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Abstract—Nonalcoholic fatty liver disease (NAFLD) is the most 
rapidly growing contributor to chronic liver disease worldwide 
with high disease burden and suffers from limitations in diagnosis. 
Inspired by recent advances in machine learning digital 
diagnostics, we explored the efficacy of training a neural network 
to classify high risk NAFLD vs. non-NAFLD patients in the UK 
Biobank dataset based on proton density fat fraction (PDFF). We 
compared the performance of several ResNet-derived 
architectures in the context of whole abdomen MRI, segmented 
liver and abdomen excluding liver (sans-liver). Non-local ResNet 
trained on whole abdomen MRI images yielded the highest 
precision (0.88 for NAFLD) and F1 (0.89 for NAFLD). 
Furthermore, our work on a second, larger cohort explored multi-
task learning and the relationship among PDFF, visceral adipose 
tissue (VAT) and abdominal subcutaneous adipose tissue (ASAT). 
Interestingly, multi-task learning experiments found a decline in 
performance for PDFF when combined with VAT and ASAT. We 
address this deterioration using Multi-gate Mixture-of-Experts 
(MMoE) approaches. Our work opens the possibility for using a 
non-invasive deep learning-based diagnostic for NAFLD, and 
directly enables clinical and genomic research using a larger 
cohort of potential NAFLD patients in the UK Biobank study. 

I. INTRODUCTION 
Nonalcoholic fatty liver disease (NAFLD) is a hepatic 
manifestation of metabolic disorders characterized by excess 
accumulation of fat in hepatocytes [1]. Recent estimates suggest 
that NAFLD may be affecting more than 25% of global 
population and there is considerable variability in the 
prevalence of NAFLD across the various geographic regions in 
the world [2]. A subset of NAFLD patients develop advanced 
forms of liver disease such as nonalcoholic steatohepatitis 
(NASH), and fibrosis, which can potentially progress to 
cirrhosis [1], [3]. The current standard to diagnose NAFLD is 
the liver biopsy, a costly and invasive procedure with associated 
morbidity, poor patient tolerability and sampling variability [4]. 
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As a result, liver biopsy is not practical for screening large 
populations of at-risk individuals, or for monitoring changes in 
fibrosis stage over time or in response to novel therapies [5]. 
There is an unmet medical need to develop non-invasive and 
precise biomarkers for objective and accurate disease diagnosis, 
and patient stratification. 

Magnetic resonance imaging (MRI) now provides a 
promising non-invasive diagnostic alternative that can be used 
for large scale population studies and for serial follow up of 
patients at risk. MRI techniques allow comprehensive and 
objective evaluation of NAFLD [6]. To non-invasively assess 
NAFLD, Lin et al. used radiofrequency ultrasound data to 
classify patients with proton density fat fraction (PDFF) greater 
than 5% [7]. MRI-PDFF has been demonstrated to be a reliable 
method to clinically estimate liver fat [8], [9]. In addition to 
PDFF, visceral adipose tissue volume (VAT) and abdominal 
subcutaneous adipose tissue volume (ASAT) provides useful 
information for assessing NAFLD. A recent study by Jung et 
al. shows high visceral to subcutaneous fat ratio is associated 
with increased NAFLD risk [10]. 

Deep learning has been used to address central problems in 
medical imaging [11]. In abdominal imaging, convolutional 
neural networks (CNNs) like the U-Net have been used to 
segment liver, kidney, spleen, and pancreas effectively [12]-
[14]. Extracting useful information for liver disease diagnostics 
has also gained traction. For instance, Yasaka et al. used CNNs 
to successfully predict five different fibrosis stages from phase 
MRI [15].  

Combining PDFF, VAT, and ASAT features to identify 
NAFLD is a promising direction for research. Predicting these 
features as separate tasks from the abdomen MRI data using 
distinct models, however, is neither practical nor 
computationally efficient. Multi-task learning (MTL) offers a 
powerful framework to simultaneously predict several tasks. 
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Using this paradigm for diagnostic medical imaging has 
provided significant improvements in performance over 
standalone models [16]-[18]. In cases where the relationship 
between tasks is complex it can be difficult to assess if there is 
a positive transfer between tasks, i.e. adding an extra task and 
training a MTL model improves performance over the 
standalone model. 

To address these questions, we first developed a 3D CNN 
using multi-echo spoiled-gradient-echo MRI from 4,607 
subjects in the UK biobank to accurately (F1 = 0.89) classify 
subjects with NAFLD (PDFF > 5.5%). Following this we 
performed architecture search, benchmarking state of the art 3D 
classification models. The contribution of the liver towards 
accurate classification of NAFLD using PDFF was examined 
first by developing and validating a segmentation model to 
segment the liver from the abdomen followed by performing 
the same classification on abdomen, liver-only and abdomen 
excluding liver (referred as sans-liver) data. Based on these 
findings we then examined the contribution of auxiliary 
variables VAT and ASAT to assess the possibility of 
improvement in prediction of PDFF and classification of 
NAFLD. We developed a multitask learning, multi-gate 
mixture of experts 3D CNN using a larger cohort of 9,814 
subjects from the UK biobank to predict raw values of PDFF, 
VAT, and ASAT. We compare the multitask approach with 
standalone models for each variable and measure task similarity 
and learning transfer among the prediction tasks. Finally, we 
analyze the importance of the liver and connection to the 
auxiliary variables on the segmentation data. 

II. METHODS 

A. UK Biobank Liver MRI Data 
In this study, we use multi-echo spoiled-gradient-echo 

abdominal MRI data from the UK Biobank [19]. Each image 
volume has 160 × 160  acquisition matrix with 10  slices 
(depth), with pixel dimensions and slice thickness of 2.5 ×
2.5𝑚𝑚 and 6𝑚𝑚, respectively. We used 4,611 subjects, after 
dropping one subject for image corruption, for which PDFF 
values were calculated previously [20]. A PDFF value greater 
than 5.5% is the clinically accepted level for NAFLD. The 
generated ground truth data contained 919 subjects (19.9%) at 
a high risk for NAFLD. As alcohol consumption was a self-
reported metric, we do not use it to filter subjects.  

A second, larger UK Biobank cohort of 9,817 participants 
allowed us to include VAT and ASAT abdomen fat 
composition. In this cohort, the ground truth labels for PDFF, 
VAT, and ASAT were generated by [21]-[23]. The research 
described in this manuscript has been conducted using the UK 
Biobank Resource under application number 26041. 

B. Classification of NAFLD Risk 
In this section, we describe our methodology to classify 

patients at a high-risk for NAFLD based on PDFF. 
 1) Classification Model: For our initial exploration of the 

feasibility to train CNNs to classify high-risk NAFLD patients 
based on PDFF values, we performed an architecture search 

using popular 3D CNN variants. These four 3D CNN variants 
were selected based on state-of-the-art performance in similar 
biomedical imaging contexts. Using these architectures we 
further investigate the importance of channel interactions in 
diagnosing NAFLD. 

ResNet. Our baseline implementation of 3D ResNet follows 
[24]. We include 3 layers of 3 residual blocks each, and extend 
the basic residual from [25] to 3D. A description of the layers 
and additional information relevant to building our network is 
described in Appendix A.  

Non-local Neural Network (referred as NL ResNet). As 
done in [26], we augment our baseline ResNet model using non-
local operations whereby the response at a given position of a 
layer’s feature map is computed as the weighted sum of the 
features at all positions in the input feature maps. Non-local 
operations maintain the channel interactions of the baseline 
ResNet model and allow for capturing long-range dependencies 
along the 𝑥𝑦𝑧  dimensions of the input volume. 

ResNeXt. We alter our baseline ResNet model, by 
substituting the Basic ResNet blocks for Bottleneck blocks and 
introducing group convolutions in each 3 × 3 × 3  
convolutional layers inside the Bottleneck block as done in [24, 
27]. Group convolutions subset filters into groups and model 
each group independently, which sparsifies channel 
connections. 

Channel-Separated Convolutional Network (referred as 
CS ResNet). We extend the ResNeXt architecture as done in 
[28] by decomposing channel interactions from spatial 
interactions. We followed the (channel) interaction-preserved 
design of [28] by replacing the 3 × 3 × 3  Bottleneck layer 
convolution by a 1 × 1 × 1  convolutions for channel 
interactions followed by a 𝑘 × 𝑘 × 𝑘   depth-wise convolutions 
for spatial interactions. 

2) Implementation Details: The dataset was split into train, 
validation, and test sets with 899, 100, and 3608 subjects 
respectively. Our models are randomly initialized and trained 
on single-channel volumes of size 160 × 160 × 10. We train 
for 50 epochs using early-stopping whenever validation loss 
does not improve for 4 epochs. We performed hyperparameter 
tuning on all models for number of layers, number of filters at 
each layer, strides, batch size, learning rate, and weight decay. 
Additionally, for NL ResNet, we experimented with the number 
and placement of non-local blocks, ultimately placing a single 
non-local block after the final residual layer. For ResNeXt, we 
experimented with the cardinality number, that is the number of 
groups in the 3 × 3 × 3  convolution inside the Bottleneck 
block and the ratio of conv2 layer input filters per group. For 
CS ResNet, we experimented with an interaction-preserved and 
interaction-reduced design as described in [28], the latter 
removing the 1 × 1 × 1  convolutions from the design 
described in the previous section. In the next section, optimal 
results of these scenarios are presented. 

C. Segmentation 
We investigate the influence of the liver alone, as compared 

to the whole abdomen, towards classifying NAFLD. To achieve 
this, the liver was manually segmented by a non-expert from 50 
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subjects using MITK [29], and the annotated regions were 
visually validated by a clinician. The liver masks were split into 
train, validation, and test sets with 400, 50, and 50 slices 
respectively. The segmentation model was trained using a 2D 
U-Net deep neural network consisting of 23 convolutional 
layers as described in [12], and it was optimized using a 
weighted binary cross-entropy loss with β = 1.2 (Appendix B). 
Next, a post-processing filter which analyzes contiguous 
regions to account for inhomogeneities and a decision rule to 
quantify ratio of background to foreground pixels was applied. 

Finally, this algorithm was extended to all the subjects in the 
dataset to create liver-only and sans-liver images for further 
analysis. This resulted in 4 subjects failing the quality check, 
and dataset size was reduced to 4,607 subjects. whenever 
validation loss does not improve for 4 epochs. To understand 
the determinants for model performance across the 
benchmarked architectures described in Section II B., we 
conduct additional experiments on NAFLD classification using 
liver-only and sans-liver as shown in Fig. 3. 

D. Abdomen Fat Composition 
In the following part of the analysis, we fix the 3D CNN 

architecture to ResNet.   We use the larger dataset containing 
VAT and ASAT values along with PDFF. We develop 
standalone and combination multitask regression models,  and 
utilize the 5.5% threshold for PDFF to compute NAFLD 
classification metrics. As the values of each variable are non-
negative and skewed (Fig. 1.),we fit all models in this part of 
the analysis using maximize likelihood based on a Gamma 
distribution and evaluate predictions across models and tasks 
using Spearman’s ρ. 

 1) Analyzing Task Relatedness: Initially, we developed 
separate regression models (Standalone) for each task, 
predicting PDFF, VAT, and ASAT raw values independently, 
to establish baseline performance. Next, we assessed the 
relationship between PDFF, VAT, and ASAT using pair-wise 
cosine similarities between the labels: cos(𝑦!, 𝑦") =
($!⋅$")

‖$!‖"‖$"‖"
where 𝑦! and 𝑦"  are PDFF, VAT, or ASAT label 

vectors.  
Additional methods to assess task relatedness are explored in 

detail by Wu et al. in terms of task similarity, covariance, and 
model capacity [30]. To assess the task relationships 
empirically, we train three models on pairs of variables (PDFF-
VAT, PDFF-ASAT, VAT-ASAT) and predict the raw values of 
the pairs of tasks. Additionally, we combine all three tasks, and 
train a single multitask model, predicting their values 
simultaneously. To minimize differences in the number of 
model parameters, we only change the final linear layer to 
output two or three predictors for the pair and multitask models, 
respectively. We refer to these models as multiple regression 
(MR). An MR model trained for PDFF and VAT is referred to 
as MR-PDFF-VAT. The combined model is represented in the 
results section as MR-ALL. 

2) Analyzing Multitask Learning Using Mixture-of-Experts: 
In the combined multitask model, MR-ALL, the intermediate 
representations are shared and only the final linear layer is 

specialized. We explore task similarity further by introducing 
expert layers and parameter sharing strategies. In particular, we 
implement a Multi-gate mixture-of-experts (MMoE) model as 
described by Ma et al. in [31]. Expert layers for the three tasks 
are added on top the shared ResNet from Section II B. Each 
expert block consists of three convolutional layers and a 
dropout. The features learned from each expert is shared in a 
fully connected manner using a softmax gate for every task as 
shown in Fig. 4(a). Intuitively, if the tasks are less related, then 
the softmax gates of the corresponding task would learn to 
utilize expert layers from the other tasks [31]. The softmax 
gates are simple linear transformation implemented using dense 
layers as described in [31] We investigate connecting the gates 
of experts across all task and only between the VAT and ASAT 
tasks, presented in Fig. 4(b). The reasoning behind this choice 
is explained in Section III.  

3) Implementation Details: The dataset was split into train, 
validation, and test sets with 4739, 500, and 4575 subjects 
respectively. Our models are randomly initialized and trained 
on single-channel volumes of size 160 × 160 × 10. We train 
for 30 epochs using the gamma loss described in equation (1) 
with 𝑘 = 1.1	and 𝜖 = 1 × 10()	and take the mean over the 
three labels. 

𝐿(𝑦, 𝑦8) =
1
𝑛:

[𝑘 × ln(exp(𝑦8*) + 𝜖)]
+

*,!

− [(𝑘 − 1) × ln(𝑦* + 𝜖)] + D
(𝑘 × 𝑦*)
(𝑦8* + 𝜖)

E		(1)	 

 
Where 𝑦 ∈ 	ℝ+		and 𝑦8 ∈ 	ℝ+	 are the true and predicted label 

vectors for 𝑛 samples, respectively. During training, the data 
set was bootstrapped and shuffled, and the average Spearman’s 
ρ values are presented in Table II and III. 

III. RESULTS AND DISCUSSION 
Our initial results training a ResNet on whole Abdomen MRI 

images to classify NAFLD using a PDFF value of > 5.5% 
demonstrated good performance, with Precision of 0.85 and F1 
of 0.88 for NAFLD cases (see Table I). Examination of gradient 
activation maps from this condition demonstrated signal 
typically present in the liver for NAFLD patients (Fig. 5.).  

To understand the source of gradient activations in NAFLD 
subjects, we experimented with segmenting the liver from 
abdomen and examining NAFLD classification performance on 
liver only and sans-liver data. A 2D U-Net trained on the 
segmented data achieved a dice score of 0.93, which is 
comparable to results obtained in [13], [14] on segmentation 
tasks with dice score ranges from 0.85 to 0.94. Segmentation 
masks were applied to obtain liver-only and sans-liver images 
for every subject in addition to the whole abdomen MRI 
images, an example is shown in Fig. 2. 
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TABLE I 
NAFLD CLASSIFICATION RESULTS 

Experiment Model NAFLD 
Precision Recall F1 

Abdomen ResNet 0.85 0.91 0.88 
NL ResNet 0.88 0.91 0.89 
ResNeXt 0.81 0.84 0.82 
CS ResNet 0.78 0.92 0.85 

Liver-Only ResNet 0.67 0.56 0.61 
NL ResNet 0.82 0.69 0.75 
ResNeXt 0.64 0.57 0.60 
CS ResNet 0.76 0.73 0.74 

Sans-Liver ResNet 0.55 0.27 0.36 
NL ResNet 0.67 0.30 0.50 
ResNeXt 0.42 0.61 0.50 
CS ResNet 0.51 0.40 0.45 

 
The liver-only and sans-liver data were used to train the 

additional network architectures described in Section II B. to 
assess the influence of the liver in predicting NAFLD. We 
performed architecture search using four variants of the highly 
performant ResNet architectures on Abdomen, Liver-Only and 
Sans-Liver images. Interestingly, performance on whole 
abdomen MRI data demonstrated a higher Precision and F1 for 
NAFLD patients relative to segmented liver.  NL ResNet was 
the highest performing architecture, demonstrating a Precision 
of 0.88 and F1 of 0.89 for NAFLD, suggesting the disease may 
manifest over long range dependencies across the 𝑥𝑦𝑧 planes.  
Table I summarizes model performance across data and 
architectures. 

In the second part of the analysis, we included VAT and 
ASAT measurements as well as PDFF, and used the larger 
dataset as described in section II D part 3. We fixed the model 
architecture to ResNet and fixed the optimization and training 
hyperparameters for all subsequent analyses. We evaluated 
each task independently (PDFF, VAT, ASAT) and the results 
are shown in the top of Table II. To evaluate task relatedness, 
we computed cosine similarity values between PDFF-VAT, 
PDFF-ASAT, and VAT-ASAT of 0.77, 0.72, and 0.87, 
respectively.  This indicated high task similarity between VAT 
and ASAT. 

Furthermore, these values were further supported by the 
change in Spearman’s ρ values between the standalone models 
and the pair models, noting a 0.02 decline in 𝑟-.//  between 
standalone and pair models. This decline in PDFF prediction 
performance was further exacerbated in the multiple regression 
model between all three variables (MR-ALL), where 
Spearman’s ρ for PDFF declines by 0.04 against baseline 
standalone PDFF model.  

Informed by this negative effect on PDFF, we studied the 
multitask Multi-gate Mixture-of-Experts(MMoE) architectures.  
We limited the negative effects and enabled positive knowledge 
transfer between the standalone tasks and the multitask MMoE 
by sharing experts and gates between the VAT and ASAT task 
and predicting PDFF with a separate network head in parallel, 
both on top of more robust shared intermediate representations. 
Results for the MMoE models are on the bottom of  Table II.  

 
 
 

TABLE II 
STANDALONE AND MULTI-TASK LEARNING RESULTS 

Model 𝑟!"## 𝑟$%& 𝑟%'%& 
Standalone-PDFF 0.91 N/A N/A 
Standalone-VAT N/A 0.94 N/A 
Standalone-ASAT N/A N/A 0.94 
MR-PDFF-VAT 0.89 0.94 N/A 
MR-PDFF-ASAT 0.89 N/A 0.93 
MR-VAT-ASAT N/A 0.94 0.93 
MR-ALL 0.87 0.94 0.93 
MMoE 0.91 0.94 0.94 
MMoE-Modified 0.92 0.95 0.94 
Note: Spearman’s ρ values for each variable with standard deviation values 
ranging from 0.00 to 0.07 

 
To analyze whether the multitask models are learning distinct 

underlying representation or the correlation between the 
variables, we perform label permutation experiments and an 
ablation study using liver-only and sans-liver image data. To 
generate the larger segmentation dataset, the pre-trained 
segmentation model from section II C was applied to the 9,814 
subjects. We first validated that the multitask results learn true 
shared representations and not task label correlations by 
permuting task labels. Intuitively, permuting labels breaks 
down the underlying correlation between tasks and, if the 
combined model was learning a label-correlation, then the 
overall performance would suffer when labels are permuted.  
As shown in Table V (Appendix C), performance for the 
permuted variable declines drastically, while that of the true 
(unpermuted) variables holds. We further study performance of 
the MMoE models on the liver-only and sans-liver data. Table 
III results show PDFF performance deterioration on the sans-
liver data, similar to the effects in classification, however VAT 
and ASAT values remain unchanged suggesting MMoE models 
can robustly specialize the shared intermediate representation 
to each task. 

TABLE III 
ABLATION STUDY: ESTIMATING ABDOMINAL FAT COMPOSITION 

Experiment Model 𝑟!"## 𝑟$%& 𝑟%'%& 
Liver-Only MMoE 0.84 0.92 0.85 

MMoE-Modified 0.85 0.92 0.86 
Sans-Liver MMoE 0.75 0.93 0.93 

MMoE-Modified 0.76 0.94 0.94 
Note: Spearman’s ρ values for each variable with standard deviation values 
ranging from 0.01 to 0.06 

 

IV. CONCLUSION 
Identifying patients at a high risk for NAFLD using a non-

invasive MRI can provide significant benefits for patients, 
healthcare providers, and medical professionals, for example in 
early diagnosis, patient selection for clinical trials, and 
monitoring advanced forms of liver diseases in large 
populations. To the best of our knowledge, our work 
demonstrates the first machine learning classification model for 
NAFLD from MRI data applied to a large population in the UK 
Biobank dataset.  Furthermore, applying a specialized multi-
task learning model to enable positive task transfer between 
liver, visceral, and subcutaneous fat regression is applicable to 
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other areas of medical imaging, where signal from several 
sources can be effectively disentangled and classified. 

This research has several limitations. Classifying NAFLD 
using a PDFF threshold, while clinically accepted requires 
validation. The finding that models trained on the whole 
abdomen performed significantly better than segmented liver, 
despite class activation maps from whole abdomen 
demonstrating signal predominately in a patient’s liver, 
warrants further investigation. In future work, we plan to 
validate these findings in a larger cohort. We plan to explore 
genomic and clinical data from the UK Biobank in the context 
of NAFLD patients identified through this algorithm in order to 
clinical verify a distinct NAFLD radiomics phenotype. 

APPENDIX 

A. Architecture of Baseline ResNet 
 

TABLE IV 
BASELINE RESNET ARCHITECTURE 

 
Layer type 

Output size Kernel size Filters (stride) 

convolution 160 × 160 × 10 7 × 7 × 7 32	(1) 

maxpool 80 × 80 × 5 3 × 3 × 3 𝑁/𝐴	(2) 
residual 
convolution
1 

80 × 80 × 5 13 × 3 × 33 × 3 × 32 × 3 332	(1)32	(1)4 × 3 

residual 
convolution
2 

40 × 40 × 3 				3 × 3 × 3 
13 × 3 × 33 × 3 × 32 × 3 

					64	(2) 

364	(1)64	(1)4 × 3 

residual 
convolution
3 

20 × 20 × 2 				3 × 3 × 3 
13 × 3 × 33 × 3 × 32 × 3 

				128	(2) 

3128	(1)128	(1)4 × 3 

global 
average 
pooling 

128 × 1 𝑁/𝐴 𝑁/𝐴 

dense 1 𝑁/𝐴 𝑁/𝐴 

 

B. Loss Function 
 

Weighted Binary Cross-Entropy: 
 

𝐿(𝑦, 𝑦8) =
1
𝑛:−[𝛽𝑦* ln(𝑦8*) + (1 − 𝑦*) ln(1 − 𝑦8*)]

+

*,!

	(2) 

 
Where 𝑦 ∈ 	ℝ+		and 𝑦8 ∈ 	ℝ+	 are the true and predicted 
label vectors for 𝑛 samples, respectively. And β is set based 
on model tuning. 

 

C. Analyzing Label Correlation  
 
 
 
 
 
 
 
 
 

 

TABLE V 
PERMUTATION EXPERIMENT RESULTS TO ANALYZE FEATURE LEARNING 
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Fig.  1. Dataset label distribution: (a) PDFF, (b) VAT, and (c) ASAT. 

 
Fig.  2. Example MRI slice of (a) Abdomen, (b) Liver-Only, and (c) Sans-Liver. 

     

 
Fig.  3. Workflow to classify NAFLD risk using the baseline ResNet from the 
three entities: (a)Abdomen, (b) Liver-Only, and (c) Sans-Liver. 

 
Fig.  4. Estimating abdominal fat composition using: (a) Multi-gate Mixture-
of-Experts (MMoE) and (b) Multi-gate Mixture-of-Experts-modified (MMoE-
modified) 
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Fig.  5. Examples of whole abdomen (slice) class activation maps for two 
subjects 
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