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Abstract 22 

Type 2 diabetes (T2D) is a chronic metabolic disorder with a significant genetic component. 23 
While large-scale population studies have identified hundreds of common genetic variants 24 
associated with T2D susceptibility, the role of rare (minor allele frequency < 0.1%) protein 25 
coding variation is less clear. To this end, we performed a gene burden analysis of 18,691 26 
genes in 418,436 (n=32,374 T2D cases) individuals sequenced by the UK Biobank (UKBB) 27 
study to assess the impact of rare genetic variants on T2D risk. Our analysis identified T2D 28 
associations at exome-wide significance (P < 6.9x10-7) with rare, damaging variants within 29 
previously identified genes including GCK, GIGYF1, HNF1A, and TNRC6B. In addition, 30 
individuals with rare, damaging missense variants in the genes ZEB2 (N=31 carriers; 31 
OR=5.5 [95% CI=2.5-12.0]; p=6.4x10-7), MLXIPL (N=245; OR=2.3 [1.6-3.2]; p=3.2x10-7), and 32 
IGF1R (N=394; OR=2.4 [1.8-3.2]; p=1.3x10-10) have higher risk of T2D. Carriers of damaging 33 
missense variants within IGF1R were also shorter (-2.2cm [-1.8-2.7]; p=1.2x10-19) and had 34 
higher circulating protein levels of insulin-like growth factor-1 (IGF-1; 2.3 nmol/L [1.7-2.9] 35 
p=2.8x10-14), indicating relative IGF-1 resistance. A likely causal role of IGF-1 resistance on 36 
T2D was further supported by Mendelian randomisation analyses using common variants. 37 
Our results increase our understanding of the genetic architecture of T2D and highlight a 38 
potential therapeutic benefit of targeting the Growth Hormone/IGF-1 axis. 39 

Introduction 40 

Type 2 diabetes (T2D) is a complex disease characterised by insulin resistance and beta-41 
cell dysfunction. An estimated 630 million adults are expected to have T2D by 20451 making 42 
it one of the fastest growing global health challenges of the 21st century. Genome-wide 43 
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association studies (GWAS) have successfully identified more than 500 genomic loci to be 44 
associated with T2D2, although the majority of these are driven by common variants with 45 
small individual effects on T2D risk. 46 
 47 
Over 90% of GWAS loci lie in non-coding regions of the genome3, presenting a major hurdle 48 
for the identification of the underlying causal genes and the translation of these findings into 49 
mechanistic insight. In contrast, analysis of rare protein-coding variation captured by DNA 50 
sequencing has the potential to more directly implicate individual genes and biological 51 
mechanisms. The UK Biobank (UKBB)4 study recently made Exome Sequencing (ES) data 52 
available for 454,787 UKBB participants5. This offers an unprecedented opportunity to 53 
explore the contribution of rare coding variation to the risk of T2D with much greater power 54 
than previously possible6–8. Initial exome-wide association analyses of these data have 55 
identified gene-based associations with increased risk of T2D for GCK, HNF1A, HNF4A, 56 
GIGYF1, CCAR2, TNRC6B and PAM, and protective effects for variants in FAM234A and 57 
MAP3K155,9–14.  58 
 59 
In this study, we combined multiple sources of health record data to identify additional T2D 60 
cases and used an extended range of variant classes and allele frequency cutoffs in order to 61 
directly implicate novel genes in the aetiology of T2D. Our results highlight a number of 62 
previously missed associations and support a role for Insulin-like Growth Factor 1 (IGF-1) 63 
resistance in the pathogenesis of T2D.  64 

Results 65 

Exome-wide burden testing in the UK Biobank 66 

To identify genes associated with T2D risk, we performed an Exome-wide association study 67 
(ExWAS) using ES data derived from 418,436 European genetic-ancestry UKBB 68 
participants5. As our primary outcome, we identified 32,374 (7.7%) participants with likely 69 
incident or prevalent T2D using phenotype curation that integrated multiple data sources, 70 
including hospital episode statistics, self-reported conditions, death records, and use of T2D 71 
medication (see methods). 72 
 73 
Individual gene burden tests were performed by collapsing genetic variants across 18,691 74 
protein-coding genes in the human genome. We tested four functional categories across two 75 
population prevalences (minor allele frequency < 0.1% and singletons), including high-76 
confidence Protein Truncating Variants (PTVs), missense variants stratified by two REVEL 77 
score thresholds15, and synonymous variants as a negative control (Figure 1; methods). We 78 
identified 13 gene-functional annotation pairs with 30 or more rare allele carriers, 79 
representing 7 non-redundant genes, associated with T2D at exome-wide statistical 80 
significance (p < 6.9x10-7; Supplementary Table 1; methods). Our results are statistically 81 
well-calibrated, both as indicated by low exome-wide inflation scores (e.g. PTV λ=1.047) and 82 
by the absence of significant associations with synonymous variant burden (Figure 1B-E; 83 
Supplementary Figure 1). To ensure our results were not biassed by our approach, we 84 
implemented burden tests using STAAR16 and a logistic model and arrived at substantially 85 
similar conclusions (Supplementary Figure 2; Supplementary Table 1; methods). 86 
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 87 
Figure 1. Exome-wide association results for T2D. (A) Manhattan plot displaying results of gene 88 
burden tests for T2D risk. Genes passing exome-wide significance (p < 6.9x10-7) are labelled. Point 89 
shape indicates variant class tested. (B-E) QQ plots for (B) high confidence PTVs (C) REVEL ≥ 0.5 90 
Missense Variants (D) REVEL ≥ 0.7 missense variants and (E) synonymous variants (negative 91 
control).  92 
 93 
We confirmed the T2D associations at all three genes identified by three previous studies of 94 
T2D risk that incorporated European genetic-ancestry individuals from the UKBB 95 
study11,12,14: GCK (N=35 carriers; OR=58.5 [95% CI=25.5-134.5]; p=2.0x10-58), HNF1A 96 
(N=33; OR=12.7 [6.2-25.8]; p=4.4x10-20), and GIGYF1 (N=133; OR=4.7 [3.1-7.0]; p=4.4x10-97 
16; Figure 2). As in these previous studies, we similarly found that carriers of PTVs within 98 
these genes had substantially increased risk for developing T2D (Figure 1A).  99 
 100 
We also confirmed the T2D association at TNRC6B (N=35; OR=10.5 [5.3-21.0]; p=1.4x10-101 
14), which was previously reported as ‘potentially spuriously associated’ with T2D risk11; 102 
several new lines of evidence provide confidence in this association. Firstly, our result is not 103 
attributable to a single variant of large effect as evidenced by the strength of association with 104 
singleton variants (Figure 1A). Secondly, aside from a single individual carrying two 105 
balanced deletions, inspection of the underlying ES reads did not reveal a markedly 106 
increased error rate in variant calling or genotyping in TNRC6B as was suggested by Deaton 107 
et al.11. Thirdly, the association persisted after excluding 14 individuals who carry a singleton 108 
PTV in a potentially non-constitutive exon as measured by PEXT (p=3.6x10-7)17. Finally, we 109 
also found that TNRC6B PTV carriers had elevated HbA1c levels when considering both 110 
T2D cases (4.1 mmol/mol [2.5-5.7]; p=7.2x10-7; Supplementary Figure 3) and controls (1.6 111 
mmol/mol [0.2-2.1]; p=1.8x10-2), consistent with the elevated long-term blood glucose levels 112 
observed in T2D patients. 113 
 114 
We also identified three additional genes that, when disrupted by rare genetic variation 115 
(minor allele frequency < 0.1% or singletons), are associated with increased T2D risk: 116 
IGF1R (N=394; OR=2.4 [1.8-3.2]; p=1.3x10-10), MLXIPL (N=245; OR=2.3 [1.6-3.2]; 117 
p=3.2x10-7), and ZEB2 (N=31; OR=5.5 [2.5-12.0]; p=6.4x10-7; Figure 1). Unlike previously 118 
reported genes outlined above, damaging missense variants but not PTVs in these genes 119 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted March 27, 2022. ; https://doi.org/10.1101/2022.03.26.22272972doi: medRxiv preprint 

https://doi.org/10.1101/2022.03.26.22272972
http://creativecommons.org/licenses/by-nd/4.0/


were associated with T2D risk (Figure 2). Indeed, at these genes T2D associations were 120 

apparent only with missense variants with high REVEL scores (≥0.7), or those variants 121 
considered to be the most damaging as per current (2020) Association for Clinical Genomic 122 
Science guidelines. 123 
 124 

 125 
Figure 2. Relationship between cumulative minor allele frequency and odds ratio for T2D. 126 
Plotted is T2D risk as quantified by log(Odds Ratio) versus cumulative minor allele frequencies 127 
(cMAF) for genes significantly associated with T2D risk. For each gene, only the most significantly 128 
associated variant mask is shown. Error bars indicate 95% confidence intervals. 129 
 130 
Specifically, and as expected, we found that carriers of PTVs within GCK, GIGYF1, and 131 
HNF1A all had significantly elevated circulating glucose and HbA1c levels. Among novel 132 
genes, IGF1R missense carriers had nominally higher HbA1c levels (1.1 mmol/mol [0.6-1.6]; 133 
p=3.7x10-6).  134 

Exploring Common Variant Associations at Highlighted Genes 135 

We next attempted to cross-validate the rare-variant associations for all seven exome-wide 136 
significant genes by identifying proximal common variants (±50kb of a gene’s coding 137 
sequence) previously reported to be associated with related glycaemic or metabolic 138 
phenotypes (methods; Supplementary Table 2). Four genes fell within glycaemic trait 139 
associated loci and all seven overlapped known metabolic trait associations. For several of 140 
these common variant-phenotype combinations, we also identified an association with rare 141 
variant burden (Supplementary Figure 3). Additionally, three of the four novel genes we 142 
report here were identified in the most recent publicly available T2D GWAS2 as being either 143 
the closest or most likely causal gene for a common variant genome-wide significant signal: 144 
IGF1R, TNRC6B, and ZEB2 (Supplementary Table 2). 145 
 146 

Notably, common non-coding variants at the IGF1R locus have been previously reported for 147 
T2D and fasting glucose2,18. The lead fasting glucose-associated SNP (rs6598541-A; p= 148 
4x10-12) was associated with 0.0114 mmol/L [0.0097-0.0131] higher levels of glucose, while 149 
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the lead T2D SNP (rs59646751-T; p=4x10-9) increases risk of T2D by an odds ratio of 1.024 150 
[1.020-1.028]. Both SNPs are intronic in IGF1R, in moderate LD in European populations 151 
(R2=75.5%)19, and are eQTLs for IGF1R20. Furthermore, at both SNPs the IGF1R 152 
expression-lowering alleles are associated with higher levels of circulating IGF-1 (p=7x10-7 153 
and 9x10-7, respectively; Figure 3)21 and with higher T2D risk and fasting glucose. 154 

 155 
Figure 3. Common variant associations at the IGF1R locus. Association pattern between SNPs at 156 
the IGF1R locus and Fasting Glucose levels (A) and IGF-1 levels (B). 157 

Interrogating IGF1R and Risk for T2D  158 

To understand how rare damaging missense variants in IGF1R lead to increased risk of 159 
T2D, we performed burden tests for circulating IGF-1 levels and anthropometric traits. We 160 
found that carriers of damaging missense variants in IGF1R had increased circulating IGF-1 161 
levels (2.1 nmol/L [1.5-2.6]; p=1.9x10-14), but shorter adult stature (-2.2cm [-1.8-2.7]; 162 
p=1.2x10-19), and lower relative height at age 10 (p=1.1x10-7). These findings indicate that 163 
carriers of rare damaging missense variants in IGF1R that increase risk of T2D have relative 164 
IGF-1 resistance.  165 
 166 
To explore how damaging missense variants disrupt IGF1R function, we next categorised 167 
variants by protein domain. Carriers of qualifying variants within the IGF1R protein kinase 168 
(residues 999-1274)22 had a higher risk for T2D (N= 179; OR=3.4 [2.3-4.9]; p=1.9x10-10) than 169 
those with qualifying variants outside this domain (N=215; OR=1.7 [1.2-2.6]; p=8.2x10-3). We 170 
thus conclude that dysfunction within the protein kinase domain could decrease downstream 171 
signal transduction resulting in IGF-1 resistance. This may also explain why, despite the 172 
relatively large number of IGF1R (N=64) PTV carriers in the UKBB, we did not find that 173 
IGF1R PTV carriers had increased T2D risk. When bound by IGF-1 and to induce 174 
downstream signal transduction, IGF1R functions as a homo or heterodimer (i.e. with INSR 175 
as a hybrid receptor)23. As half of a missense carrier’s IGF1R molecules will contain errors in 176 
the protein kinase domain, dimerisation will incorporate at least one defective molecule 75% 177 
of the time and therefore lead to reduced downstream signal transduction. In the case of 178 
PTV carriers, since one copy is likely missing due to nonsense-mediated decay, dimerisation 179 
will always incorporate two functional copies. Therefore, the association of damaging IGF1R 180 
missense variants with T2D may be due to a dominant-negative effect rather than decreased 181 
protein abundance; however, additional functional studies are ultimately required to confirm 182 
the mechanism underlying these variants. 183 
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To explore whether rare variants in other components of the GH-IGF1 hormone pathway 184 
might influence T2D risk, we next identified a further nine genes in the GH-IGF1 pathway 185 
that showed gene-burden associations with circulating IGF-1 levels in any of our burden 186 
tests (Supplementary Table 3), including seven genes with known roles in regulating GH 187 
secretion or GH signalling and three genes with known roles in IGF-1 bioavailability. We 188 
tested their associations with childhood and adult height to indicate the functional relevance 189 
of rare variation in these genes. None of the seven GH-related genes showed any 190 
association with T2D. Rare damaging variants in IGFALS, which encodes a component of 191 
the IGF-1 ternary complex, lowered lower circulating IGF-1 and were nominally associated 192 
with shorter childhood height (indicative of lower IGF-1 bioactivity) and higher risk of T2D. 193 
Rare damaging variants in IGFBP3 (the major IGF binding protein), which lowered 194 
circulating IGF-1 levels, were nominally associated with taller childhood height (indicative of 195 
higher IGF-1 bioactivity) and lower risk of T2D. Hence damaging rare variants that disrupt 196 
IGF-1 bioactivity, but not those that alter GH secretion or signalling, appear to increase T2D 197 
risk. 198 

Causality of IGF-1 Levels with T2D Risk 199 

A previous epidemiological study described a protective association between baseline 200 
circulating IGF-1 protein levels and incident T2D24. However, subsequent similar studies 201 
found no such association25,26 and conversely a previous study that modelled common 202 
genetic variants in a Mendelian randomization framework inferred an adverse causal effect 203 
of higher circulating IGF-1 levels on T2D27.  204 
 205 
To explore this apparent inconsistency, we examined the likely causal role of IGF-1 on T2D 206 
by modelling 784 independent genetic signals for circulating IGF-1 levels identified in 207 
428,525 white European UKBB individuals21 and summary statistics from the largest 208 
reported GWAS meta-analysis of T2D28. We confirmed the previously reported27 association 209 
between genetically-predicted higher IGF-1 levels and higher risk of T2D in inverse-variance 210 
weighted (IVW; OR=1.105 per SD [95% CI 1.039-1.170]; p=2.9x10-3) and sensitivity models 211 
(Supplementary Table 4). However, we noted substantial heterogeneity in the relationships 212 
between individual IGF-1 signals and T2D (I-square=85.7%) as well as in their associations 213 
with adult height (IVW Beta=0.142; p=8.9x10-9; I-square=97.7%). Among the common 214 
genetic instruments for higher circulating IGF-1 levels, individual variants at the IGF1 locus 215 
(rs11111274) and the IGF1R locus (rs1815009) show directionally-opposite effects on 216 
childhood height and T2D (taller height and lower T2D risk for IGF1; shorter height and 217 
higher T2D risk for IGF1R; Supplementary Figure 4). Hence, reported common variant 218 
instruments for higher IGF-1 levels comprise a mixture of functionally-opposing signals, i.e. 219 
higher levels of bioactive IGF-1 but also higher IGF-1 resistance. 220 

Discussion 221 

Here we present the results of an ExWAS to assess the contribution of rare variant burden to 222 
T2D risk (Figure 1). We identified three genes previously reported by a recent analysis of the 223 
UKBB (GCK, HNF1A, and GIGYF1)14, provide stronger evidence for a previously nominally 224 
associated gene (TNRC6B)11, and identified three new genes (ZEB2, MLXIPL, and IGF1R) 225 
where rare variants increase susceptibility to T2D (Figure 2). Using publicly available data, 226 
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we showed that common variation nearby these genes is associated with a wide range of 227 
glycemic and metabolic traits and  (Figure 3; Supplementary Table 2)2,18, providing further 228 
support for these rare variant associations. We further interrogated rare and common variant 229 
associations to show that disruption of IGF1R due to damaging missense variants in the 230 
cytoplasmic protein kinase domain leads to IGF-1 resistance and higher T2D risk. Overall, 231 
our results implicate a wider protective effect of IGF-1 bioactivity on susceptibility to T2D. 232 

While our results are complementary to previous ExWAS11,14, we clarified evidence linking 233 
TNRC6B to T2D and identified three additional genes missed by previous analyses of the 234 
UKBB. A key advantage of our approach was to carefully curate multiple data sources to 235 
identify and validate T2D cases. Furthermore, we used a different genetic analytical 236 
approach to those previous studies. Nag et al.14 limited their burden testing to either PTVs, 237 
the findings of which we replicate here, or to missense variants with comparatively low 238 
deleteriousness scores (REVEL > 0.25 or Missense Tolerance Ratio intragenic percentiles ≤ 239 
50%). In this study, we have shown the benefit of considering missense variants 240 
computationally predicted to be severely damaging (REVEL ≥ 0.5 and 0.7)15. While such 241 
variants are much rarer in the population – only ~8% of missense variants in UKBB have 242 
REVEL scores ≥ 0.7 – they are much more likely to disrupt protein function and thus 243 
increase risk for disease. These conclusions are similar to those shown previously for 244 
anthropometric traits10, which have shown a relationship between PTVs in IGF1R and 245 
several growth measures, but not for damaging missense variants.  246 

A key finding of our work is the novel association between IGF1R and T2D risk. Loss of 247 
function mutations in IGF1R have been reported in children presenting with intra-uterine 248 
growth restriction, short stature and elevated IGF-1 levels29–31. Our findings of rare damaging 249 
variants at IGF1R, and also at IGFALS and IGFBP3, indicate that reduced IGF-1 bioactivity 250 
and signalling increases risk for T2D. There are several plausible mechanisms to link IGF1R 251 
to T2D. IGF1R, responding to both systemic and locally generated IGF-1, may play a role in 252 
the development of several tissues central to the control of glucose metabolism including 253 
pancreatic islets, adipose tissue and skeletal muscle32. An alternative explanation involves 254 
the complex relationship between growth hormone (GH) and IGF-1. GH, produced in a 255 
highly controlled and pulsatile manner from the somatotropes of the anterior pituitary, is the 256 
major stimulus to the hepatic expression and secretion of IGF-1, the major source of this 257 
circulating hormone. GH also has metabolic effects that are independent of IGF-1, largely 258 
exerted by its powerful lipolytic effects in adipose tissue33–38, which if uncontrolled can lead 259 
to the accumulation of ectopic lipid in non-adipose tissue resulting in insulin resistance. This 260 
is elegantly demonstrated by studies in mice in which IGF-1 is selectively deleted in the 261 
liver39,40. These mice show a striking increase in circulating GH levels, accompanied by 262 
marked insulin resistance which is entirely abrogated by the blockade of GH signalling. This 263 
model can explain the insulin resistance and frequent T2D seen in conditions such as 264 
acromegaly, where GH and IGF-1 levels are persistently raised due to a functional 265 
somatotrope tumour41, and the striking protection from T2D seen in patients with Laron 266 
Dwarfism, whose markedly reduced circulating IGF-1 levels are due to biallelic LoF 267 
mutations in the GH receptor42. Loss of function mutations in IGF1R are likely to result in 268 
compensatory increases in GH secretion, and consequently higher levels of circulating IGF-1 269 
that we observed in the carriers of such mutations. While this may partially compensate for 270 
impairment in IGF1R function, the IGF1R-independent effects of GH are likely to have a 271 
deleterious effect on systemic glucose metabolism. Of note in this regard, a single human 272 
proband with a homozygous loss of function mutation in IGF-1 had elevated circulating GH 273 
and severe insulin resistance43,44. Therapy with exogenous IGF-1 resulted in suppression of 274 
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GH and a dose dependent improvement in insulin sensitivity44. Accordingly, genetically 275 
reduced GH secretion and signalling would lead to reduced IGF-1 bioactivity, but without the 276 
consequent effects of elevated GH on fatty acid metabolism and insulin resistance, and 277 
hence no alteration in T2D risk. We propose that currently available drugs which reduce GH 278 
secretion or block its action may have metabolic benefits in patients with T2D and damaging 279 
missense variants in the protein kinase domain of IGF1R. 280 
 281 
Our findings also demonstrate the challenge of interpreting Mendelian randomisation results 282 
of circulating biomarkers. Elevated levels may reflect higher levels of secretion and 283 
biomarker activity, but are also increased by mechanisms that reduce biomarker 284 
bioavailability or sensitivity. Hence, genetic instruments for higher biomarker levels may 285 
comprise a mixture of markers for both higher and lower biomarker activity. To distinguish 286 
these actions, we suggest that individual common variants are first tested for association 287 
with some indicator of biomarker activity (i.e. childhood height as an indicator of IGF-1 288 
activity). 289 
 290 
Our rare variant analysis also implicates MLXIPL as a T2D susceptibility gene for the first 291 
time. MLXIPL encodes the carbohydrate response element binding protein (CHREBP), a 292 
transcription factor that acts in concert with its obligate binding partner MLX to regulate the 293 
cellular response to carbohydrate45–47 and is highly expressed in liver, fat, and muscle. 294 
Global or tissue-specific ablation of MLXIPL in mice impairs insulin sensitivity48–51. Common 295 
variants at the MLXIPL locus associate with SHBG, a biomarker of insulin sensitivity52 and 296 
with serum triglycerides53,54. Notably, MLXIPL is one of the 26-28 genes deleted in Williams 297 
Syndrome, the result of a deletion of contiguous genes on chromosome 7q11.23. Patients 298 
with this syndrome are characterised by marked insulin resistance and an increased risk of 299 
diabetes55. It seems likely that haploinsufficiency for MXLIPL contributes significantly to the 300 
metabolic disturbances characteristic of Williams syndrome. 301 
 302 
Overall, our findings suggest that deeper interrogation of multiple variant types when 303 
performing ExWAS can and will lead to the discovery of additional genes associated with a 304 
wide-range of human diseases. 305 

Methods 306 

UK Biobank Data Processing and Quality Control 307 

To conduct rare variant burden analyses outlined in this publication, we queried ES data for 308 
454,787 individuals provided by the UKBB study5. Individuals were excluded from further 309 
analysis if they had excess heterozygosity, autosomal variant missingness on genotyping 310 
arrays ≥ 5%, or were not included in the subset of phased samples as defined in Bycroft et 311 
al.56. We further excluded all study participants who were not of broadly European genetic 312 
ancestry, leaving a total of 421,065 individuals for further analysis. 313 
 314 
To perform variant quality control and annotation, we utilised the UKBB Research Analysis 315 
Platform (RAP; https://ukbiobank.dnanexus.com/). The RAP is a cloud-based compute 316 
environment which provides a central data repository for UKBB ES and phenotypic data. 317 
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Using bespoke applets designed for the RAP, we performed additional quality control of ES 318 
data beyond that already documented in Backman et al.5. Using provided population-level 319 
Variant Call Format (VCF) files, we first split and left-corrected multi-allelic variants into 320 
separate alleles using ‘bcftools norm’57. Next, we performed genotype-level filtering using 321 
‘bcftools filter’ separately for Single Nucleotide Variants (SNVs) and Insertions/Deletions 322 
(InDels) using a missingness-based approach. With this approach, SNV genotypes with 323 
depth < 7 and genotype quality < 20 or InDel genotypes with a depth < 10 and genotype 324 
quality < 20 were set to missing (i.e. ./.). We further tested for an expected alternate allele 325 
contribution of 50% for heterozygous SNVs using a binomial test; SNV genotypes with a 326 
binomial test p. value ≤ 1x10-3 were set to missing. Following genotype-level filtering we 327 
recalculated the proportion of individuals with a missing genotype for each variant and 328 
filtered all variants with a missingness value > 50%.  329 
 330 
We next annotated variants using the ENSEMBL Variant Effect Predictor (VEP) v10458 with 331 
the ‘--everything’ flag and plugins for REVEL15, CADD59, and LOFTEE60 enabled. For each 332 
variant, we prioritised a single ENSEMBL transcript based on whether or not the annotated 333 
transcript was protein-coding, MANE select v0.97, or the VEP Canonical transcript, 334 
respectively. Individual consequence for each variant was prioritised based on severity as 335 
defined by VEP. Following annotation, we grouped stop gained, frameshift, splice acceptor, 336 
and splice donor variants into a single Protein Truncating Variant (PTV) category. Missense 337 
and synonymous variant consequences are identical to those defined by VEP. Only 338 
autosomal or chrX variants within ENSEMBL protein-coding transcripts and within transcripts 339 
included on the UKBB ES assay were retained for subsequent burden testing. 340 

Exome-wide association analyses in the UK Biobank 341 

To perform rare variant burden tests using filtered and annotated ES data, we employed a 342 
custom implementation of BOLT-LMM v2.3.661 for the RAP. BOLT-LMM expects two primary 343 
inputs: i) a set of genotypes with minor allele count > 100 derived from genotyping arrays to 344 
construct a null model and ii) a larger set of imputed variants to perform association tests. 345 
For the former, we queried genotyping data available on the RAP and restricted to an 346 
identical set of individuals used for rare variant association tests. For the latter, and as 347 
BOLT-LMM expects imputed genotyping data as input rather than per-gene carrier status, 348 
we created dummy genotype files where each variant represents one gene and individuals 349 
with a qualifying variant within that gene are coded as heterozygous, regardless of the 350 
number of variants that individual has in that gene. To test a range of variant annotation 351 
categories across the allele frequency spectrum, we created dummy genotype files for minor 352 
allele frequency < 0.1% and singleton high confidence PTVs as defined by LOFTEE, 353 
missense variants with REVEL ≥ 0.5, missense variants with REVEL ≥ 0.7, and synonymous 354 
variants. For each phenotype tested, BOLT-LMM was then run with default parameters other 355 
than the inclusion of the ‘lmmInfOnly’ flag. When exploring the role of rare variants in the 356 
IGF-1/GH axis and to incorporate less deleterious missense variants, we also used an 357 
additional set of variant annotations which combined missense variants with CADD ≥ 25 and 358 
high confidence PTVs (i.e. Damaging; Supplementary Table 3). To derive association 359 
statistics for individual variants, we also provided all 26,657,229 individual markers 360 
regardless of filtering status as input to BOLT-LMM. All tested phenotypes were run as 361 
continuous traits corrected by age, age2, sex, the first ten genetic principal components as 362 
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calculated in Bycroft et al.56, and study participant ES batch as a categorical covariate (either 363 
50k, 200k, or 450k). For phenotype definitions used in this study, please refer to 364 
Supplementary Table 5. Only the first instance (initial visit) was used for generating all 365 
phenotype definitions unless specifically noted in Supplementary Table 5. 366 
 367 
To provide an orthogonal approach to validate our BOLT-LMM results, we also performed 368 
per-gene burden tests with STAAR16 and a generalised linear model as implemented in the 369 
python package ‘statsmodels’62. To run STAAR, we created a custom Python and R 370 
workflow on the RAP. VCF files were first converted into a sparse matrix suitable for use with 371 
the R package ‘Matrix’ using ‘bcftools query’. Using the ‘STAAR’ R package, we first ran a 372 
null model with identical coefficients to BOLT-LMM and a sparse relatedness matrix with a 373 
relatedness coefficient cutoff of 0.125 as described by Bycroft et al.56. We next used the 374 
function ‘STAAR’ to test all protein-coding transcripts as outlined above. To run generalised 375 
linear models, we used a three step process. First, we ran a null model with all dependent 376 
variables as continuous traits, corrected for control covariates identical to those included in 377 
BOLT-LMM. Next, using the residuals of this null model, we performed initial regressions on 378 
carrier status to obtain a preliminary p. value. Finally, for individual genes that passed a 379 
lenient p. value threshold of <1x10-4, we recalculated a full model to obtain exact test 380 
statistics with family set to ‘binomial’ or ‘gaussian’ if the trait was binary or continuous, 381 
respectively. Generalised linear models utilised identical input to BOLT-LMM converted to a 382 
sparse matrix. 383 

Common variant GWAS lookups 384 

Common variant associations at the identified genes were queried using the T2D Knowledge 385 
Portal (https://t2d.hugeamp.org) and the Open Targets Genetics platform 386 
(https://genetics.opentargets.org/)63. Trait associations from the T2D Knowledge Portal are 387 
presented in Supplementary Table 2 and were only included if the paired gene was assigned 388 
as the nearest gene to the association signal as a crude proxy for causality. Accompanying 389 
HuGE scores were extracted for the highest-scoring glycaemic common variants 390 
associations. Locus2Gene scores based on data from Vujkovic et al.2 were extracted from 391 
the Open Targets Genetics platform and are presented in Supplementary Table 2. For the 392 
IGF1R locus follow-up, we used sentinel SNP information for Vujkovic et al.2 and summary 393 
statistics from the recent fasting glucose MAGIC meta-analysis18 and circulating IGF-1 levels 394 
GWAS. eQTL data was accessed through GTEx v820. Effect estimates in the text have been 395 
aligned towards the T2D/glucose increasing alleles, using LD information from LDlink19. 396 
Regions in Figure 3 were plotted using LocusZoom64. 397 

Mendelian Randomisation Using IGF-1 levels 398 

To examine the likelihood of a causal effect of IGF-1 on the risk of T2D, we applied 399 
Mendelian randomization (MR) analysis. In this approach, genetic variants that are 400 
significantly associated with an exposure of interest are used as instrumental variables (IVs) 401 
to test the causality of that exposure on the outcome of interest. For a genetic variant to be a 402 
reliable instrument, the following assumptions should be met: (1) the genetic instrument is 403 
associated with the exposure of interest, (2) the genetic instrument should not be associated 404 
with any other competing risk factor that is a confounder, and (3) the genetic instrument 405 
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should not be associated with the outcome, except via the causal pathway that includes the 406 
exposure of interest65. As IVs, we used the 831 IGF-1 genome-wide significant signals 407 
reported in a recent GWAS on IGF-121. As our outcome data, we selected the largest 408 
publicly available independent T2D dataset available in 893,130 European genetic ancestry 409 
individuals (9% cases) from Mahajan et al.28 If a signal was not present in the outcome 410 
GWAS, we searched the UKBB white European dataset for proxies (within 1 Mb and r2 > 411 
0.5) and chose the variant with the highest r2 value, which left 784 independent markers for 412 
MR analysis. Genotypes at all variants were aligned to designate the IGF-1-increasing 413 
alleles as the effect alleles. 414 
 415 
To conduct our MR analysis, we used the inverse-variance weighted (IVW) model as the 416 
primary model as it offers the most statistical power66; however, as it does not correct for 417 
heterogeneity in outcome risk estimates between individual variants67, we applied a number 418 
of sensitivity MR methods that better account for heterogeneity68. These include an Egger 419 
analysis to identify and correct for unbalanced heterogeneity (‘horizontal pleiotropy’), 420 
indicated by a significant Egger intercept (p<0.05)69, and weighted median (WM) and 421 
penalised weighted median (PWM) models to correct for balanced heterogeneity70. In 422 
addition, we introduced the radial method to exclude variants from each model in cases 423 
where they are recognized as outliers, as well as Steiger filtering to assess for potential 424 
reverse causality (i.e. variants with stronger association with the outcome than with the 425 
exposure)71. As previous work on IGF-1 showed a strong association with height, and to a 426 
lesser extent BMI27, we also used multivariable MR analysis72 to estimate the direct effect of 427 
IGF-1 levels on T2D not mediated by BMI or height by adjusting for their effects as 428 
covariates using queried phenotype data for UKBB participants (Supplementary Table 4; 429 
Supplementary Table 5). In order to examine the individual level effect of IGF1 and IGF1R 430 
loci on T2D, BMI, childhood and adult height, we performed the variant-specific lookups as 431 
well as calculated the Wald ratio using the R package 'TwoSampleMR'73. All results 432 
presented in the main text are expressed in standard deviations of IGF-1 levels (one S.D. is 433 
equivalent to ~5.5 nmol/L in UKBB). Values available in Supplementary Table 4 are raw 434 
data, per unit IGF-1. 435 
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