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Abstract 21 

The abundance of cell-free microRNA (miRNA) has been measured in many body 22 

fluids, including blood plasma, which has been proposed as a source with novel, 23 

minimally invasive biomarker potential for several diseases. Despite improvements in 24 

quantification methods for plasma miRNAs, there is no consensus on optimal reference 25 

miRNAs or to what extent haemolysis may affect plasma miRNA content. Here we 26 

propose a new method for the detection of haemolysis in miRNA high-throughput 27 

sequencing (HTS) data from libraries prepared using human plasma. To establish a 28 

miRNA haemolysis signature in plasma we first identified differentially expressed 29 

miRNAs between samples with known haemolysis status and selected miRNA with 30 

statistically significant higher abundance in our haemolysed group. Given there may be 31 

both technical and biological reasons for differential abundance of signature miRNA, 32 

and to ensure the method developed here was relevant outside of our specific context, 33 

that is women of reproductive age, we tested for significant differences between 34 

pregnant and non-pregnant groups. Here we report a novel 20 miRNA signature (miR-35 

106b-3p, miR-140-3p, miR-142-5p, miR-532-5p, miR-17-5p, miR-19b-3p, miR-30c-5p, 36 

miR-324-5p, miR-192-5p, miR-660-5p, miR-186-5p, miR-425-5p, miR-25-3p, miR-363-37 

3p, miR-183-5p, miR-451a, miR-182-5p, miR-191-5p, miR-194-5p, miR-20b-5p) that 38 

can be used to identify the presence of haemolysis, in silico, in high throughput miRNA 39 

sequencing data. Given the potential for haemolysis contamination, we recommend that 40 

assay for haemolysis detection become standard pre-analytical practice and provide 41 

here a simple method for haemolysis detection. 42 

Introduction 43 

MicroRNAs represent a class of short, ~22 nt single stranded non-coding RNA 44 

transcripts found in the cytoplasm of most cells that act directly as post transcriptional 45 

regulators of gene expression (1,2) and also coordinate extensive indirect 46 

transcriptional responses (3). In their canonical action, miRNAs mediate the expression 47 

of specific messenger RNA (mRNA) targets by binding to the 3`-untranslated region 48 

(UTR) of transcripts by either repressing translation or marking them for degradation (4). 49 
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In the canonical miRNA pathway, target specificity requires exact nucleotide sequence 50 

complementarity between the miRNA ‘seed’ region (the first 2-7 bases at the 5` end of 51 

the mature miRNA transcript) and the 3`-UTR of the mRNA. Importantly, miRNAs 52 

demonstrate tissue, temporal and spatial expression specificity and are known 53 

regulators of development, with most mammalian mRNAs harbouring conserved targets 54 

of one or many miRNAs (1,2,5). 55 

 56 

miRNA expression is both temporally and spatially tissue-specific, with transcripts 57 

identified beyond the cells in which they were synthesised, in various body fluids 58 

including urine, saliva and blood plasma (6). Circulating cell-free miRNAs identified in 59 

plasma are packaged in micro vesicles such as exosomes (7,8) or bound to protein 60 

complexes such as argonaute 2 (Ago2), nucleophosmin 1 (NPM 1) and high density 61 

lipoprotein (HDL) (9–11), making them exceptionally stable (6). This stability, coupled 62 

with their minimally invasive accessibility, has suggested circulating cell-free miRNAs as 63 

an important resource for the identification of novel biomarkers. 64 

 65 

Whilst much progress has been made in the search for novel miRNA biomarkers of 66 

disease processes (12–14), outcomes of this research approach are often inconsistent 67 

or even contradictory (6). There are many reasons for this, including variations in 68 

enrichment, extraction and quantification methods, variation between individuals, lack of 69 

consensus regarding optimal reference miRNA for normalisation and the difficulty in 70 

quantifying both the amount and quality of RNA transcripts from blood plasma samples 71 

(15,16). An important but often overlooked factor is the potential for sample haemolysis 72 

during blood collection or sample preparation which results in miRNA from lysed RBCs 73 

being spilled into and retained within the plasma sample to be assayed (15). 74 

 75 

The issue of haemolysis altering the miRNA content of plasma and the potential for 76 

confounding biomarker discovery has been reported previously (15,17,18). Using RT-77 

qPCR Kirschner and colleagues (15) showed that contamination of plasma samples 78 

with the miRNA content of RBCs changed the abundance of both miR-16 and miR-79 

451a. This, in turn, altered the relative abundance of potential biomarkers for 80 
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mesothelioma and coronary artery disease including miR-92a and miR-15. Using the 81 

same technique, Pritchard et al. (18) demonstrated in plasma that 46 of the 79 82 

circulating miRNA cancer biomarkers were highly expressed in more than one blood cell 83 

type, noting that the effects of sample specific blood cell counts and haemolysis can 84 

alter the miRNA biomarker levels in a single patient sample up to 50-fold. As a result, 85 

the authors emphasised caution in classifying blood cell associated miRNAs as 86 

biomarkers given the possible alternate interpretation. 87 

 88 

Haemolysis is associated with either blood collection or RNA extraction and sample 89 

preparation. Thus, despite differences between the quantification methods, high 90 

throughput sequencing data used in our study is equally susceptible to the confounding 91 

effects of sample haemolysis on miRNA abundance levels in plasma is RT-qPCR. 92 

There are currently two gold standard approaches in the assessment of haemolysis in 93 

plasma: 1. Delta quantification cycle (ΔCq), where expression levels of a known blood 94 

cell associated miRNA (miR-451a) and a control miRNA (miR-23a) are determined 95 

based on the difference between the two raw Cq values and 2. Spectrophotometry, 96 

where absorbance is measured at 414 nm with the use of a spectrophotometer. In the 97 

case of ΔCq assessment, miR-451a is known to vary and miR-23a is known to be 98 

invariant in plasma affected by haemolysis (15,16). Using spectrophotometry, 99 

haemolysis is quantified by assessing the presence of cell free haemoglobin by 100 

measuring the absorbance at 414 nm, the absorbance maximum of free haemoglobin 101 

(19,20). Both methods require access to sufficient amounts of the original plasma 102 

sample and the laboratory equipment required to perform the assays. Free access to a 103 

web-tool that can perform in silico assessment of RBC contamination in human plasma 104 

would be of exceptional value to the research community. 105 

 106 

Whilst it is well established that haemolysis frequently occurs during extraction or 107 

processing of blood samples, the assessment of RBC contamination is rarely mentioned 108 

in publications. It is even more rare that the results of any such testing are present in 109 

the metadata assigned to publicly available sequencing data. There is currently no 110 

publicly available tool for analysis of haemolysis without access to the physical plasma 111 
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specimen. Although the theory underlying identification of haemolysis in plasma is 112 

relatively straight-forward, surprisingly, to our knowledge this has never before been 113 

extrapolated into a data-only, in silico approach. The paucity of haemolysis information 114 

in the context of publicly available datasets, combined with the lack of tools to identify 115 

affected datasets after the fact, substantially limits the utility of this data resource and 116 

reproducibility of research findings. Further, it increases the risk that results obtained 117 

may unwittingly represent blood-cell based phenomena rather than signatures of the 118 

pathology of interest. 119 

 120 

In this study, we assessed miRNA abundance in HTS data from libraries prepared using 121 

human plasma from pregnant and non-pregnant women of reproductive age. Using a 122 

set of samples with confirmed haemolysis (ΔCq (miR-23a-miR-451a)), we established a 123 

set of 20 miRNAs differentially abundant between plasma from samples with and 124 

without substantiated haemolysis. Using the expression values of these 20 miRNAs as 125 

a ‘signature’ of haemolysis, we calculated the difference between the mean normalised 126 

expression levels of these miRNAs compared to those of all other miRNAs (as a 127 

‘background’ set). This produced a quantitative metric which represents the strength of 128 

the evidence of haemolysis in an individual sample. When this metric is interpreted in 129 

the context of other samples, it can be used to identify sample(s) that display substantial 130 

evidence of haemolysis. The researcher may consider discarding these samples from 131 

further analyses or using caution in their interpretation. We consulted the EMBL-EBI 132 

Expression Atlas (ebi.ac.uk) to ensure all signature miRNAs are identified in multiple 133 

human tissues (male and female) and have no known developmental stage association. 134 

For ease of application, we have developed this method into a web based Shiny/R 135 

application, DraculR (a tool that allows a user to upload and assess haemolysis in high-136 

throughput plasma miRNA-seq data), for use by the research community (DraculR: A 137 

web-based application for in silico haemolysis detection in high throughput small RNA 138 

sequencing data). 139 
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Results 140 

High throughput sequencing 141 

Illumina NextSeq 75 bp single-end read sequencing was performed on miRNA libraries 142 

from 154 plasma samples taken from 24 non-pregnant and 130 pregnant women aged 143 

16 to 46 years (Qiagen, Hilden, Germany). Prior to sequencing, RT-qPCR was used to 144 

analyse ΔCq (miR-23a-miR-451a), where the ratio of miR-23a to miR-451a (or ΔCq 145 

(miR-23a-miR-451a) ≥ 7) correlates with the degree of haemolysis. We identified 14 146 

plasma samples with a ΔCq of 7 or above (Supplementary Table 1). An average of ~2.9 147 

million reads were sequenced per sample (range ~0.25-18.6 million reads). Thirty-one 148 

libraries with < 1 million reads were considered to be unreliable due to low sequencing 149 

output and were removed from further analyses. There was no difference in the 150 

proportion of haemolysed and non-haemolysed data in the exclusion of samples due to 151 

low library size (Fisher’s exact test P-value = 0.7). Sequence alignment was performed 152 

using BWA (21) to the human genome (version GRCh38) and miRNA read counts were 153 

generated by mapping to human miRBase v22 (22,23) identifying 1,133 mature 154 

miRNAs. 155 

 156 

To analyse the effects of haemolysis on miRNA expression data from next generation 157 

sequencing, we first determined the number of unique mature miRNAs identified in each 158 

of our samples and analysed the data relative to read depth. Using an analysis of 159 

variance (ANOVA) we identified a significant difference between the haemolysed and 160 

non-haemolysed samples (P<0.05), with haemolysis being frequently associated with 161 

fewer mature miRNA species detected at a given read depth (Figure 1). 162 

 163 
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164 
Figure 1. The number of mature miRNA species identified in an individual sample increases165 
with read depth for both haemolysed and non-haemolysed samples. However, the number of166 
mature miRNA species identified for a given read depth is significantly lower (ANOVA, P-value167 
= 1.68 x 10-9) in samples affected by haemolysis (maroon) when compared to a non-168 
haemolysed sample (black) of equal read depth. 169 

microRNA haemolysis signature set 170 

To ensure that miRNAs identified here were representative of those found in a broad set171 

of plasma samples, we first filtered to discard miRNAs of low abundance. After filtering,172 

189 highly abundant miRNA remained. Differential expression analysis comparing173 

miRNA read counts identified 138 miRNAs with a higher abundance in haemolysed174 

compared to non-haemolysed samples (statistically significant differentially expressed175 

miRNA, false discovery rate (FDR) < 0.05, with a log2 fold change (log2FC) > 0)176 

(Supplementary Figure 1; Supplementary Figure 2a & b). We further ranked the177 

differentially expressed miRNAs based on log2FC, FDR and abundance levels and178 

subset the list such that only miRNAs which had a log2FC > 0.9 and were in the top 60179 
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percent of each of the FDR and abundance rank criteria remained. This resulted in a 180 

high confidence set of 20 miRNA indicative of a haemolysis signature (Table 1). 181 

 182 

For in silico assay of haemolysis in our data, we further removed miRNAs associated 183 

with pregnancy to avoid confounding miRNA associated with haemolysis with those 184 

associated with pregnancy. Differential expression analysis of miRNA read counts from 185 

pregnancy and non-pregnancy samples identified 127 miRNAs (FDR < 0.05) that were 186 

significantly differentially expressed between the groups (Supplementary Figure 3a & b). 187 

Strikingly, one of our first observations highlighted the importance of including 188 

haemolysis analysis as an adjunct in our study: miR-451a, which is the sole haemolysis 189 

signature miRNA used in the current ΔCq (miR-23a-miR-451a) gold standard method 190 

for haemolysis detection was discovered to be highly correlated with pregnancy status, 191 

indicating a strong confounding factor in pregnancy studies when haemolysis levels are 192 

estimated using RT-qPCR alone. Accordingly, miR-451a was removed from calculations 193 

hereafter along with 9 other miRNAs that were differentially expressed between the 194 

pregnant and non-pregnant groups from the core set of haemolysis signature miRNA. 195 

This resulted in 10 miRNAs remaining for evaluation of haemolysis levels. 196 

  197 
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Table 1. 20 miRNAs with a general-use plasma haemolysis signature set. To remove 198 
confounding effects within our pregnancy-specific dataset, we identified a subset of 10 abundant 199 
miRNA which are invariant with respect to pregnancy. 200 
 201 

miRNA Log2FC 
Average 

Expression 
(log2 CPM) 

Adjusted 
P-value 

Pregnancy 
Assoc. 

miR-106b-3p 1.589 8.731 8.61 x 10-15 no 

miR-140-3p 1.073 10.098 2.75 x 10-13 no 

miR-142-5p 0.962 10.651 4.96 x 10-12 no 

miR-532-5p 1.288 7.237 4.96 x 10-12 no 

miR-17-5p 0.952 7.892 7.84 x 10-12 no 

miR-19b-3p 1.128 8.696 1.93 x 10-09 no 

miR-30c-5p 0.95 7.325 2.48 x 10-09 no 

miR-324-5p 1.304 7.186 2.50 x 10-09 no 

miR-192-5p 0.941 8.944 1.37 x 10-08 no 

miR-660-5p 1.305 7.62 3.45 x 10-10 no 

miR-186-5p 1.228 8.052 2.75 x 10-13 yes 

miR-425-5p 1.282 11.246 4.96 x 10-12 yes 

miR-25-3p 1.212 12.939 1.26 x 10-11 yes 

miR-363-3p 1.237 7.882 4.52 x 10-11 yes 

miR-183-5p 1.55 9.382 9.34 x 10-11 yes 

miR-451a 1.372 13.002 3.65 x 10-10 yes 

miR-182-5p 1.341 10.585 2.48 x 10-09 yes 

miR-191-5p 0.929 11.79 4.68 x 10-09 yes 

miR-194-5p 0.937 7.679 1.85 x 10-08 yes 

miR-20b-5p 0.932 7.43 1.96 x 10-08 yes 
 202 

Incorporating concepts from previous RT-qPCR analyses of haemolysis, we established 203 

a new measure of the inclusion of RBC associated miRNA in human plasma. After 204 

establishing the 20-miRNA signature associated with RBC content inclusion, we 205 

determined the geometric mean of the distribution of miRNA read counts as an 206 

appropriate measure of abundance and summary statistic. Using this summary statistic, 207 

our method calculates a ‘Haemolysis Metric’, defined as the difference between the 208 
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geometric means of the normalised abundance levels of the haemolysis miRNA 209 

signature set compared to that of all other miRNAs (the ‘background’ set). Note that in a 210 

case-control study, to reduce the risk of confounding the Haemolysis Metric with 211 

experimental variables, the signature set should be reduced to exclude any miRNA 212 

known to be differentially expressed between groups. In this case, the geometric mean 213 

of the reduced signature set will be calculated, as defined in (1).  214 

 215 

Let 216 
��. be the miRNA Reduced signature set (log2 CPM counts) 217 
and ��. be the Background miRNA set (log2 CPM counts) 218 
where � � 1,2,3,… , 	� with 	� = the number of miRNA in Reduced signature set 219 
and 
 � 1,2,3,… , 	� where 	� = the number of miRNA in Background 220 
and � � 1,2,3,… , � where � = the sample size after filtering 221 
 222 

��������	� ���
	�� �  �� �����

���

�� � �� �����

���

���

 

 223 
 (1) 224 

 225 
 226 

Prior to establishing a threshold for the new Haemolysis Metric we measured the linear 227 

dependence between the new Haemolysis Metric and the ΔCq (miR-23a-miR-451a) 228 

metric by performing a Pearson’s correlation. Our results indicated a Pearson’s 229 

correlation coefficient of 0.64 (P < 0.0001). With confidence in the correlation, to 230 

establish a threshold for the Haemolysis Metric, we compared the results of the ΔCq 231 

(miR-23a-miR-451a) and summary statistic methods directly. Briefly, we compared the 232 

Haemolysis Metric to the ΔCq (miR-23a-miR-451a) results for matched samples and 233 

established a cut off criterion for inclusion into the Clear (no haemolysis detected) and 234 

Caution (haemolysis detected) groups (Figure 2a). We chose a threshold of ≥ 1.9 for the 235 

assignment of “Caution” to individual samples based on the minimum summary statistic 236 

difference of samples assayed using the ΔCq (miR-23a-miR-451a) metric of ≥ 7 (Figure 237 

2a) and the minimal overlap between the distribution of the Haemolysis Metric in 238 

haemolysed compared to non-haemolysed samples (Figure 2b). Where a sample is 239 
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assigned “Caution”, researchers are advised to consider removing the sample, or to240 

continue with caution. Given the correlation of the two metrics is imperfect and the241 

arbitrary nature of choosing any cut-off, samples with a Haemolysis Metric close to the242 

1.9 cut-off may be interrogated further prior to any decision to retain or remove. Of the243 

121 samples assayed, 25 samples met the criteria for Caution. Of these, 12 were244 

previously determined as haemolysed or borderline using the ΔCq (miR-23a-miR-451a)245 

assay. We found that all samples identified as ΔCq ≥ 7 (Figure 2a, scarlet) are above246 

the criteria for the Haemolysis Metric (Figure 2a, horizontal grey bar; threshold ≥ 1.9).247 

Further, we identified 13 samples with a Haemolysis Metric ≥ 1.9 not included in the248 

ΔCq (miR-23a-miR-451a) criteria. 249 

a

 

b 

 
Figure 2: (a) A comparison of the derived Haemolysis Metric and the ΔCq measure of250 
haemolysis shows a clear correlation. We identified 13 samples (named) that we suggest251 
should be discarded or used with caution in further analysis. (b) Histogram of Haemolysis Metric252 
values from the 121 samples in our experiment, coloured according to their ΔCq (miR-23a-miR-253 
451a) classification indicate a minimum Haemolysis Metric of ≥ 1.9 for samples previously254 
identified as haemolysed.  255 

Discussion 256 

Through an analysis of differential miRNA expression in samples whose haemolysis257 

levels were known, we identified a novel 20 miRNA signature indicative of haemolysis.258 

Given our hypothesis that plasma samples contaminated with RBC content would259 

contain proportionally higher levels of many RBC-associated miRNA, not just miR-451a,260 

we established a method using a group of background miRNAs as a reference.261 

Accordingly, as a group, signature miRNAs (microRNAs which are abundant in red262 
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blood cells) are shown to be more highly abundant in samples contaminated with RBCs. 263 

The degree of this change can be used as a measure of RBC content contamination 264 

and quantified by comparing the geometric means of the expressions of RBC signature 265 

miRNAs to that of the background set of miRNAs. We further established that where a 266 

comparison between conditions is considered, for example in a biomarker discovery 267 

experiment, any miRNA known to be associated with the condition for which the 268 

biomarker is proposed should be removed to prevent confounding between the 269 

condition of interest and the quantification of RBC-associated miRNA inclusion. 270 

 271 

Our experimental results demonstrate that it is possible to identify a haemolysis 272 

signature in silico, avoiding the effort and expense of lab validation, and in situations 273 

where blood plasma samples are exhausted, otherwise unavailable or cost-prohibitive 274 

to assay using current gold standard approaches. Given the limited access to physical 275 

samples associated with publicly available data, the Haemolysis Metric technique 276 

introduced here, provides the basis for the development of a publicly available tool 277 

(DraculR: A web-based application for in silico haemolysis detection in high throughput 278 

small RNA sequencing data). 279 

 280 

Among the haemolysis miRNA signature is miR-451a (previously named miR-451), 281 

commonly associated with RBC contamination and used in the calculation of ΔCq (miR-282 

23a-miR-451a). However, we removed miR-451a together with 9 other miRNAs from 283 

our calculation of distribution difference due to changes in miRNA abundance 284 

associated with pregnancy. During pregnancy total blood volume increases, varying 285 

between 20% to 100% above pre-pregnancy levels. This change, however, is not 286 

uniform across all blood components as plasma volume increases proportionally more 287 

than the RBC mass (24). This is an important consideration and highlights the limitation 288 

of the current gold standard approach that uses two miRNAs rather than a larger 289 

signature set to calculate a measure of contamination. If, as in this example, the 290 

abundance of either miRNA used to determine the ΔCq is also affected by the condition 291 

or pathology under investigation, the issue is two-fold. Firstly, you may identify miR-292 

451a as being differentially abundant in the pathology of interest and propose its use as 293 
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a biomarker only to find that it is confounded by haemolysis. Secondly, you may, using 294 

the ΔCq calculation, classify samples as haemolysed when the change in miR-451a 295 

abundance is more appropriately associated with the pathology of interest. By 296 

establishing a larger signature set of miRNAs to detect haemolysis in small RNA 297 

sequencing from human plasma we hope to provide a resource to the community. To 298 

overcome issues identified in previous studies, the flexibility and redundancy included in 299 

our metric buffer against the issue of confounding conditions of interest with the 300 

measure of haemolysis. 301 

 302 

We found limited overlap between the miRNAs identified as useful for the detection of 303 

haemolysis and those previously reported as markers of haemolysis contamination 304 

(15,18,25). When comparing with previous research, it is important to note, that our 305 

research question differed from that of the above studies, as did our study methodology. 306 

The most important technical difference is in the quantification of miRNAs. The 307 

expression values used here were taken from a HTS experiment, rather than RT-qPCR 308 

used previously. The limitations of RT-qPCR to investigate which miRNAs are affected 309 

by haemolysis has been identified previously (26). Given that HTS allows for 310 

quantification of all known miRNA species and that RT-qPCR is targeted, our 311 

experiment was able to identify differential abundance in miRNAs not quantified in 312 

Kirschner et al. (15), Pritchard et al. (18) or McDonald et al. (25). Whilst we identified an 313 

overlap in the miRNAs associated with haemolysis in this and previous work, many of 314 

these were not included in the final miRNA Haemolysis Metric signature set. These 315 

include miR-16, miR-486-5p and miR-92a-3p which were significantly upregulated in the 316 

haemolysed group, but not included in the signature set as they failed to pass filtering 317 

criteria for log2FC and expression level. Secondary to the technical differences 318 

introduced by using different miRNA quantification technologies, it is important to note 319 

that all plasma samples used here to establish which miRNAs are affected by 320 

haemolysis were taken from adult women of reproductive age. No sex or age 321 

information was included with either of the compared studies, although it is likely these 322 

samples included specimens from men and women. To account for the potential bias 323 

introduced using data from only female and all reproductively aged volunteers, we 324 
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ensured all miRNAs included here have previously been identified in multiple tissues in 325 

both male and female samples and are not affected by developmental stage. 326 

Investigation using a cohort of mixed age and sex is warranted and may help to further 327 

determine which miRNAs are affected by haemolysis. 328 

 329 

Interestingly, all signature miRNAs, with the exception of miR-325-5p, have previously 330 

been reported as prognostically valuable plasma or serum biomarkers. In this small 331 

sampling of recent miRNA biomarker research, we identified several instances where 332 

more than one of our haemolysis signature miRNA were identified as disease 333 

biomarkers for the same condition in the same experiment (27–29) which, given our 334 

findings, and those of previous haemolysis research, further call into question their 335 

validity as biomarkers of disease or condition. In conjunction with our research, we 336 

found many miRNAs as suggested circulating biomarkers for multiple disease states. 337 

For example, miR-122 was given biomarker potential in liver disease, lung cancer and 338 

myasthenia gravis (14,27,30), and miR-660 was given biomarker potential in 339 

Alzheimer’s disease, breast cancer and lung cancer (28,31,32), respectively. These 340 

miRNAs may represent effective biomarkers, but they may simply highlight RBC 341 

contamination or be indicative of a general state of inflammation. 342 

 343 

Data contained in this study were obtained from two cohorts of female volunteers of 344 

reproductive age. Whilst we are working in a relatively narrow experimental domain, we 345 

have generalised this method such that removal (from the signature miRNA set) of 346 

domain specific miRNA is built in, providing a framework that allows use within research 347 

conducted in any human plasma context. Our results highlight that ignoring the issue of 348 

miRNA from RBCs leaves researchers open to the risk that newly discovered miRNA 349 

disease biomarkers could in fact be biomarkers of haemolysis. In future research, a 350 

repeat experiment with samples taken from male and female individuals across a wider 351 

age range would expand and strengthen our understanding of the impact of haemolysis 352 

on biomarker discovery. Our research both recommends and enables tests for 353 

haemolysis to become standard pre-analytical practice. 354 
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Methods 355 

Sample collection 356 

Peripheral blood (9 mL) was collected with informed, written consent from women 357 

undergoing elective terminations of otherwise healthy pregnancies. Blood was collected 358 

into standard EDTA blood tubes pre-termination and stored on ice until processed. 359 

Whole blood underwent centrifugation at 800 x g for 15 minutes at 4°C before plasma 360 

removal and then spun for a further 15 minutes to ensure any remaining cellular debris, 361 

including cell membranes from lysed red blood cells, was removed. All samples were 362 

stored at -80°C until further processing. Termination samples were collected from the 363 

Pregnancy Advisory Centre (PAC), Woodville, South Australia. Blood was also collected 364 

with informed, written consent from non-pregnant volunteers at the Adelaide Medical 365 

School. Following collection, blood tubes were stored on ice until processing. Whole 366 

blood underwent centrifugation at 1015 x g for 10 minutes at 4°C. Approximately 4-6 mL 367 

plasma was collected in 2 mL aliquots. 500 μL plasma (the supernatant) were aliquoted 368 

into clean tubes and the pellet containing any remaining blood cells at the bottom of the 369 

tube was discarded. All samples were stored at -80°C until further processing. 370 

RNA extraction and library preparation 371 

MicroRNA was isolated from 200 μL plasma samples using the QIAGEN miRNA 372 

serum/plasma kit (Qiagen, Hilden, Germany) according to the manufacturer’s 373 

instructions and stored at -80°C. 374 

Library preparation and sequencing was performed by Qiagen (Valencia, CA) using the 375 

QIAseq miRNA Library Kit and QIAseq miRNA 48 Index IL kits as per manufacturer’s 376 

instructions. Amplified cDNA libraries underwent single-end sequencing by synthesis 377 

(Illumina v1.9). 378 
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Haemolysis Detection by RT-qPCR 379 

Plasma samples were examined for haemolysis based on the expression levels of two 380 

miRNAs: miR-451a and miR-23a. miR-451a (previously named miR-451) is known to be 381 

highly expressed in red blood cells, whereas miR-23a is known to maintain stable 382 

abundance levels in plasma. After RNA extraction and cDNA synthesis, the delta 383 

quantification cycle (Cq) values for miR-23a-miR-451a were calculated independently 384 

for each sample. The evaluation of expression levels was performed based on raw Cq 385 

values. According to the Qiagen protocol for haemolysis detection (Qiagen, Hilden, 386 

Germany) using the ΔΔCq method, samples with a ΔCq <7 for these two miRNAs were 387 

considered as clear of contamination; a ΔCq >7 was considered contaminated; a ΔCq 388 

=7 was considered borderline. 389 

miRNA annotation and abundance 390 

Read quality control metrics were assessed using FastQC (33) 391 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) to check for per base 392 

sequence quality, sequence length distribution and duplication levels. Adapter detection 393 

and trimming were performed using Atropos (34). Alignment performed using BWA 394 

version 0.7.17-r1188 (GRCh38) (21). Umi_tools was used to collapse duplicate reads 395 

mapped to the same genomic location with the same UMI barcode. Quality control 396 

metrics were reported using multiQC (35). Read counts for mature miRNAs were 397 

determined using an in-house script (36) with microRNA annotation from miRBase, 398 

version 22.0 (22,23) (http://www.mirbase.org). 399 

Analysis of potential confounding factors 400 

All profile and expression analyses were conducted in the R statistical environment 401 

(v.4.0.2), using the edgeR (v.3.16.5) (37) and limma (v.3.30.11) (38) R/Bioconductor 402 

packages. Prior to conducting the differential expression analysis between haemolysed 403 

and non-haemolysed expression data we considered the effect of participant 404 

characteristics such as sex, age, smoking, pregnancy status and ethnicity. Sex was not 405 
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included here as all samples were taken from female participants. Maternal age was 406 

excluded from the final regression model as there was no strong evidence of 407 

association with the outcome and hence considering the sample size a simpler model 408 

was chosen to preserve degrees of freedom. miRNA identified as differentially 409 

expressed between samples from pregnant and non-pregnant women, were removed 410 

from the final set of haemolysis signature miRNA. Sequencing batch was also included 411 

in all regression models.  412 

Identification of haemolysis miRNA signature 413 

Prior to defining a collection of haemolysis informative miRNAs, pre-filtering steps were 414 

undertaken: 1) mature miRNA with fewer than five reads were reduced to zero 415 

independently for each sample, 2) miRNA with fewer than 40 counts per million (CPM) 416 

in the haemolysed group (n = 12) were removed from further consideration. This was 417 

done to ensure only highly abundant miRNA likely to be present in most samples 418 

remain. The Trimmed Means of M values (TMM) normalisation method was used to 419 

correct for differences in the underlying distribution of miRNA expression (39). Next, we 420 

used limma (38) to obtain the fold change of each miRNA between the haemolysed and 421 

non-haemolysed groups to identify miRNAs that are more abundant in the plasma 422 

affected by haemolysis. To ensure the haemolysis miRNA signature was robust, we 423 

took the intersection of the 60 miRNAs from each category of highest expression and 424 

lowest adjusted P-value and miRNAs with a log2FC > 0.9, revealing a set of twenty high 425 

confidence miRNAs. To further refine the set of haemolysis informative miRNAs we 426 

used limma to calculate the fold change for each miRNA between the samples from 427 

pregnant and non-pregnant women not affected by haemolysis and removed any of the 428 

high-confidence miRNA which was also differentially abundant in pregnancy. The 429 

workflow, source code and input files associated with this research are available at 430 

(https://github.com/mxhp75/haemolysis_maternaPlasma.git).  431 

Classification - Haemolysis Metric 432 

To classify the data coming from samples as haemolysed, borderline or unaffected we 433 

first focused on samples from the non-pregnant group. For these, we subset the miRNA 434 
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read count table into miRNA from the high confidence haemolysis informative miRNA 435 

(n=20) and all others (n=169). Using this data partition we calculated the geometric 436 

mean of the distribution of read counts using the psych package (v1.8.12) (40) and 437 

subtracted the geometric mean of the counts of “other” miRNA from that of the 438 

“haemolysis informative” miRNA. Next, for samples from the pregnant group, we 439 

performed the same calculations described above after first discarding miRNA which 440 

were associated with pregnancy. 441 
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Supplementary Information Legends 470 

 471 

Supplementary figure 1: Haemolysis signature feature selection. Raw single-end 472 

reads from small RNA-seq libraries are pre-processed using a range of Unix- and 473 

python-based computational tools to quantify miRNA expression in each library. Data 474 

quality is ensured through quality control steps throughout the workflow. Concurrently 475 

with sequencing, ΔCq (miR-23a-miR-451) was assessed by RT-qPCR and incorporated 476 

into the differential expression analysis.  477 

 478 

Supplementary Figure 2: (a) Volcano plot of differential expression. Linear regression 479 

identified 138 miRNA which were more highly abundant in haemolysed compared to 480 

non-haemolysed samples with FDR < 0.05 (green). (b) MA plot (M (log ratio) and A 481 

(mean average)) of Log2 fold change as a function of Log2 average expression 482 

indicates most miRNA have an average expression < 10 Log2 CPM. miR-451a and 483 

miR-16-5p, both highly red blood cell associated, are highly expressed and more 484 

abundant in the haemolysed group (green).  485 

 486 

Supplementary Figure 3: (a) Volcano plot of differential expression between the 487 

pregnant and non-pregnant samples. Linear regression identified 104 miRNA (FDR < 488 

0.05) which were more highly abundant in the pregnant population (red). Haemolysis 489 

Metric signature miRNAs are labelled (b) MA plot (M (log ratio) and A (mean average)) of 490 

Log2 fold change as a function of Log2 average expression indicates most miRNA have 491 

an average expression < 10 Log2 CPM. Unsurprisingly, the most differentially expressed 492 

miRNA are miR-517a-3p, miR-517b-3p, miR-516b-5p, miR-518b, which are all 493 

members of the highly placenta associated chromosome 19 miRNA cluster. 494 

 495 

Supplementary Table 1: RT-qPCR Cq data for miR-23a-3p, miR-451a and ΔCq (miR-496 

23a-miR-451). 497 

  498 
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