cbrc.jp/alignment/server/) (Katoh et al., 2002), and trees were visualized
116	with MEGA X. We built two separate trees, a first one for the whole recombinant genome and a
117	second one for its part originating from an Omicron 21L/BA.2 variant. The 10 genomes the most
118	similar to these sequences among genomes of the Omicron 21L/BA.2 and 21K/BA.1 variants of
119	the sequence database of our institute were selected by a BLAST search (Altschul et al., 1990)
120	then incorporated in the phylogenies together with the sequence of the Wuhan-Hu-1 isolate.
121	Genome sequences obtained and analyzed here were deposited in the NCBI GenBank
122	nucleotide sequence database (https://www.ncbi.nlm.nih.gov/genbank/) (Sayers et al., 2022)
123	(Accession no. OM993515 and OM993473), on the IHU Méditerranée Infection website

- 124 (https://www.mediterranee-infection.com/sars-cov-2-recombinant/) (IHUCOVID-063942 and
- 125 IHUCOVID-068136), and in the GISAID database (https://www.gisaid.org/) (Elbe et al., 2017;
- 126 Alm et al., 2020) (EPI_ISL_10843457, EPI_ISL_10047082).
- 127
- 128 **RESULTS**

129 The recombinant genomes were obtained from two adult patients sampled in February 130 2022 in the university hospitals of Marseille, southern France. Cycle threshold values (Ct) of the 131 diagnosis qPCR performed in our institute were 13 and 19. The TaqPath COVID-19 assay 132 showed positivity for all targeted genes including the S gene, and the spike K417N mutation was 133 detected, which led to suspect an infection with the Omicron 21L/BA.2 variant. However, next-134 generation sequencing performed in our laboratory allowed obtaining SARS-CoV-2 Omicron 135 21L/BA.2-21K/BA.1 genomic hybrid forms. These hybrid genomes have a Omicron 21L/BA.2 136 backbone but their approximately 2,500-3,000 nucleotide-long 3' terminal region is that of a 137 Omicron 21K/BA.1 (Figure 2). The recombination site is located between nucleotides 26,858 138 and 27,382 (in reference to the genome of the Wuhan-Hu-1 isolate). This 3' terminal end in the 139 genomes of the Omicron BA.1 variant does not harbor any signature mutations, and therefore a 140 "gain" of mutation could not be observed here. However, we noted the presence and integrity of a sequence corresponding to a short transposable element of 41 nucleotides named S2m (Tengs 141 142 et al., 2021), which is present in the Omicron 21K/BA.1 variant but is truncated of 26 143 nucleotides in its central part in the Omicron 21L/BA.2 variant. Current strategies of variant 144 screening by qPCR therefore fail to detect this recombinant as they target mostly mutations in 145 the spike gene, or other genomic regions that do not allow identifying it either. In the two 146 genomic assemblies, the mean (±standard deviation) sequencing depth at positions harboring mutations relatively to the genome of the Wuhan-Hu-1 isolate was 271±164 and 1,362±1,146 147 148 reads and the mean prevalence of the majoritary nucleotide was $99.3\pm2.2\%$ and $98.8\pm1.6\%$,

149 respectively, which rules out the concommitant presence of the sequences of two variants in the 150 samples, either due to co-infection or to contamination.

The two recombinant genomes harbor 65 mutations relatively to the genome of the Wuhan-Hu-1 isolate, including 3 or 4 that are not signature mutations of the parental Omicron 21L/BA.2 or Omicron 21K/BA.1 genomes (Table 1). The spike genes of the two genomes only harbor signature mutations of the Omicron 21L/BA.2 variant, apart from a synonymous mutation in one genome. Besides, these two genomes differ between each other by a single mutation in the ORF1 gene (C2790U; T841I). The two phylogenetic trees that were built, based either on the whole genomes or only on

the region of these genomes that originate from the Omicron 21L/BA.2 variant in the

recombinants, did not show exactly the same topology (Figure 2c, d). The trees incorporated the

160 10 genomes of Omicron 21L/BA.2 and 21K/BA.1 variants from the sequence database of our

161 institute that were the most similar to the sequences of the recombinants. In both trees, sequences

162 from the recombinants were clustered with sequences of the Omicron 21L/BA.2 variant.

163 Nonetheless, whole recombinant genomes were clustered separately, apart from their best hits, in

164 the Omicron 21L/BA.2 clade that encompassed two sister groups. In contrast, the two partial

recombinant genomes were clustered together but nested inside the Omicron 21L/BA.2 clade.

166

167 **DISCUSSION**

In the present work we show a recombination between Omicron BA.2 and BA.1 variant
viruses. In two previous studies, 16 (0.006%) of 279,000 genomes and 1,175 (0.2%) of 537,360
genomes were identified as being recombinants (Jackson et al., 2021; VanInsberghe et al., 2021).
In addition, it was deemed that up to 5% of SARS-CoV-2 that circulated in the USA and UK
might have been recombinants (VanInsberghe et al., 2021), and estimated that ≈2.7% of
sequenced SARS-CoV-2 genomes might have recombinant ancestry (Turkahia et al., 2021). As a

174 matter of fact, cases of detection of recombinant genomes are increasingly reported in 2022 175 (Wertheim et al., 2022; Sekizuka et al., 2022; Colson et al., 2022b; Lacek et al., 2022; Bolze et 176 al., 2022; Ou et al., 2022; Belen Pisano et al., 2022; Burel et al., 2022). Such recombinants are 177 all the more likely to be generated when different variants co-circulate with high incidence 178 levels. In our geographical area, >15,000 infections with the Omicron 21K/BA.1 variant and 179 >1,000 infections with the Omicron 21L/BA.2 variant were diagnosed over the same period of 180 11 weeks between late December and mid-March (Figure 1). Moreover, recombinants becomes 181 more easily identifiable during bioinformatic analyses due to the accumulation over time of 182 mutations along SARS-CoV-2 genomes, at intervals of increasingly reduced size. The two 183 phylogeny reconstructions based on whole genomes or on their region that originate from the 184 Omicron 21L/BA.2 variant in the recombinants exhibited slightly different topologies. This 185 emphasizes that phylogenetic analyses do not accurately handle genomes that are hybrids of 186 sequences with different evolutionary histories, which prompts building separate trees for 187 sequences of different origins in the case of recombinants.

188 The spike gene of the recombinant virus identified here is typical of that of the Omicron 189 21L/BA.2 variant, which suggests similar phenotypic features regarding immune escape (Yu et 190 al., 2022; Iketani et al., 2022). However, the acquisition by a Omicron 21L/BA.2 genome of the 191 3' terminal part of a Omicron 21K/BA.1 genome is of very particular interest as this Omicron 192 21K/BA.1 fragment contains a short transposable element named S2m. S2m is a 41-nucleotide 193 long stem loop motif that is present in four different families of positive-sense single-stranded 194 RNA viruses (Robertson et al., 1998; Imperatore et al., 2022) and also shows high levels of 195 similarity with sequences of insects (Tengs et al., 2021). This element is present in 196 sarbecoviruses and in most of the SARS-CoV-2 genomes. It was proposed to be involved in 197 RNA interference pathways, in hijacking of host protein synthesis, and in RNA recombination 198 events (Imperatore et al., 2022; Gallaher et al., 2022), and it could have initiated viral infection

199	and pathogenicity in various animal hosts. For instance, the s2m element was reported to interact
200	with cellular miRNA-1307-3p in humans, being putatively able to manipulate the host immune
201	response. Moreover, in SARS-CoV-2, S2m is absent or truncated in a few variants including the
202	Eta (B.1.525), Iota (B.1.526) and B.1.640.1 lineages, which all had a low epidemic spread; and it
203	is also truncated in the Omicron 21L/BA.2 variant. Taken together these data suggest that S2m
204	could be considered as the equivalent of a virulence factor. The consequence of the S2m
205	acquisition by an Omicron 21L/BA.2 genome as reported here is unknown. A possibility would
206	be a gain in transmissibility leading to a larger epidemic, which should be investigated by
207	genotypic surveillance among SARS-CoV-2 diagnoses and phenotypic in vitro experiments.
208	Thus, the present observation may contribute to gain a better understanding of factors that
209	enhance SARS-CoV-2 spread and lead to the observed differences between the epidemic
210	potential of the variants (Tao et al., 2021; Campbell et al., 2021).
211	Finally, the increasing identification of recombinant SARS-CoV-2 genomes worldwide
212	highlights the unpredictable nature of the genetic variability of this virus. The recombinant
213	described here is not detected by current strategies that screen for variants in routine diagnosis by
214	qPCR. This emphasizes the interest of the most exhaustive whole-genome based surveillance
215	possible to allow deciphering the genetic pathways of the variability and investigating their
216	phenotypic consequences regarding transmissibility, clinical severity, and escape from
217	neutralizing antibodies.

218

219

220 Acknowledgments

We are very grateful to Raphael Tola, Ludivine Bréchard, and Claudia Andrieu for theirtechnical help.

223 Author contributions

224	Study conception and design: Philippe Colson, Pierre-Edouard Fournier, Bernard La
225	Scola, Didier Raoult. Materials, data and analysis tools: Philippe Colson, Jeremy Delerce, Elise
226	Marion-Paris, Jean-Christophe Lagier, Anthony Levasseur. Data analyses: Philippe Colson,
227	Jeremy Delerce, Elise Marion-Paris, Jean-Christophe Lagier, Anthony Levasseur, Pierre-
228	Edouard Fournier, Bernard La Scola, Didier Raoult. Writing of the first draft of the manuscript:
229	Philippe Colson, Pierre-Edouard Fournier, Bernard La Scola, Didier Raoult. All authors read,
230	commented on, and approved the final manuscript.
231	Funding

This work was supported by the French Government under the "Investments for the 232 233 Future" program managed by the National Agency for Research (ANR) (Méditerranée-Infection 10-IAHU-03), by the Région Provence Alpes Côte d'Azur and European funding FEDER 234 235 PRIMMI (Fonds Européen de Développement Régional-Plateformes de Recherche et 236 d'Innovation Mutualisées Méditerranée Infection) (FEDER PA 0000320 PRIMMI), and by the 237 French Ministry of Higher Education, Research and Innovation (Ministère de l'Enseignement 238 supérieur, de la Recherche et de l'Innovation) and the French Ministry of Solidarity and Health 239 (Ministère des Solidarités et de la Santé). 240 **Data availability**

241 Genome sequences generated and analyzed in the present study are available from the

242 NCBI GenBank nucleotide sequence database (https://www.ncbi.nlm.nih.gov/genbank/) (Sayers

- et al., 2022) (Accession no. OM993515 and OM993473), from the IHU Méditerranée Infection
- 244 website (https://www.mediterranee-infection.com/sars-cov-2-recombinant/) (IHUCOVID-
- 245 063942 and IHUCOVID-068136), and from the GISAID database (https://www.gisaid.org/)

246 (Elbe et al., 2017; Alm et al., 2020) (EPI_ISL_10843457, EPI_ISL_10047082).

247 **Conflicts of interest**

248 The authors have no conflicts of interest to declare relative to the present study. Didier

249	Raoult was a consultant for the Hitachi High-Technologies Corporation, Tokyo, Japan from
250	2018 to 2020. He is a scientific board member of the Eurofins company and a founder of a
251	microbial culture company (Culture Top). Funding sources had no role in the design and con-
252	duct of the study, the collection, management, analysis, and interpretation of the data, and the
253	preparation, review, or approval of the manuscript.
254	Ethics
255	This study has been approved by the ethics committee of the University Hospital Institute
256	Méditerranée Infection (No. 2022-008). Access to the patients' biological and registry data
257	issued from the hospital information system was approved by the data protection committee of
258	Assistance Publique-Hôpitaux de Marseille (APHM) and was recorded in the European General
259	Data Protection Regulation registry under number RGPD/APHM 2019-73.

260

261

263

REFERENCES

- Aksamentov, I.; Roemer, C.; Hodcroft, E.B.; Neher, R.A. Nextclade: clade assignment, mutation
 calling and quality control for viral genomes. Zenodo 2021,
 https://doi.org/10.5281/zenodo.5607694.
- Alm, E.; Broberg, EK.; Connor, T.; et al. Geographical and temporal distribution of SARS-CoV2 clades in the WHO European Region, January to June 2020. *Euro Surveill.* 2020, 25,
 2001410.
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search
 tool. *J Mol Biol.* 1990, 215, 403-10.
- Belén Pisano, M.; Sicilia, P.; Zeballos, M.; et al. SARS-CoV-2 genomic surveillance enables the
 identification of Delta/Omicron co-infections in Argentina. *medRxiv* 2022, doi:
 https://doi.org/10.1101/2022.03.08.22270920
- Bentley, K.; Evans, D.J. Mechanisms and consequences of positive-strand RNA virus recombination. *J Gen Virol.* 2018, 99, 1345-1356. doi: 10.1099/jgv.0.001142.
- Bolze, A.; White, S.; Basler, T.; et al. Evidence for SARS-CoV-2 Delta and Omicron coinfections and recombination. *medRxiv* 2022, doi:
 https://doi.org/10.1101/2022.03.09.22272113
- Burel, E.; Colson, P.; Lagier, J.C.; et al. Sequential appearance and isolation of a SARS-CoV-2
 recombinant between two major SARS-CoV-2 variants in a chronically infected
 immunocompromised patient. *medRxiv* 2022, doi:
 https://doi.org/10.1101/2022.03.21.22272673.
- Campbell, F.; Archer, B.; Laurenson-Schafer, H.; et al. Increased transmissibility and global
 spread of SARS-CoV-2 variants of concern as at June 2021. *Euro Surveill.* 2021, 26,
 2100509.
- Colson, P.; Fournier, PE.; Chaudet, H.; et al. Analysis of SARS-CoV-2 Variants From 24,181
 Patients Exemplifies the Role of Globalization and Zoonosis in Pandemics. *Front Microbiol.* 2022a, *12*, 786233.
- Colson, P.; Fournier, P.E.; Delerce, J.; et al. Culture and identification of a "Deltamicron"
 SARS-CoV-2 in a three cases cluster in southern France *medRxiv* 2022b, doi: https://doi.org/10.1101/2022.03.03.22271812
- Danecek, P.; Bonfield, J.K.; Liddle, J.; et al. Twelve years of SAMtools and BCFtools,
 GigaScience 2021, 10, giab008.
- Elbe, S.; Buckland-Merrett, G. Data, disease and diplomacy: GISAID's innovative contribution
 to global health. *Global Challenges* 2017, *1*, 33-46.
- Gallaher, W.R. A palindromic RNA sequence as a common breakpoint contributor to copy choice recombination in SARS-CoV-2. *Arch Virol.* 2020, *165*, 2341-2348.
- Garrison, E.; Marth, G. Haplotype-based variant detection from short-read sequencing. *arXiv.org* **2012**, https://arxiv.org/abs/1207.3907.

- Gribble, J.; Stevens, L.J.; Agostini, M.L.; et al. The coronavirus proofreading exoribonuclease
 mediates extensive viral recombination. *PLoS Pathog.* 2021, *17*, e1009226.
- Haddad, D.; John, S.E.; Mohammad, A.; et al. SARS-CoV-2: Possible recombination and
 emergence of potentially more virulent strains. *PLoS One.* 2021, *16*, e0251368.
- Hosch, S.; Mpina, M.; Nyakurungu, E.; et al. Genomic Surveillance Enables the Identification of
 Co-infections With Multiple SARS-CoV-2 Lineages in Equatorial Guinea. *Front Public Health.* 2022, 9, 818401.
- Hadfield, J.; Megill, C.; Bell, S.M.; et al. Nextstrain: real-time tracking of pathogen evolution.
 Bioinformatics. 2018, *34*, 4121-4123.
- Harvey, W.T.; Carabelli, A.M.; Jackson, B.; et al. SARS-CoV-2 variants, spike mutations and
 immune escape. *Nat Rev Microbiol.* 2021, *19*, 409–424.
- He, Y.; Ma, W.; Dang, S.; et al. Possible recombination between two variants of concern in a
 COVID-19 patient. *Emerg Microbes Infect.* 2022, 11, 552-555. doi:
 10.1080/22221751.2022.2032375.
- Hodcroft E. 2021. CoVariants: SARS-CoV-2 mutations and variants of interest. Available from:
 https://covariants.org/https://covariants.org/.
- Hodcroft, E.B.; Zuber, M.; Nadeau, S.; et al. Spread of a SARS-CoV-2 variant through Europe in
 the summer of 2020. *Nature*. 2021, 595, 707-712.
- Ignatieva, A.; Hein, J.; Jenkins, P.A. Ongoing Recombination in SARS-CoV-2 Revealed through
 Genealogical Reconstruction. *Mol Biol Evol.* 2022, *39*, msac028.
- 321 Iketani, S.; Liu, L.; Guo, Y.; et al. Antibody evasion properties of SARS-CoV-2 Omicron
 322 sublineages. *Nature*. 2022 Mar 3. doi: 10.1038/s41586-022-04594-4. Epub ahead of print.
 323 PMID: 35240676.
- Imperatore, J.A.; Cunningham, C.L.; Pellegrene, K.A.; et al. Highly conserved s2m element of
 SARS-CoV-2 dimerizes via a kissing complex and interacts with host miRNA-1307-3p.
 Nucleic Acids Res. 2022, 50, 1017-1032.
- Jackson, B.; Boni, MF.; Bull, MJ.; et al. Generation and transmission of interlineage
 recombinants in the SARS-CoV-2 pandemic. *Cell.* 2021, *184*, 5179-5188.e8.
- Ou, J.; Lan, W.; Wu, X.; et al. Tracking SARS-CoV-2 Omicron diverse spike gene mutations
 identifies multiple inter-variant recombination events. *bioRxiv* 2022, doi:
 https://doi.org/10.1101/2022.03.13.484129.
- Katoh, K.; Misawa, K.; Kuma, K.; et al. MAFFT: a novel method for rapid multiple sequence
 alignment based on fast Fourier transform. *Nucleic Acids Res.* 2002, *30*, 3059-66.
- Kreier, F. Deltacron: the story of the variant that wasn't. *Nature*. **2022**, 602, 19.
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary
 Genetics Analysis across Computing Platforms. *Mol Biol Evol.* 2018, *35*, 1547-1549.

- Lacek, K.A.; Rambo-Martin, B.L.; Batra, D.; et al. Identification of a Novel SARS-CoV-2 Delta Omicron Recombinant Virus in the United States. *bioRxiv* 2022, doi: https://doi.org/10.1101/2022.03.19.484981.
- Lai, M.M.C. Recombination in large RNA viruses: Coronaviruses. Semin Virol. 1996, 7, 381388.
- Lemey, P.; Ruktanonchai, N.; Hong, S.L.; et al.. Untangling introductions and persistence in
 COVID-19 resurgence in Europe. *Nature*. 2021, 595, 713-717.
- Lohrasbi-Nejad, A. Detection of homologous recombination events in SARS-CoV-2. *Biotechnol Lett.* 2022, 17, 1–16.
- Rambaut, A.; Holmes, E.C.; O'Toole, A.; et al. A dynamic nomenclature proposal for SARS CoV-2 lineages to assist genomic epidemiology. *Nat Microbiol.* 2020, *5*, 1403-1407.
- Robertson, M.P.; Igel, H.; Baertsch, R.; et al. The structure of a rigorously conserved RNA
 element within the SARS virus genome. *PLoS Biol.* 2005, *3*, 86–94.
- Rockett, J.D.; Gall, M.; Sim, E.M.; et al. Co-infection with SARS-CoV-2 Omicron and Delta
 variants revealed by genomic surveillance. *medRxiv* 2022, doi: https://doi.org/10.1101/2022.02.13.22270755.
- 353 Sayers, E.W.; Cavanaugh, M.; Clark, K.; et al. GenBank. *Nucleic Acids Res.* 2022, 50, D161 354 D164.
- Sekizuka, T.; Itokawa, K.; Saito, M.; et al. Genome Recombination between Delta and Alpha
 Variants of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Jpn J
 Infect Dis. 2022 Feb 28. doi: 10.7883/yoken.JJID.2021.844. Online ahead of print.
- So, RTY.; Chu, DKW.; Miguel, E.; et al. Diversity of Dromedary Camel Coronavirus HKU23 in
 African Camels Revealed Multiple Recombination Events among Closely Related
 Betacoronaviruses of the Subgenus Embecovirus. *J Virol.* 2019, 93, e01236-19.
- Taghizadeh, P.; Salehi, S.; Heshmati, A.; et al. Study on SARS-CoV-2 strains in Iran reveals
 potential contribution of co-infection with and recombination between different strains to
 the emergence of new strains. *Virology*. 2021, 562, 63-73.
- Tao, K.; Tzou, P.L.; Nouhin, J.; et al. The biological and clinical significance of emerging
 SARS-CoV-2 variants. *Nat Rev Genet.* 2021, 22, 757-773.
- Tengs, T.; Delwiche, C.F.; Monceyron, J.C. A genetic element in the SARS-CoV-2 genome is
 shared with multiple insect species. *J Gen Virol.* 2021, *102*, 001551.
- Turkahia, Y.; Thornlow, B.; Hinrichs, A.; et al. Pandemic-Scale Phylogenomics Reveals
 Elevated Recombination Rates in the SARS-CoV-2 Spike Region. *bioRxiv* 2021, doi:
 https://doi.org/10.1101/2021.08.04.455157.
- VanInsberghe, D.; Neish, A.S.; Lowen, A.C.; Koelle, K. Recombinant SARS-CoV-2 genomes
 are currently circulating at low levels. *bioRxiv*. 2021, doi: 10.1101/2020.08.05.238386.

- Varabyou, A.; Pockrandt, C.; Salzberg, S.L.; Pertea, M. Rapid detection of inter-clade
 recombination in SARS-CoV-2 with Bolotie. *Genetics*. 2021, 218, iyab074.
- Wertheim, J.O.; Wang, J.C.; Leelawong, M.; et al. Capturing intrahost recombination of SARS CoV-2 during superinfection with Alpha and Epsilon variants in New York City. *medRxiv* 2022, doi: https://doi.org/10.1101/2022.01.18.22269300.
- Yeh, T.Y.; Contreras, G.P. Emerging viral mutants in Australia suggest RNA recombination
 event in the SARS-CoV-2 genome. *Med J Aust.* 2020, 213, 44-44.e1.
- Yi, H. 2019 Novel Coronavirus Is Undergoing Active Recombination. *Clin Infect Dis.* 2020, 71, 884-887.
- Yu, J.; Collier, A.Y.; Rowe, M.; et al. Neutralization of the SARS-CoV-2 Omicron BA.1 and
 BA.2 Variants. *N Engl J Med.* 2022, Mar 16. doi: 10.1056/NEJMc2201849. Epub ahead of
 print.
- Zhang, Y.; Li, J.; Xiao, Y.; et al. Genotype shift in human coronavirus OC43 and emergence of a
 novel genotype by natural recombination. *J Infect.* 2015, 70, 641-50.
- 387
- 388
- 389

390

FIGURE LEGEND

- 391
- 392 Figure 1. Incidence and co-incidence of Omicron 21K/BA.1 and Omicron 21L/BA.2
- 393 variants among cases diagnosed in our institute.
- 394
- 395 Figure 2. Schematic of the SARS-CoV-2 Omicron 21L/BA.2-21K/BA.1 recombinant
- 396 genomes (a, b) and phylogeny reconstruction based on SARS-CoV-2 Omicron 21L/BA.2
- 397 and Omicron 21K/BA.1 genomes (c, d).
- a. Map of the SARS-CoV-2 genome.
- b. Schematic representation of parental and recombinant genomes and mutations in the
- 400 recombinant genomes. Adapted from screenshots of the nextclade web application output
- 401 (https://clades.nextstrain.org) (Aksamentov et al., 2021; Hadfield et al., 2018). Color codes for
- 402 nucleotide mutations are as follows: Green: U; yellow: G; blue: C; red: A; light grey: deletions;
- 403 dark grey: regions uncovered by sequencing reads.
- 404 c, d. Phylogeny reconstructions based on the whole genomes (c) or only on the region of these
- 405 genomes that corresponds to the region of the recombinant genome that originates from the
- 406 Omicron 21L/BA.2 variant.

407

_

_

TABLE

Table 1. Nucleotide and amino acid changes in the MixOmicron recombinant according to 410

411 their presence/absence in the Omicron 21L/BA.2 and Omicron 21K/BA.1 variants

Gene or genome region	Nucleotide changes	Amino acid changes	Omicron BA.2 genomes	IHUCOVID-068136 (or OM993515, or EPL ISL 10843457)	IHUCOVID-063942 (or OM993473, or EPLISL 10047082)	Omicron BA.1 genomes
5UTR	C241T	/	X	X	X	genomes
ORF1a	T670G	S135R	Х	Х	Х	
ORF1a	С2790Т	T842I	Х		X	
ORF1a	A2832G	K856R				Х
ORF1a	C3037T	/	Х	Х	Х	Х
ORF1a	G4184A	G1307S	X	X	X	
ORF1a	C4321T	/	X	X	X	
ORF1a	T5386G	/				х
ORF1a	AGTT6512A	SL2083I				X
ORF1a	G8393A	A2710T				X
ORF1a	C9344T	I 3027F	x	x	x	11
ORF1a	A9424G	/	x	x	x	
ORF1a	C9534T	T30901	x	x	x	
ORF1a	C9866T	I 3201F	x	x	x	
	C10029T	T3255I	X V	X X	X X	v
ORF1a	C10108T	132331	Λ	Α	Α	Λ
ORF1a	C101381	/				v
ORF1a	C10447A	/ D2205U	v	v	v	A V
ORF1a	C10449A	I \$C2674	Λ	Λ	Λ	A V
ORF1a	CTCTCCTTTT11282C	LSG5074-	v	v	V	Λ
ORF1a	A11527C	SGF30/3-	А	Λ	Λ	v
ORFIA	A1153/G	13758V		7	N7	Х
ORFIA	C116501	1	V	X	X	
ORFIa	C128801	/	Х	Х	Х	37
ORFIa	T13195C	/	••		••	X
ORFID	C144081	P314L	Х	Х	Х	X
ORFID	C152401	/	••		••	Х
ORF1b	C15714T	/	Х	X	X	
ORF1b	C174101	R1315C	Х	Х	Х	
ORF1b	A18163G	I1566V	Х	Х	Х	Х
ORF1b	C19955T	T2163I	Х	Х	Х	
ORF1b	A20055G	/	Х	Х	Х	
S	C21618T	T19I	Х	Х	Х	
S	TTACCCCCTG21632T	LPPA24S	Х	Х	Х	
S	C21762T	A67V				Х
S	ATACATG21764A	HV69-				Х
S	C21846T	T95I				Х
S	GGTGTTTATT21986G	GVYY142D				Х
S	G21987A	G142D	Х	Х	Х	
S	AATT22193A	NL211I				Х
S	T22200G	V213G	Х	Х	Х	
S	T22204TGAGCCAGAA	INS214EPE				Х
S	G22578A	G339D	Х	Х	Х	Х
S	T22673C	/				Х
S	C22674T	S371F	Х	Х	Х	Х
S	T22679C	S373P				Х
S	C22686T	S375F	Х	Х	Х	Х

414 Table 1 – continued

Gene or genome region	Nucleotide changes	Amino acid changes	Omicron BA.2 genomes	IHUCOVID-068136 (or OM993515, or EPL ISL 10843457)	IHUCOVID-063942 (or OM993473, or EPI_ISL_10047082)	Omicron BA.1 genomes
S	A22688G	T376A	X	X	X	
S	G22775A	D405N	Х	Х	Х	
S	A22786C	R408S	Х	Х	Х	
S	С22792Т	/		Х	X	
S	G22813T	K417N	Х	Х	Х	Х
S	T22882G	N440K	Х	Х	Х	Х
S	G22898A	G446S				Х
S	G22992A	S477N	Х	Х	Х	Х
S	C22995A	T478K	Х	Х	Х	Х
S	A23013C	E484A	Х	Х	Х	Х
S	A23040G	Q493R	Х	Х	Х	Х
S	G23048A	G496S				Х
S	A23055G	Q498R	Х	Х	Х	Х
S	A23063T	N501Y	Х	Х	Х	Х
S	T23075C	Y505H	Х	Х	Х	Х
S	C23202A	T547K				Х
S	A23403G	D614G	Х	Х	Х	Х
S	C23525T	H655Y	Х	Х	Х	Х
S	T23599G	N679K	Х	Х	Х	Х
S	C23604A	P681H	Х	Х	Х	Х
S	C23854A	N764K	Х	Х	Х	Х
S	G23948T	D796Y	Х	Х	Х	Х
S	C24130A	N856K				Х
S	A24424T	Q954H	Х	Х	Х	Х
S	T24469A	N969K	Х	Х	Х	Х
S	C24503T	L981F				Х
S	C25000T	/	Х	X	X	Х
ORF3a	C25584T	/	Х	X	X	Х
ORF3a	C25624T	H78Y		X	X	
ORF3a	C26060T	12231	Х	X	X	
Е	C262701	191	Х	Х	Х	X
M	A26530G	D3G	V	V	N/	X
м	C26577G	QI9E	X	X	X	X
M	G26709A	A031	A V	X	A V	А
M	C208381	/	A V	X	A V	v
ORF0	A27259C		A	Λ	Δ	А
ORF6	GA12/382CTC	D61L	X	V	N/	v
UKF/b	C2/80/T	/	X	X	X	X
/	A282/11	/	X	X	X	X
IN N	C28311T	FI3L	X	X	X	X
IN	GGG20891114	EKS31-	X	X	X	X
IN N	420510C	KG203KK	X V	А	А	А
		5413K	X V			
SUIK	ACGATCGAGTG29733C	/	Х			

/, no change; UTR, untranslated region; S gene region is indicated by a grey background; X, present.

Mutations with a bold font are those that are not signature mutations of the Omicron BA.1 or Omicron BA.2

variants.

b. Schematic of parental and recombinant genomes, and nucleotide mutations in the Omicron 21L/BA2 - Omicron 21K/BA1 recombinant genome

Parental Omicron 21L/BA.2 genome	
Omicron 21L/BA.2 - Omicron 21K/BA1 recombinant genomes	
Nucleotide mutations relatively to Wuhan-Hu-1 isolate genome	26,858 27,382
Nucleotide mutations relatively to Omicron 21L/BA.2 variant genome	
Nucleotide mutations relatively to Omicron 21K/BA.1 variant genome	
Parental Omicron 21K/BA.1 genome	

c. Phylogeny based on the recombinant whole genomes

Fig. 2

d. Phylogeny based on the recombinant genomes excluding their Omicron 21K/BA.1 region

