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Abstract  

Background: Although there is a growing interest in using wearable sensors to characterize movement 

disorders, there is a lack of methodology for developing clinically interpretable kinematics biomarkers. Such 

digital biomarkers would provide a more objective diagnosis, capturing finer degrees of motor deficits, while 

retaining the information of traditional clinical tests.   

 

Objectives: We aim at digitizing traditional tests of cognitive and memory performance to derive motor 

biometrics of pen-strokes and voice, thereby complementing clinical tests with objective criteria, while 

enhancing the overall motor characterization of Parkinson’s disease (PD). 

 

Methods: 35 participants including patients with PD, healthy young and age-matched controls performed a 

series of drawing and memory tasks, while their pen movement and voice were digitized. We examined the 

moment-to-moment variability of time-series reflecting the pen speed and voice amplitude.   

 

Results: The stochastic signatures of the fluctuations in pen drawing speed and voice amplitude of patients 

with PD show lower noise-to-signal ratio compared to those derived from the younger and age-matched 

neurotypical controls. It appears that contact motions of the pen strokes on the tablet evokes sensory feedback 

for more immediate and predictable control in PD, compared to controls, while voice amplitude loses its 

neurotypical richness. 

 

Conclusions: We offer new standardized data types and analytics to help advance our understanding of 

hidden motor aspects of cognitive and memory clinical assays commonly used in Parkinson’s disease. 
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1. Introduction  

 

The advent of wearable biosensors and their use in research throughout the last decade, spurred the use of 

kinematic parameters to characterize symptoms of Parkinson’s disease (PD) [1-6]. For example, a search on 

app.dimensions.ai using the words kinematic biomarkers and Parkinson’s disease yielded 2,990 peer-reviewed 

papers since 2016, that we can visualize using some features of the VOS Viewer software for bibliographic 

analyses [7]. Figures 1A-B show clusters of main labs using kinematics for analyses of PD symptoms since 2016 

to present, and Figures 1C-D show the main peer-reviewed journals publishing this type of research since 2013.  

 
 

Figure 1. Bibliographic analyses of publications using kinematic parameters to characterize symptoms of PD 

reveal clusters by research labs over time (A-B) and publication journals (D-E) over time. 

 

In the past, criteria to assess PD was more reliant on observation and pencil and paper inventories that 

clinicians have perfected over time, under best-practice standards that include training, certification, and 

scientific exchange to create reliable tools. Notwithstanding their rigor and ease of use for scalability, relying 

exclusively on observation misses an opportunity to see beyond the limits of the naked eye. With new off-the-

shelf biosensors that have high sampling resolution and research-grade quality, we are now well positioned to 

complement the experienced clinical eye with digital data, to produce interpretable digital biomarkers. This new 

concept emerges from digitizing existing clinical tests, e.g., the Universal Parkinson’s Disease Rating Scale 

(UPDRS) [8] and other cognitive tests like the Montreal Cognitive Assessment (MOCA) [8] commonly used at 

clinical settings. Such digital characterization of various aspects of the disorder are easy to do because 

wearable biosensors are non-obtrusive and can be easily placed on the person’s body, clothing or even collect 
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data streams of motion and voice as the person performs the tasks that are typically administered at clinical 

settings, or over the internet, e.g., via zoom or using other telemedicine means. 

Biosensor’s data offers many advantages, as it increases the level of granularity of the motor phenomena and 

enables us to learn more about the internal physiological activities of the person’s nervous systems. However, 

analytical techniques often rely on summary statistics under theoretical assumptions of linearity, normality, and 

stationarity in the data, when, empirically, the streams of analogue data that we collect can change in highly 

non-linear ways, not be normally distributed and be non-stationary, within the time scale of hours or even 

minutes. Indeed, we have found that kinematic parameters change nonlinearly [4, 6], tend to not distribute 

normally [9, 10] and shift signatures of variability from moment to moment in ways that allow differentiation 

between patients with PD and controls [5].  

For all these reasons, we created a new data type (coined micro-movement spikes, MMS) that permits us to 

provide an empirically informed characterization of the movement phenomena across different parameter 

spaces and data stream modalities. This is done by combining information from different data streams (e.g., 

voice and motion) during typical clinical assessments (Benson complex figure, trail making test, clock drawing) 

and memory tests. These digitized clinical assays can be very revealing of the personalized signatures and of 

the cohort’s signatures and trends. Here we employ these new methods and analyze motor signatures from 

voice and motions during commonly performed cognitive and memory tasks that are part of the clinical 

assessments used in PD. 

2. Methods  

2.1. Participants  

A total of 35 participants partook in this study. Among these, 18 participants (age 28-77) were recruited from 

the Robert Woodrow Johnson Medical Center at Rutgers University or Clinical Trials website 

(clinicaltrials.gov). We had 11 patients with PD and 5 age-matched neurotypical participants (see Table A1), 

and 17 undergraduate students (age 18-35) recruited as young healthy controls from the Rutgers University 

human subject pool system. All participants provided informed consent, which was approved by the Rutgers 

University Institutional Review Board.  

From a series of experiments [11], we report a subset, namely, the drawing and memory tasks, from which we 

analyzed the pen motion and voice data respectively. All but two participants performed these in-person, 

while two of the age-matched controls performed only the memory tasks remotely via Zoom (San Jose, 

California).  

2.2. Experimental procedure  

The participant completed two tasks – drawing and memory (Figure 2).  

For the drawing task, the participant used a digitizing pen and tablet (Wacom, Japan) to complete seven 

drawing tasks, which are subtasks of standardized clinical diagnostic tests. Specifically, the tasks were to 1) 

copy a Benson Complex Figure [12] (denoted as “BCopy” in Figure 2A.A1), 2) connect 8 circles in numerical 

order (denoted as “TrailA” in Figure 2A.A2), 3) connect 25 circles in numerical order, 4) connect 8 circles 

composed of 4 numbers and 4 letters in alpha-numerical order (denoted as “TrailB(s)”), 5) connect circles of 13 

numbers and 12 letters in alpha-numerical order (denoted as “TrailB”), 6) draw an analog clock and set the 

time to 10 past 11(denoted as “Clock” in Figure 2A.A3), and 7) draw the Benson Complex Figure from memory 

(denoted as “BDelay). Motions from the digital pen was recorded with the software MovAlyzer (Neuroscript; 

Tempe, AZ), sampling the position of the pen tip at 133Hz. 
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For the memory task, the researcher recited a string of numbers (ranging from 2 to 9 digits), and the 

participant repeated them in the same order for the forward memory task, and in a reverse order for the 

backward memory task [13]. The researcher continued until the participant failed to repeat them in two 

consecutive trials. The audio of the participant’s voice was recorded with a microphone sampled at 48,000 Hz. 

For the two participants who completed the task remotely, the voice was recorded from an audio clip provided 

by Zoom (San Jose, California), sampled at 44,100Hz.  

 

 

 

 

 

Figure 2. (Left) Clinical 

diagnostic tests of drawing 

and memory tasks were 

performed. (Right) These 

were digitized and 

assessed through kinematic 

analyses of the pen motion 

during the drawing task, 

and audio analyses of the 

voice during the memory 

task. 

 

2.3. Preprocessing Methods   

The audio data collected during the memory tasks were continuously recorded while the researcher and 

participant alternated saying a string of numbers. We manually removed the researcher’s voice from the audio 

using Audacity (open source software; version 2.3.1), and glued the participant’s voice from different trials. 

Then, the audio was decomposed using the Gammatone filter [14, 15] in MIR toolbox [16] (Appendix Figure 

A1.A-C). The Gammatone function is defined in the time domain by its impulse response, and  is known to 

simulate the response of the basilar membrane [14]. The decomposed audio was then enveloped in the MIR 

toolbox (Appendix Figure A1.D). This produced 10 different enveloped audio amplitudes, which we examined 

separately to find which range of band was most informative to characterize PD. While we found a similar 

pattern across all bands, we found the 8th band filter (ranging 4000-7000Hz, centered at 5600Hz) to be the most 

informative. For that reason, we present the results based on this filtered enveloped audio data.  

 

Note, 2 participant’s data were sampled at a different rate (44,100Hz) from the rest of the participants 

(48,000Hz). We analyzed the data by down sampling them to the be at the same rate but did not find much 

difference in the overall pattern that we would describe in the later section. For that reason, we preserved the 

audio data at their actual sampling rates in the analysis for everyone.  

 

2.4. Data Analysis  

2.4.1. Stochasticity of pen movement during drawing task  

The positional trajectory of the pen tip was registered (Figure 3A) and its linear speed was computed (Figure 

3B). Note, linear speed was computed for the entire duration, which includes the times when the pen was 

lifted from the tablet (see Figure A2 for the percentage of pen lifting). The peaks and minima were extracted 

from the linear speed time series (denoted in red and cyan, respectively in Figure 3B), which were then 

converted into a unitless micromovement spike (MMS) data (Figure 3C) [17, 18]. These standardized spike 

amplitudes were computed using the Equation 1 below:  
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minmin to

Peak
MMS

Peak Avrg − −

=
+

 (Equation 1) 

Note, we only extracted the MMS values with raw peak amplitudes exceeding the median linear speed 

(denoted in black horizontal line in Figure 3B), as these high peak amplitudes were most informative to 

characterize PD motions. The inset in Figure 3B zooms into a speed peak (red) and its surrounding local 

minima (cyan), which are the elements of computing MMS (Equation 1). This equation scales out the 

anatomical differences that would otherwise introduce allometric effects on the analyses [19]. 

To observe the stochasticity of the pen movement, the MMS (standardized spikes peaks) were plotted on a 

histogram (Figure 3D), and showed to be concentrated at 0.5, exhibiting a shifted exponential-like distribution 

shape. To allow a good fit to a family of distributions, the MMS amplitude values were shifted by subtracting 

0.5 uniformly (Figure 3E). As a result, the histogram of such shifted MMS was best fit to a Gamma PDF using 

maximum likelihood estimation (MLE). To characterize individual variability in PD, the fitted Gamma (shape, 

scale) parameters were plotted for each person, with 95% confidence intervals on a Gamma parameter plane, 

e.g., two participants in Figure 3F in red and green. The stochastic signatures of these pen motions were 

compared against the clinical scores obtained from the drawings. Specifically, for the task of copying the 

Benson complex figure (BCopy) and drawing it from memory (BDelay), the scores were based on the accuracy 

of the drawing and ranged from 1 to 17. The trail making tests (TrailA, TrailB) were scored based on the time 

(seconds) that it took to complete the task. Because the sample test of Trail A was short (less than 5 seconds for 

most participants), we did not include this in our analysis. Lastly, the clock drawing task (Clock) was scored 

based on the accuracy of the drawing and ranged from 0 to 3. 

It is noteworthy that fitting the Gamma PDF allows us to examine a wide range of probability distributions, 

from exponential to Gaussian [10, 17, 20], and to interpret the stochastic results with mathematical meaning. 

Specifically, the Gamma shape parameter ranges from value of 1 to above 100. The special case of shape = 1 

corresponds to the memoryless exponential distribution, whereby immediate future events are equally 

probable, and no predictive pattern drives the system. This is the case when information is random and exists 

in “the here and now”. As the shape value increases, the distribution shifts from skewed (with heavy tails) to 

symmetric, highly predictive (Gaussian) patterns. Empirically, we have previously seen high randomness in 

the motor stochastic signatures of patients with PD [5], and interpreted that the type of kinesthetic (reafferent) 

feedback that such signatures reveal is less than ideal to predict the consequences of (efferent) action signals, 

and to compensate for sensory-motor transduction and transmission delays in the system [6, 17, 21]. 

The other parameter, the Gamma scale, is equivalent to the noise-to-signal ratio (NSR) (i.e., variance over mean, 

because given a as the Gamma shape and b as the Gamma scale, the Gamma mean is a*b and the Gamma 

variance is a*b2 such that their noise to signal ratio is b, the Gamma scale). Empirical work relating the log-log 

parameters show an inverse relationship between the log NSR (log Gamma scale) and the log Gamma shape. 

Gaussian regimes correspond to low NSR, and we empirically find these in healthy controls, yielding highly 

interpretable value to our approach. Indeed prior studies have demonstrated NSR to be high among patient 

populations (e.g., ASD [22], Parkinson’s disease [23], schizophrenia [24]) using their kinematics during 

naturalistic motions, and be susceptible to change with higher motor intent (e.g., pointing [25-27]).  
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Figure 3. (A-F) Sample methods of data acquisition and analyses for drawing motions. (G-I) Audio analyses using attack and decay 

segments of the enveloped signal.  

2.4.2. Stochasticity of attack and decay phases of speech  

The enveloped audio filtered at 4,000-7,000Hz (centered at 5,600Hz) was examined by segmenting the data by 

attack (upwards) and decay (downwards) phases. First, minima and maxima were extracted, with a criterion 

that maxima be above the median amplitude’s values, and minima be below the median (Figure 3G, left). This 

is because we wanted to focus on meaningful maxima and minima that were most likely produced by actual 

speech, and ignore pauses and non-speech segments (e.g., breathing, sighing). Since there were cases where 

multiple maxima were present between 2 minima, and because our analytics involved segmenting the attack 

and decay phases (where attack phase would start from the local minimum to the subsequent local maximum, 

and decay phase start from the local maximum to the subsequent local minimum), it was necessary to have 

only 1 maximum between 2 minima. For that reason, when multiple local maxima were present between 2 

adjacent minima, we chose the maximum (denoted by red star in Figure 3G, right) as the start and end points 

of attack and decay phases.  

Then, we computed the attack and decay slopes. The attack slope was computed by taking the slope between 

the local minimum and the subsequent maximum (denoted by magenta line in Figure 3H), and the decay slope 

between the maximum and subsequent minimum (denoted by the cyan line). The absolute slopes were then 

plotted on a histogram and their NSR (i.e., fitted Gamma PDF scale parameter) were compared between PD 

and other groups. We also computed the area under the curve during the attack and decay phases, by taking 

the Riemann sum during the two phases as shown in magenta and cyan respectively in Figure 3I. Then the 

stochasticity of these areas was plotted on a histogram and the median values were examined to characterize 

PD against other groups. Finally, the stochasticity of these attack and decay phases were examined against the 

clinical scores of the memory task, which was the average of the longest digits correctly recited during the 

forward and backward memory tasks.  
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Note, we tested with other measures (e.g., NSR of area under the curve, median of absolute slopes), but found 

the NSR of absolute slopes, and median of area under the curve to best characterize and differentiate PD from 

controls. We also tested these parameters separately for the forward and backward memory tasks but did not 

find much difference between the two. For that reason, we combined the audio from the forward and 

backward tasks for the analysis.  

3. Results 

3.1. Patients with PD show lower noise-to-signal ratio (NSR) in their pen motion  

The fitted Gamma parameters alongside the actual drawing scores were plotted for each participant, for each 

drawing task in Figure 4A.  This figure spans a parameter space amenable to detect self-emerging patterns 

across the cohort. We also set landmarks of the most severe case of PD according to the clinical scores (upright 

triangle) vs. the least severe case (inverted triangle). 

 

 
Figure 4. Combining Gamma parameters scale, shape and drawing scores separates the stochastic signatures derived 

from the drawing motions of young controls (denoted as NT) and PD. ** p<0.01, * p<0.05, t p<0.1 

 

Across all drawings, patients with PD showed lower drawing scores than the young healthy cohort (NT), 

(Figure 4C left, Table A2). When we examine the stochasticity of pen motion, PD tend to have a lower scale 

and higher shape parameter than NT (Figure 4 middle, right, Table A2). The single participant with ASD and 

the patient with Essential Tremor did not show noticeable difference in their stochasticity, compared to NT. 

The separation between PD an NT is most pronounced during the clock and the Benson complex figure task 

(both BCopy and BDelay), which involve drawing on a blank sheet of paper, which allows more freedom in 

motion. These tasks contrast with others, where participants are given a paper with some form of figures 

already printed on it (e.g., circles with letters and/or numbers), and thus have less freedom in their pen motion. 

We also analyzed this separately between older NT and the PD, and still found similar patterns with reduced 
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difference in the stochasticity as shown in Figure A3, thus confirming that the observed pattern between PD 

and NT is not solely due to age.  

When we examined the PDF, the typical patient with PD tends to have different PDF than NT, as shown in 

Figure 4B.  This alludes to the nature of contact control (control while body is in contact with an object) among 

individuals with PD, where they tend to exhibit lower NSR in their hand motion variability, especially in cases 

where movement traces are not prescribed (as in the clock and Benson figure tasks). This can be a useful 

addition to the current drawing diagnostic tests, because certain drawing test scores (particularly the clock and 

Benson figure copy) tend to be too coarse to differentiate participants, as most end up reaching the ceiling 

score.  

3.2. Patients with PD show lower change and NSR in voice amplitude  

Based on the enveloped audio filtered at 4,000-7,000Hz, the NSR of the distribution of absolute attack and 

decay slopes, and the median area under the curve during the attack and decay phases, alongside the actual 

memory scores obtained during the memory task are plotted for each participant in Figure 5A.  

The memory score itself does not show statistical difference between PD and NT, although patients with PD 

tend to show lower scores (χ(1,27) = 0.31, p=.58). On the other hand, there is a clear separation between the two 

groups when comparing the area under the curve (χ(1,27) = 9.98, p<0.01) and the NSR of absolute slope 

distribution (χ(1,27) = 4.70, p=0.03) (Figure 5B). Specifically, patients with PD tend to show a smaller area 

under the curve and lower NSR in their distribution, and this pattern is maintained when comparing patients 

with PD against their older NT counterparts (for area under curve, χ(1,10) = 5.34, p=0.02; for NSR of slope 

distribution χ(1,10) = 6.23, p=0.01) confirming that this difference is not due to age (Figure A4).  

When we examine this question only among the PD group and compare those with higher severity (with 

UPDRS above the median) against those with less severity (with UPDRS below the median) as shown in 

Figure 5C, we find a similar pattern, suggesting that this measure not only characterizes PD but also reflects 

the severity of the disorder. To exclude such separation to be due to difference in voice volume, we also 

compared the voice amplitude between PD and NT and found the two groups to have a similar range of 

volume in their voices (Figure 5D). We also tested such comparison across different audio bands, and found 

similar patterns, but most pronounced at frequency 4,000-7,000Hz (Figure A5), which is what we show in 

Figure 5.  
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Figure 5. Combining attack and decay parameters (NSR, Area) and memory scores (MScore) separates the 

stochastic signatures derived from the voice amplitudes of young controls (denoted as NT) and those with PD. ** 

p<0.01, * p<0.05, t p<0.1 

 

Overall, these findings imply that the variability in attack and decay phases of the voice from patients with PD 

are stochastically different, such that changes in voice amplitude (particularly within 4,000-7,000Hz range) is 

smaller and less variable than the NT. These characteristics may be useful additions to cognitive tests, as 

accompanying deficits in the neuromotor aspects of PD.  

4. Discussion 
This work extends the fast-growing body of knowledge involving kinematic analyses of motion patterns from 

patients with PD and controls across different age groups. We combined data from drawing motion 

trajectories of a pen on a tablet and the participant’s voice, to provide a set of methods amenable to use in the 

lab, clinic or remotely over zoom, as the person undergoes traditional clinical evaluations or telemedicine 

visits. These methods digitized typically administered tests such as parts of the MOCA, assessing memory and 

cognitive status of the person, and took advantage of the (hidden) motor components of these tests. Using a 

new data type, the MMS and a combination of non-parametric statistical analyses and data-driven stochastic 

analyses, we were able to demonstrate clear separations between patients with PD and controls. 

 

We found that in the drawing tasks, patients with PD manifest lower values of the Gamma scale and higher 

values of the Gamma shape derived from the MMS of their drawing speed. Their motions are far more 

controlled and predictable than those of neurotypical young and older participants. The latter are well 

characterized by fluctuations in speed that distribute exponentially, in contrast to those of PD who had speed 

fluctuations distributed in skewed to symmetric shape ranges.  

 

This result contrasts with the signatures of pointing motions to visual targets, whereby higher NSR and 

exponentially distributed fluctuations prevail in PD [6]. We attribute these differences to the pen’s contact with 

the tablet, providing continuous feedback to the motor performance. In PD, motor control is already thought 

to be under deliberate supervision of the motor systems [28], partly accounting for the bradykinetic motions 

known to characterize their motor performance [4]. Unlike in pointing motions, where no contact surface 
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provides feedback and the feedback is rather kinesthetic from the fluctuations of the motion trajectories 

themselves [6], here we can appreciate this overt supervision with significantly lower speeds and highly 

controlled fluctuations of the drawing traces, in relation to controls. This result is important because in 

addition to offering new ways to use e.g., the MOCA tests to assess motor components, it suggests a new 

possible target for treatment. Namely, a possible new way to directly provide feedback to the motor systems is 

through contact motions, that through this pressure-based reafferent channel could aim at bringing the NSR of 

their fluctuations in traces’ speed, to levels comparable to those of controls.  

 

Using the voice data, we also found ways to separate patients with PD from controls and demonstrated the 

differences in parameter spaces for characterizing PD. These methods of data acquisition and analyses are 

amenable to use with zoom, for remote research and adds to our arsenal of instruments that the recent 

pandemic generated to enable continuity of our research programs using off-the-shelf means. 

 

The methods presented in this work are personalized, as they reflect the person’s stochastic signatures of 

motor variability, uniquely localizing everyone in the cohort on a parameter space. Furthermore, interpretation 

of the data from the group is possible as clusters self-emerge within the parameter space, often automatically 

separating the patients from the neurotypical controls. As the data are standardized and possible allometric 

effects scaled out, the MMS derived from the moment-to-moment fluctuations in signal amplitude (e.g., speed 

or other derived parameters like area under the attack-decay curve), we can add other patient populations 

with motor issues. We can aim at automatically stratifying the heterogeneous spectrum of clinically-defined 

disorders and identifying which parameters may optimally separate diverse disorders of the nervous systems. 

Using motoric components hidden in these minute fluctuations – that we tend to throw away as superfluous, 

gross data – we made good use of these standardized fluctuations, offering new ways to leverage existing 

cognitive and memory inventories broadly used by the field of clinical and basic research. 

 

In summary, we offer new standardized data types and analytics to help advance the clinical and applied 

research of Parkinson’s disease. 
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Appendix 
 

 
Figure A1. (A) Raw audio waveforms during speech. (B) Gammatone filter to simulate the basilar membrane 

response. (C) Audio decomposed by Gammatone filter bank. (D) Enveloped audio from (C). 
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Figure A2. Boxplot of percentage of pen lifts during the entire duration of recording for 5 drawing tasks.  

** p<0.01  
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Figure A3. Boxplot of Drawing scores and Gamma parameters between age-matched neurotypical (oldNT) and Parkinson’s patient.  

* p<0.05 ; t  p<0.1  
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Figure A4. Boxplot logarithm of area, of logarithm of slope NSR, and of memory score between age-matched neurotypical (oldNT) and 

Parkinson’s patient (PD).  

* p<0.05 
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Figure A5. 3D plot of memory score, logarithm of slope NSR, and logarithm of median area for all participants, based on differently 

filtered voice data (#1-10).  
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Table A1. Demographics of patient and age-matched neurotypical participants 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1Participant Abbreviation  

PD: Parkinson's disease             

ASD: Autism spectrum disorder             

ET: Essential tremor             

Old NT: age matched neurotypical control          
2 Intake of medication for motor issues / medication for non-motor issues that are known to affect motor performance  

  

Participant1 Gender Age UPDRS  

Hoehn and 

Yahr scale 

Medication 

(Motor/Non-

Motor)2 Pen Data 

Voice 

Data  

PD 1  M 51-60 6 2.5 Yes/Yes Yes Yes 

PD 2  F 61-70 44 4 Yes/Yes Yes Yes 

PD 3  M  61-70 24.5 2.5 Yes/Yes Yes Yes 

PD 4 M 61-70 19 3 Yes/Yes Yes Yes 

PD 5 M 51-60 29 3 Yes/Yes Yes No 

PD 6  F 61-70 - 3 Yes/No Yes Yes 

PD 7  M 61-70 16 2 Yes/Yes Yes Yes 

PD 8  M 71-80 21 3 Yes/No Yes Yes 

PD 9  F 71-80 27 3 Yes/Yes Yes No 

PD 10  M 41-50 - 2 Yes/Yes Yes Yes 

PD 11 M 61-70 20 - - No Yes 

ASD 1  F 21-30 - - - No Yes 

ET 1 M  31-40 - - - Yes Yes 

Old NT 1 F  61-70 - - - Yes No 

Old NT 2 M  61-70 - - - Yes No 

Old NT 3 F 51-60 - - - No Yes 

Old NT 4 F 71-80 - - - No Yes 

Old NT 5 M 71-80 - - - No Yes 
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Table A2. Kruskal-Wallis Test on Parameter Comparison during drawing task  

Parameter  Drawing 

yNT1 vs PD  oldNT2 vs PD  

Chi (1,25) p-value Chi (1,10) p-value 

Drawing Score  

BCopy 5.80 0.02* 0.72 0.40 

Trail A 14.95 0.00** 2.95 0.09 

Trail B(s) 16.54 0.00** 2.26 0.13 

Trail B 7.63 0.01** 1.05 0.31 

Clock 6.95 0.01** 1.50 0.22 

BDelay 7.77 0.01** 0.00 1.00 

Gamma shape 

BCopy 7.08 0.01** 2.95 0.09 

Trail A 4.66 0.03* 2.95 0.09 

Trail B(s) 3.45 0.06 2.95 0.09 

Trail B 3.64 0.06 4.62 0.03* 

Clock 7.80 0.01** 2.26 0.13 

BDelay 4.31 0.04* 4.50 0.03* 

Gamma scale 

BCopy 6.82 0.01** 2.26 0.13 

Trail A 0.00 1.00 0.00 1.00 

Trail B(s) 0.06 0.80 0.05 0.83 

Trail B 0.57 0.45 1.15 0.28 

Clock 15.21 0.00** 4.62 0.03* 

BDelay 8.63 0.00** 4.50 0.03* 

 

1 yNT: Young neurotypical  

2 oldNT: age-matched neurotypical  
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