
Strain-stream model of epidemic spread in application to

COVID-19

S.A. Trigger1,2), A.M. Ignatov3)

1) Joint Institute for High Temperatures,

Russian Academy of Sciences,

13/19, Izhorskaia Str.,

Moscow 125412, Russia;

2) Institut für Physik,

Humboldt-Universität zu Berlin,

D-12489 Berlin, Germany

email:satron@mail.ru

3) Prokhorov General Physics Institute of the Russian Academy of Sciences,

38 Vavilova St., Moscow, 119991 Russia

The recently developed model of the epidemic spread of two virus stains in a

closed population is generalized for situation typical for the couple of strains delta

and omicron, when there is high probability for omicron infection enough soon after

recovering from delta infection. This model can be considered as some kind of weave

of SIR and SIS models for the case of competition of two strains of the same virus

having different contagiousness in a population.
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I. INTRODUCTION

Existing models for the spread of infection describe the free-running development of

an epidemic and describe all its stages. There are two basic models for such descrip-

tion: the susceptible-infected-susceptible (SIS) models and susceptible–infectious–removed,

susceptible–exposed–infectious–removed (SIR, SEIR) models. The SIS model goes back to

the pioneering work of Kermack and McKendrick [1] and uses the assumption that the re-

covered people can immediately get infection again. Existing SIR models assume that the

recovered people save strong immunity during epidemic (see, e.g. [2]). There are many
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variants of those models [3–6] (see also references therein). Balance between the susceptible

and infected members of population under the various conditions of infection transfer, are

the subject of research in [7–9].

Recently the delayed time-discrete epidemic model (DTDEM) which takes into account

typical long duration of the COVID-19 disease has been developed [10]. In [11, 12] this

specific delay has been presented in differential form. The delay discussed in [10–12] assumes

that a patient is immune, and in this respect fits the SIR model, not the SIS. The considered

delay models does not imply the allocation of a separate category of hidden virus carriers

(see, e.g., the SEIR models in [13, 14]). Latent carriers of the virus can infect others without

delay and are similar to the infected ones. Currently, the simplest SIR and SEIR baseline

models are being developed taking into account the vaccination process [15–17].

In the recent paper [18] the SIR-type model was developed for the case of coexistence

of two virus strains spreading in the same population. At the same time, due to different

contagiousness, a process of replacement of a less contagious virus by a more contagious one

takes place, which was quantitatively described in the work. This model assumed that after

the end of the disease with any of these strains, the recovered person remains immune for

quite a long time to the both types of strains of the SARS-CoV-2 virus. Such long time

immunity is typical for SIR models. This property was named “virus orthogonality” in [18]

or in application to strains below is named “strain orthogonality”. At the same time, the

characteristic details of such a process were revealed, such as the necessary conditions for

the emergence of a maximum in the curves describing the current number of virus carriers,

a decrease in the peak incidence of a less contagious strain when a more contagious strain

appears, a faster depletion of the part of population that has not affected by any of the

strains. This means a more rapid course of the epidemic when a more contagious strain

appears (if a third, even more contagious strain, does not arise) and increase in the required

level of recovered patients to achieve collective immunity (if it turns out to be possible) when

a less contagious strain of the virus is replaced by a more contagious one, etc.

The model considered in [18] makes it possible, in the presence of a minimum number of

parameters, to quantitatively describe various specific situations of coexistence and struggle

of two strains for dominance in a population of living organisms. The specific examples

considered in this work were based on the choice of initial conditions that correspond to

the emergence of a second strain of high contagiousness (for example, omicron) against the
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background of an already developed epidemic with the dominance of the delta strain. To

describe such a situation, it suffices to take into account the initial conditions, bringing them

into line with the actual level of delta disease in a certain population, to the time the strain

appeared in South Africa, which was subsequently named omicron by WHO.

At the same time, if we are interested in the rivalry of two strains (for specificity, below

we designate delta - 1 and omicron - 2) in any country, region, city or locality, we naturally

must use the available statistical data on the incidence, caused by the 1 mutant when cases

of the disease caused by the 2 strain appear. For different countries, the corresponding data

are quite fully reflected in [19]. City data are presented on the websites of the respective

countries (for example, the Robert Koch Institute in Germany, Stopcoronavirus in Russia,

the Johns Hopkins Institute in the USA, etc.).

II. EQUATIONS FOR THE CASE OF “STRAIN NON-ORTHOGONALITY”

In this paper, the basic equations [18] are generalized to the case of “strain non-

orthogonality”. These generalization we named “strain-stream” equations. This general-

ization reflects the observable property to be infected with a high probability by the strain

2 of the COVID-19 disease for those who have already been ill and recovered from infec-

tion caused by the strain 1. This means that immunity to strain 2 is not developed (or

is only partially developed) after disease caused by strain 1. Obviously, for strains that

cause COVID-19 (as well as for influenza viruses), there is only limited period of immunity,

however much longer than the average disease duration. In fact, the property of “strain

non-orthogonality” means that infection caused by strain 2 (omicron) can appear with some

probability even immediately after recovering from the disease caused by strain 1 (e.g.,

delta). According to our knowledge, the disease COVID-19 caused by two strains which

simultaneously coexist in one sick person was not observed (in contrast with the rare cases

of COVID-19 and flu). At the same time, according to the existing statistical data after

infection by strain 2 infection 1 was not observed. The additional reason for this is a fast

disappearance of the less contagious strain, as we demonstrate below.

As in [18] we denote S the number of never infected people in a closed population N , I1

and I2 are the number of strain carriers of type 1 and 2. Then, equations of the model of

“strain non-orthogonality”, which takes into account that after disease caused by strain 1
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one can be immediately infected by strain 2 (but not vice versa) are

dS(t)

dt
= −p1

SI1
N

− p2
SI2
N

, (1)

dI1(t)

dt
= p1

SI1
N

− I1
T1

, (2)

dI2(t)

dt
= p2

SI2
N

− I2
T2

+ p2γ2
I2
N

I1
T1

. (3)

The values T1 and T2 are the average durations of the diseases caused by strains 1 an 2.

Parameters p1 and p2 are the characteristics of the contagiousness for two strains, which are

determined as the product of the quantity of dangerous contacts nc of the infected people

per day and the average susceptibility k of the healthy person on dangerous distance [10, 11].

The new term in Eq. (3) describes the infection process by strain 2 of the people recovered

after the disease caused by strain 1.

The coefficient 0 ≤ γ2 < 1, hereinafter referred to as the Viral Link Attenuation Factor

(VLAF), describes a certain decrease in the probability of getting 2 after being infected with

1 (partial increase in immunity) compared to the probability of getting 2 without having

been ill before 1 (i.e., directly from the group u). This is due to the production of antibodies

after the disease caused by the 1 strain, which perform some protective function against

the 2 strain (or after vaccination). The structure of the last term in (3) is obvious if we

take into account that the proportion of strains 1, 2 recovered from diseases is equal to

R1,2 = −y1,2/T1,2 respectively.

In the general case, passing to symmetric equations, we can consider the situation when

after the disease 2 it is possible to get sick 1 with a certain probability γ1, but this mathe-

matical generalization is not considered in this article as unrealizable for omicron and delta

strains.

Equations (1)-(3) describing the epidemic spread for the case of two “non-orthogonal”

strains in the closed population N can be rewritten in the form using the variables I1(t)/N =

y1(t), I2(t)/N = y2(t), S/N = u(t)

du(t)

dt
= −p1y1u− p2y2u, (4)

dy1(t)

dt
= p1y1u− y1

T1

, (5)

dy2(t)

dt
= p2y2u− y2

T2

+ p2γ2
y2(t)y1(t)

T1

, (6)
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Here we use the same notations as in [18]. The value u(t) ≡ 1 − z(t) is the fraction

of the population that is not affected by virus at all, z(t) = Ntot(t)/N corresponds to the

fraction of full population N that are affected (ill and recovered Ntot(t) ≡ N1(t) + N2(t))

by the strain 1 (N1) or the strain 2 (N2) to the time t. The values y1(t) = I1(t)/N and

y2(t) = I2(t)/N are the current fractions of population actively infected (viruses carriers) by

strains 1, 2 respectively in a moment t.

The two-strain propagation model developed in [18] is the limiting case of the considered

more general model (1)-(3) for γ2 = 0. We also use the xi values for the proportion of those

affected (recovered and sick) by the strain i = 1, 2 to the moment of time t

x1(t) =

∫ t

0

dt′p1y1(t
′)u(t′), and x2(t) =

∫ t

0

dt′p2y2(t
′)u(t′) +

∫ t

0

dt′p2γ2
y2(t

′)y1(t
′)

T1

. (7)

III. NUMERICAL SOLUTION FOR VARIOUS IMMUNITY PARAMETER

VLAF

An analysis of the stability of the stationary solution, carried out in [18], showed that the

necessary condition for the development of an epidemic process at γ2 = 0 is the condition

piTiu0 > 1. This condition remains valid for equations (4)-(6).

As was revealed in [18] for γ2 = 0, using the example of specific initial conditions and

parameters pi and Ti, the coexistence of two viruses of different contagiousness leads over

time to the replacement of the less contagious strain by a more contagious one, even if the

share of the latter at the beginning of the process was significantly smaller than less conta-

gious. The results of calculations for specific parameters that correspond to the simultaneous

emergence of an epidemic with two strains of different contagiousness are shown in Fig. 1

(epidemic process in the presence of one strain 1, when p2 = 0) and Fig. 2 (comparison of the

dynamics of the epidemic in the presence of both strains for the model under consideration

with γ2 = 0.3.

Thus Fig. 1 and Fig. 2 serve to demonstrate the process of mutual influence of strains

during the development of an epidemic.

As is easy to see that strain 1 is effectively suppressed by strain 2 since the value of

maximum for the solid curve in Fig. 2 is approximately five times lower than in Fig. 1 for

u(0) = 0.8. Comparison of these figures shows that duration of strain 1 circulation is also
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Figure 1: Function y1(t) of strain 1 carriers, when the second strain is absent (p2 = 0) for u(0) = 0.8

(solid) and for u(0) = 0.7 (dashed). The parameters are p1 = 0.15, y1(0) = 0.01, the average

duration of the virus carrier T1 = 15 days.

20 40 60 80 100 120 140
t

0.1

0.2

0.3

0.4

Figure 2: Functions y1(t) (solid) and y2(t) (dashed) of the virus carriers for the case when both

strains exist. The parameters are p1 = 0.15, p2 = 0.4, y1(0) = 0.01, y2(0) = 10−7, u(0) = 0.8, the

average duration of the virus carrier T1 = T2 = 15 days, γ2 = 0.3.

effectively suppressed (≃ 4 times shorter for the used parameters) due to the appearance of

strain 2. Comparison of Figs. 1 and 2 shows that circulation of strain 2 is essentially shorter

than in the case of it absence. It is easy to see that for arbitrary parameters the maximum

for strain 1 in Fig. 2 is shifted to earlier time in comparison with Fig. 1. This property,

mentioned in [18], is valid also for the strain-stream model under consideration.
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Figure 3: Comparison of the function y1(t) (left), and virus y2(t) (right) for different values γ2 = 0

(solid), γ2 = 0.2 (dashed) and γ2 = 0.8 (dash-dotted) of virus carriers for the case when both virus

strains exists. The parameters are p1 = 0.15, p2 = 0.4, y1(0) = 0.01, y2(0) = 10−7, u(0) = 0.8, the

average duration of the virus carrier T1 = T2 = 15 days.

In this paper, we are interested in the impact of a possible infection with virus 2 after

recovery from an infection caused by virus 1. This situation corresponds to the epidemic

process observed with the appearance of the omicron strain. An important difference from

the specific examples considered in [18] is the appearance of strain 2 under conditions of a

developed epidemic of strain 1, which is characterized by rather large initial values of u(0)

and y1(0).

The results of the numerical solution of equations (5-7) for the initial conditions simulating

the situation of the appearance of omicron in already developed epidemic of the delta strain

are shown in Fig. 3 - Fig. 5.

The proportions of y1(t) and y2(t) infected with strains 1 and 2 are shown in Fig. 3 for

different parameters γ2, left and right, respectively. As in Fig. 1 and Fig. 2, the initial

condition for the proportion of the population that did not encounter either of the two

considered strains was chosen at the level of u(0) = 0.8, which significantly exceeds the

official statistics for, e.g., Germany at the time the omicron strain appeared in the country.

By such an overestimation, we take into account a significant number of unreported cases

of diseases with the delta strain at the time of the appearance of the omicron strain. The

same qualitative picture is observable also in other countries. The initial proportion of those

infected with strain 1 is chosen to be very high y1(0) = 0.01, which also corresponds to

the presence of a significant number of hidden virus carriers that can actively infect others.

Note, that the purpose of this work is to identify the general patterns of the development
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Figure 4: Function u(t) for the various cases: the second strain is absent (p2 = 0), the parameters

are p1 = 0.15, y1(0) = 0.01, the average duration of the virus carrier T1 = 15 days for u(0) = 0.8

(solid); both strains coexist, the recovered are immune (the case considered in [18]), the parameters

are p1 = 0.15, p2 = 0.4, y1(0) = 0.01, y2(0) = 10−7, T1 = T2 = 15 days for u(0) = 0.8 (dash-dotted),

γ2 = 0; both strains coexist, the parameters are p1 = 0.15, p2 = 0.4, y1(0) = 0.01, y2(0) = 10−7,

T1 = T2 = 15 days for u(0) = 0.8, γ2 = 0.2 (dashed).

of the epidemic in the presence of two strains, and not a calculation based on a detailed

analysis of the changing situation from day to day and incomplete statistical data.

As follows from Fig. 3, the impact of the appearance of strain 2 capable of infecting those

who have been ill with strain 1 depends significantly on the value of VLAF γ2. The more

0 ≤ γ2 ≤ 1, the faster the process of infection with strain 1 is suppressed, i.e. it is forced

out faster than in the original model with γ2 = 0 [18] (see also Fig. 1 ). At the same time,

as γ2 grows, the current proportion of strain 2 carriers grows, exceeding by a factor of 4.5

at the maximum proportion of strain 1 carriers under the chosen parameters.

The effect of a non-zero value γ2 on the fraction u(t) of non-affected by strains at all

is shown on Fig. 4. Possibility to become infected with strain 2 soon after disease caused

by strain 1 is high. There is a much faster and complete depletion of the share of non-

affected. This means that with a certain parameter γ2, herd immunity becomes practically
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Figure 5: Function x1(t) (left) of the people affected by the strain 1 and x2(t) (right) of the

people affected by the strain 2 for different values γ2 = 0 (solid), γ2 = 0.2 (dashed) and γ2 = 0.8

(dash-dotted) of virus carriers for the case when both virus strains exists. The parameters are

p1 = 0.15, p2 = 0.4, y1(0) = 0.01, y2(0) = 10−7, u(0) = 0.8, the average duration of the virus

carrier T1 = T2 = 15 days.

unattainable and almost everyone must get sick due to strain 2. It is of interest to determine

values γ2 for which the stationary value of the proportion of the population not affected by

any of the viruses is reached. It can be considered as a numerical characteristic of herd

immunity. The calculation carried out up to 1000 days (not shown in Fig. 4) showed that

with the selected parameters, the solid curve corresponding to the absence of strain 2 tends

to u(t = 1000) = 0.205, the dash-dotted curve (corresponding to the case γ2 = 0 [18] of full

lengthy in time immunity after each of the diseases caused by the strain 1 or 2) tends to

0.033 and the dotted curve corresponding to the case under consideration Eqs. (4)-(6) for

γ2 = 0.2 tends to u(1000) = 0.005. In the latter case the level of collective immunity is only

0.5 percent of the population.

Fig. 5 shows the curves for the total part of people (sick plus recovered, or affected) x1(t)

with strain 1 (left) and strain 2 (right), calculated according Eq. (7). All three curves for the

function x1(t) (left) and for the function x2(t) (right) in Fig. 5 correspond to the circulation

of two strains, but for different values γ2. The parameters in Fig. 5 correspond to those

selected in Fig. 3. As follows from Fig. 5 the function x1(t) decreases as γ2 increases, while

the function x2(t) grows. This behavior corresponds to the general pattern of replacement

of a less contagious virus by a more contagious one, with the greater efficiency, the greater

the VLAF value.

The formulated equations and the model under consideration can be easily extended to

take into account vaccination and different quarantine measures, accounting the government
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restrictions, vaccination process etc. In fact, after recovering from strain 1, a person may not

immediately become infected with strain 2, and taking into account this factor associated

with time shifts is beyond the scope of this work. Also the cases of death, re-infection

with the same strain long time after recovery, limited time for vaccination efficiency and

other known factors can be included in a more elaborated models. Above we restricted our

consideration by the case of the free running epidemic under two “non-orthogonal” strains

of a same virus. This assumption can be considered as realistic for very fast developing

epidemic caused by, e.g., the omicron strain (or another highly contagious virus strain)

appeared in a population affected earlier by a less contagious virus strain. However, the

considered model clarifies the main specific features of competition of two “non-orthogonal”

viruses in population.

IV. CONCLUSIONS

The principal picture of the replacement of one strain by another has already been re-

vealed in the recently considered new mathematical model [18], where the basic equations

were proposed that describe the replacement of a less contagious virus by a more conta-

gious one. Further development of the theory is connected with taking into account the

incomplete “orthogonality” of the strains under consideration. This is manifested in the

fact that with a significant mutation of the virus, leading to a different molecular structure,

a different virulence, and a different clinical picture of the disease, both strains, spreading

in the population, are mutually more dependent. Immunity to one of them (for example,

due to a previous disease), generally speaking, does not means the presence of immunity in

relation to another. So, for example, omicron can infect those who have recovered from the

delta strain, but not vice versa.

Thus, the situation cannot be described in the framework of SIR and similar models,

where all recovered patients have a long immunity, nor within the SIS model, where immunity

disappears immediately after recovery. This important property is taken into account by

transferring to the “strain-stream” equations by modification of Eq. (3) and respectively

(6). The additional term includes the new VLAF parameter γ2 ≤ 1, due to the development

of partial immunity to strain 2 as a result of the disease caused by strain 1, or to the effective

vaccination against strain 1, giving partial protection also against strain 2.
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