
Novel discoveries and enhanced genomic prediction from modelling genetic risk
of cancer age-at-onset

Ekaterina S. Maksimova1,†, Sven E. Ojavee2,3,†, Kristi Läll4, Marie C. Sadler2,3,5, Reedik Mägi4, Zoltan
Kutalik2,3,5, Matthew R. Robinson1,*

1 Institute of Science and Technology Austria, Klosterneuburg, Austria.
2 Department of Computational Biology, University of Lausanne, Lausanne, Switzerland.
3 Swiss Institute of Bioinformatics, Lausanne, Switzerland
4 Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
5 University Center for Primary Care and Public Health, Lausanne, Switzerland

† These authors contributed equally to this work.
*corresponding author: matthew.robinson@ist.ac.at

Abstract 1

Genome-wide association studies seek to attribute disease risk to DNA regions and facilitate 2

subject-specific prediction and patient stratification. For later-life diseases, inference from 3

case-control studies is hampered by the uncertainty that control group subjects might later 4

be diagnosed. Time-to-event analysis treats controls as right-censored, making no additional 5

assumptions about future disease occurrence and represents a more sound conceptual alterna- 6

tive for more accurate inference. Here, using data on 11 common cancers from the UK and 7

Estonian Biobank studies, we provide empirical evidence that discovery and genomic predic- 8

tion are greatly improved by analysing age-at-diagnosis, compared to a case-control model of 9

association. We replicate previous findings from large-scale case-control studies and find an 10

additional 7 previously unreported independent genomic regions, out of which 3 replicated in 11

independent data. Our novel discoveries provide new insights into underlying cancer pathways, 12

and our model yields a better understanding of the polygenicity and genetic architecture of 13

the 11 tumours. We find that heritable germline genetic variation plays a vital role in cancer 14

occurrence, with risk attributable to many thousands of underlying genomic regions. Finally, 15

we show that Bayesian modelling strategies utilising time-to-event data increase prediction ac- 16

curacy by an average of 20% compared to a recent summary statistic approach (LDpred-funct). 17

As sample sizes increase, incorporating time-to-event data should be commonplace, improving 18

case-control studies by using richer information about the disease process. 19

Introduction 20

Cancer has broad medical importance and a high global health burden, with 19.3 million new cancer cases 21

and almost 10 million cancer deaths occurring in 2020 [1]. Genome-wide association studies (GWAS) aim to 22

attribute risk to regions of the DNA [2] and facilitate polygenic risk score (PRS) calculation [3] to predict 23

subject-specific risk, which may then enable targeted and improved healthcare [4–6]. There is currently 24

evidence for only 450 genomic regions associated with increased risk of 18 common cancers [2], despite 25

recent results showing significant non-zero heritability across a range of cancer occurrences [7]. Current PRS 26

calculated from these findings stratify risk for several cancers, including breast, colon, and prostate cancer, 27

but often add negligible additional predictive information compared to existing non-genomic predictors [8]. 28

Increasing sample size yields increased statistical power for discovery, with extensive recent case-control 29

studies for breast cancer [9], prostate cancer [10,11], ovarian cancer [12], or testicular cancer [13] showing 30

improved results, but this remains a challenging endeavour. Biobanks provide an additional resource, essential 31

for modern-day medical genetics; however, individuals within these studies have not all reached old age and 32

the number of cancer cases is not high, with recent studies combining biobank cohorts for 18 cancer types [7] 33

to limited effect. 34

1

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 6, 2023. ; https://doi.org/10.1101/2022.03.25.22272955doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2022.03.25.22272955
http://creativecommons.org/licenses/by-nc/4.0/


Increased statistical power can also stem from tailored modelling choices, and one factor behind limited 35

predictive performance could be the choice of the genome-wide analysis method. Although most association 36

studies use methods that account for the impact of other genetic regions (fastGWA [14], GMRM [15], 37

BoltLMM [16], REGENIE [17]), it is sometimes still preferred to resort to the basic association testing. 38

In addition, most genome-wide analyses have been performed using a case-control phenotype rather than 39

utilising the cancer diagnosis age as a phenotype, and there is some evidence that analysing data using 40

time-to-event informed methods can have more power for detecting associations [18–21]. 41

Here, we provide empirical evidence using data on 11 common tumours from the UK and Estonian Biobank 42

studies that GWAS discovery and genomic prediction are greatly improved by analysing age-at-diagnosis, 43

compared to a case-control model of association. We extend our recently presented BayesW approach [20], a 44

Bayesian modelling framework that enables joint effect size estimation for time-to-event data, to provide 45

marginal leave-one-chromosome-out mixed-linear age-at-onset adjusted association estimates, in contrast 46

to using Cox mixed model [22] or age-at-onset informed genomic reconstruction of the phenotype [21]. We 47

focus on a re-analysis in the UK Biobank data alone, and we replicate previous findings from large-scale 48

case-control GWAS and find an additional 7 previously unreported independent genomic regions, out of which 49

3 replicated in independent data. Our novel discoveries provide new insights into underlying cancer pathways, 50

and our model yields a better understanding of the polygenicity and genetic architecture of the 11 tumours. 51

We find substantial SNP-heritability, implying that heritable germline genetic variation plays a vital role in 52

cancer occurrence, with risk attributable to many thousands of underlying genomic regions. Finally, we show 53

that Bayesian modelling strategies that utilise time-to-event data give increased prediction accuracy for all 54

analysed tumours and suggest clinically relevant discrimination rules within the Estonian Biobank study. We 55

argue that it is possible to use existing data more thoughtfully and that a re-analysis of case-control study 56

data exploiting age-at-onset information would lead to novel discoveries and enhanced genomic prediction 57

within our framework. 58

Results 59

We analysed data from the UK Biobank for the timing and occurrence of diagnosis of 11 different tumours 60

using 458,747 individuals of European ancestry and a very weakly LD pruned set of 2,174,071 SNP markers 61

(see Methods and descriptive statistics in Supplementary table S1). We applied the recently developed 62

GMRM-BayesW and GMRM-BayesRR-RC approaches to the age-at-onset and case-control data respectively 63

in order to obtain joint SNP marker effect estimates for both models. We used these joint effect size estimates 64

to describe the genetic architecture of the 11 cancers and to predict cancer occurrence within the Estonian 65

Biobank data. Additionally, we adapted REGENIE’s mixed-linear association model by providing leaving 66

one chromosome out (LOCO) predictors from the joint GMRM-BayesW and GMRM-BayesRR-RC analyses 67

in step 2 of REGENIE (see Methods). This procedure allowed us to obtain marginal summary statistics, 68

which we used to identify novel associations. 69

Genetic architecture of 11 cancers 70

First, we used the power of joint Bayesian modelling to describe the genetic architecture of 11 cancers, 71

whilst accounting for the MAF and LD structure of the genetic markers. We find that all traits are highly 72

polygenic, with most of the h2
SNP attributed to SNPs that contribute an average of 0.1% and 0.01% of the 73

group genetic variance for joint BayesRR-RC and BayesW models, respectively (Figure 1a). We find some 74

differences across cancers, notably melanoma (10%), basal cell carcinoma (13%), breast (8.0%), cervical 75

(5.1%), and prostate (5.4%) cancers; and for age-at-diagnosis of non-Hodgkin’s lymphoma (7.0%), bladder 76

(6.0%) and ovarian (5.3%) cancers where at least 5% of the h2
SNP can be attributable to a small number 77

of large effects (mixture 10−2) (Figure 1a). In general, the analysis of time-to-event phenotypes results in 78

more of the genetic variance assigned to the smallest mixture component (Figure 1a). The result is in line 79

with the number of LD-independent regions required to explain a proportion of the SNP heritability, where 80

time-to-event analysis results in a more polygenic architecture compared to the case-control analysis (Figure 81

1b). Each curve reaches a plateau with 80-90% of the genetic variance attributable to a small number of 82
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genomic regions, and the remaining 10-20% attributable to 10,000 to 20,000 LD-independent regions. The 83

number of remaining regions required to capture all of the association signals varies greatly across cancers, 84

from 13,600 for ovarian and testicular cancer to 22,500 for basal cell carcinoma (Figure 1b). Additionally, we 85

find that the 11 cancers differ in how rare and common variants contribute to the SNP heritability (Figure 86

1c). We further observe that genetic variance often positively correlates with variants’ MAF structure. For 87

example, the largest proportion of genetic variance is consistently attributable to common variants in the 88

fourth MAF quartile for both time-to-event (TTE) or case-control (CC) models on basal cell carcinoma 89

(TTE 66%, CC 68%), melanoma (TTE 32%, CC 36%), breast (TTE 44%, CC 70%), colon (TTE 43%, CC 90

36%), and prostate cancers (TTE 40%, CC 57%) (Figure 1c). In contrast, testicular cancer, non-Hodgkin’s 91

lymphoma and ovarian cancer have 61%, 54%, 63% of the genetic variance explained by the rarest effects in 92

the first MAF quartile according to the case-control model. Thus, our MAF-LD stratified h2
SNP estimation 93

approach suggests: (i) strong differences in the underlying genetic architecture across these 11 cancers, (ii) 94

that only a limited number of genomic regions are required to capture most of the risk for all cancers, and 95

(iii) that mapping further associations will be extremely difficult as a small amount of variance is attributable 96

to a large number of independent regions of the DNA. 97

We then aimed at estimating the genetic heritability of the 11 cancers using LD score regression [23] on the 98

marginal associations. When correcting for the discrete nature of the trait (see Methods), the liability scale 99

heritability estimates were closer to family-based estimates than array-based assays, especially for basal cell 100

carcinoma, melanoma, breast, prostate, and testicular cancers (Table 2), highlighting that heritable genetic 101

variation is a leading risk factor for underlying risk of cancer. The pattern holds even if we use an approach 102

tailored for estimating liability scale heritability for rare traits [24] resulting in slightly more conservative 103

estimates (Table S3). Interestingly, we find that the GMRM-BayesW analysis leads to heritability estimates 104

that are nominally identical to the GMRM-BayesRR-RC estimates, suggesting an equivalent description of 105

total genetic variance when including the timing information in the analysis. The joint Bayesian models for 106

occurrence also enable SNP heritability estimation and comparative inference across cancers of the underlying 107

distribution of genetic effects. The liability scale heritability estimates from the joint Bayesian model are 108

less conservative and are similar to the LD score regression analysis estimates for more prevalent cancers. 109

However, more remarkable differences between the estimates and wider credibility intervals occur for the less 110

prevalent cancers, supporting suggestions [24] that rare traits require extra care as they could be subject to 111

ascertainment bias, sampling bias, and their effective sample size is low. We further used cross-trait LD score 112

regression on the GMRM-BayesW or GMRM-BayesRR-RC adjusted marginal associations to estimate the 113

genetic correlation between the traits (see Methods). There is a sizable genetic correlation between melanoma 114

and basal cell carcinoma (GMRM-BayesW adjusted estimate 0.44, 95%CI (0.32, 0.57)), as well as multiple 115

significant genetic correlations between basal cell carcinoma, cervical cancer and other phenotypes (Table 116

S4). Altogether, Bayesian modelling provides heritability estimates that are close to family-based assays, 117

especially for prevalent cancers, and allows to recover genetic variation underlying the risk of cancer both 118

with case-control and time-to-event data. 119

The joint Bayesian models for occurrence also enable SNP heritability estimation and comparative inference 120

across cancers of the underlying distribution of genetic effects. The liability scale heritability estimates from 121

the joint Bayesian model are similar to the LD score regression analysis estimates for more prevalent cancers. 122

However, more remarkable differences between the estimates and wider credibility intervals occur for the less 123

prevalent cancers, supporting suggestions [24] that rare traits require extra care as they could be subject to 124

ascertainment bias, sampling bias, and their effective sample size is low. We further used cross-trait LD score 125

regression on the BayesW or BayesRR-RC adjusted marginal associations to estimate the genetic correlation 126

between the traits (see Methods). There is a sizable genetic correlation between melanoma and basal cell 127

carcinoma (BayesW adjusted estimate 0.51, 95%CI (0.34, 0.68)), and we replicate [7] a previous result of 128

negative genetic correlation between endometrial and testicular cancer (BayesW adjusted estimate -0.38, 129

95%CI (-0.68, -0.07)) (Table S4). Interestingly, BayesW-based genetic correlations have a narrower confidence 130

interval than BayesRR-RC based genetic correlation estimates for each significant cancer trait pair. 131
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Genomic prediction of 11 cancers 132

Next, we used joint GMRM-BayesW SNP marker estimates to predict cancer occurrence within the Estonian 133

Biobank data (Figure 2, see Methods). We compared our results to those obtained by a baseline joint 134

GMRM-BayesRR-RC model and also to LDpred-funct approach [25] that uses summary statistics from 135

fastGWA method [14] for the same variants using precisely the same individuals as for the Bayesian models 136

(see Methods). Furthermore, we provide a comparison of applying Bayesian models on either self-reported 137

or medical record data (see Methods), showing that medical record data models outperform models using 138

self-reported data. Thus, we resorted to using only medical record data (Figure S4), illustrating the importance 139

of high data quality and accurate measurement to facilitate phenotype linking across studies. 140

We find that joint Bayesian models for individual-level data, especially those utilising age-at-onset 141

information, yield substantially improved genomic prediction for cancer occurrence, and the benefit is 142

amplified as case count increases. Except for a few cancers, we find that conducting the analysis using an age- 143

at-onset phenotype (BayesW) yields a nominally higher odds ratio (of having one standard deviation higher 144

PRS) than a case-control phenotype (BayesRR-RC) for basal cell carcinoma (BayesW: 1.68, BayesRR-RC: 145

1.66), bladder cancer (BayesW: 1.35, BayesRR-RC: 1.24), colon cancer (BayesW: 1.21, BayesRR-RC: 1.17), 146

melanoma (BayesW: 1.31, BayesRR-RC: 1.27), non-Hodgkin’s lymphoma (BayesW: 1.19, BayesRR-RC: 1.13), 147

prostate cancer (BayesW: 1.87, BayesRR-RC: 1.85), and testicular cancer (BayesW: 1.50, BayesRR-RC: 1.41) 148

(Figure 2a). A similar trend can be observed when using the C-statistic or hazards ratio for comparison (Figure 149

S3, see Methods). The Bayesian approaches generally have better predictive accuracy than the summary 150

statistic approach using LDpred-funct, with an average of 20% increase in odds ratio. LDpred-funct yielded at 151

least nominally smaller odds ratios (of standard deviation PRS difference) for testicular cancer (LDpred-funct: 152

1.05), prostate cancer (LDpred-funct: 1.41), breast cancer (LDpred-funct: 1.24) and non-Hodgkin’s lymphoma 153

(LDpred-funct: 1.01) with differences odds ratios differing significantly between BayesW and LDpred-funct 154

for bladder, prostate and breast cancers. For the cases of non-Hodgkin’s lymphoma, bladder cancer and 155

testicular cancer, the LDpred-funct score failed to yield a significantly predictive score. 156

We observe that the highest 5% PRS quantile discriminates well for the disease occurrence (Figure 2c). 157

Whereas the risk of developing prostate cancer by age 85 is estimated to be 11% (Table S6) among the top 158

5% highest PRS individuals, nearly 58% or 61% will develop prostate cancer according to the BayesRR-RC 159

or BayesW model, respectively. In comparison, LDpred-funct PRS finds that 43% of the top 5% PRS develop 160

prostate cancer. The top 5% polygenic risk score yields a useful discrimination rule for most other cancers as 161

well, notably for breast cancer, for which 25% of the top 5% BayesW PRS gets diagnosed by age 85 (12% 162

in the population, Table S6) and basal cell carcinoma for which 44% of the top 5% BayesRR-RC PRS gets 163

diagnosed by age 85 (31% in the population, Table S6). The share of individuals getting a cancer diagnosis 164

before age 50 is disproportionately higher among individuals with the top 5% or 10% of the PRS across many 165

cancers and risk score types (Figure 2b). For example, the top 10% highest genetic risk according to the 166

BayesW risk score account for 23% out of all basal cell carcinoma cases and 29% out of all prostate cancer 167

cases, suggesting that the BayesW risk score discriminates well the early onset of prostate cancer or basal cell 168

carcinoma. Our results suggest that the top 5% highest Bayesian polygenic risk scores could serve as a rule 169

to detect individuals who should not only receive earlier communication about their risks, but it could also 170

result in a cost-effective screening model for this subset of individuals. 171

Novel and replicated associations 172

Then, in order to fine-map novel associations, we used marginal age-at-onset and case-control summary 173

statistics that we obtained by adjusting the mixed-linear association model REGENIE to run with joint LOCO 174

predictors from GMRM-BayesRR-RC and GMRM-BayesW instead of built-in ridge LOCO predictors [15,17,20] 175

(see Methods). We find that this approach of adjusting the phenotypes with joint Bayesian predictors results 176

in enhanced statistical power (Figures 3c, S5, S1, S2,). We observe particularly notable improvements in 177

p-values for melanoma, bladder and testicular cancers. 178

Applying GMRM-BayesW or GMRM-BayesRR-RC to the UK Biobank data, we replicate previously 179

reported findings, with 261 previously identified significant independent trait-marker associations at p < 5·10−8
180

(Supplementary data). We also find an additional 7 independent previously unreported variants significant 181
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at p < 5 · 10−8, of which 3 replicate in independent data of the Estonian Biobank (Figure 3b, Table 1, 182

see Methods). We observe that all 7 previously undiscovered variants had small but not genome-wide 183

significant p-values in the unadjusted analysis with REGENIE (see Methods), and using GMRM-BayesRR-RC 184

or GMRM-BayesW adjustment reduced their p-values below a genome-wide significance threshold (Table 185

S5). We discover novel or replicate previous discoveries slightly better when we account for age-at-onset 186

as compared to the case-control model, especially for traits that have higher case counts such as breast or 187

prostate cancer (Figure S6, Table 1). Namely, only 3 out of 7 novel markers and 1 out of 3 replicated markers 188

that were discovered with GMRM-BayesW adjustment were also discovered with GMRM-BayesRR-RC. 189

To map novel associations to functional annotations, we conducted a number of follow-up analyses 190

(see Methods). 4 out of 7 novel lead SNPs are intronic (rs35763415 in PDE6G gene, rs2853677 in TERT, 191

rs112836568 in CD226, and rs117972357 in ncRNA RP11-1070N10.4), while 3 other SNPs are intergenic 192

(rs1015362, rs5007436, rs7902587). The majority of SNPs from the 7 novel genomic regions (lead SNPs and 193

those in LD r2 > 0.6) could be linked to regulatory variation (Table 1). Namely, 6 out of 7 novel lead SNPs 194

are expression quantitative trait loci (eQTLs) (maximum p < 2.9 · 10−8 from FUMA eQTL mapping, see 195

Methods); 4 novel regions have SNPs that fall into RegulomeDB categories [26] that are likely to affect 196

binding or are linked to expressions of a gene target (Figure 3b). Moreover, all 7 novel genomic regions are in 197

open chromatin state in at least 1 of 127 tissue/cell types predicted by ChromHMM [27] (Figure 3b), while 198

for one region (rs35763415), active chromatin state is the most common (Supplementary data). In addition, 199

two novel lead SNPs are enhancers (rs1015362, rs117972357) (Figure 3b). Thus, most novel associations can 200

be attributed to regulatory, intronic, and open chromatin functional regions. 201

We confirmed the regulatory effects of novel regions on a wide range of chromatin features using the 202

DeepSEA Beluga and Sei models, deep-learning-based frameworks for systematical prediction of the chromatin 203

effects of sequence alterations and of sequence regulatory activities [28,29]. The Sei model predicted that 204

2 novel regions belong to the polycomb sequence class associated with repressive gene expression activity 205

(rs35763415, rs2853677); rs1015362 maps to androgen receptor (AR) binding sequence which are reported to be 206

involved in carcinogenesis and tumour growth in prostate cancer [30]; rs7902587 - to Erythroblast-like enhancer 207

sequence class that is enriched in enhancer histone marks; enhancer SNP rs117972357 - to CTCF-cohesin 208

sequence that regulates long-range genome interactions; and lastly, rs5007436 maps to NANOG / FOXA1 class 209

that has cell type-specific transcription factor activity and has been implicated in tumour development [31]. 210

The analysis with DeepSEA Beluga showed that one region (index SNP rs7902587, associated with prostate 211

cancer) has maximum mean log e-value (MLE) > 2 (Figure 3b, Table 1), indicating a higher likelihood of 212

regulatory effects than a reference distribution of 1000 Genomes variants. Moreover, this novel genetic region, 213

as well as 2 other novel regions (rs35763415, rs112836568), has a maximum disease impact score (DIS) > 2 214

(Figure 3b, Table 1), highlighting likely disease-associated mutations. Additionally, we used the CADD tool 215

that predicts deleterious, functional, and disease causal variants by integrating multiple annotations into 216

one deleteriousness metric [32]. The average CADD score is 3.95, with 4 regions containing SNPs with max 217

CADD score > 12.37 (Figure 3b, Table 1), a deleteriousness threshold suggested by Kircher et al. [32]. 218

Lastly, we assessed the effects of all identified genetic variants on gene regulatory networks in order to 219

prioritize key genes and highlight pathway, tissue, and rare disease phenotype enrichment with Downstreamer 220

[33]. In total, the analysis identified 51 significant key genes (Supplementary Data). For basal cell carcinoma, 221

the key genes showed enrichment in UV-damage excision repair (GO:0070914), protein binding molecular 222

function (GO:0005515), and abnormalities of lymphocyte physiology (HP:0031409), cellular physiology 223

(HP:0011017), cellular phenotype (HP:0025354), of the immune system (HP:0002715, HP:0010978), carious 224

teeth (HP:0000670), and unusual infection (HP:0032101). For breast cancer, the key genes were associated 225

with negative regulation of transcription by RNA polymerase II (GO:0000122) and with abnormalities of the 226

menstrual cycle (HP:0000140, HP:0000858), the digestive system (HP:0025031), oral morphology (HP:0031816, 227

HP:0000163, HP:0006483, HP:0009804, HP:0000164), and of limbs (HP:0040064, HP:0004097, HP:0009484, 228

HP:0001155). For non-Hodgkin’s lymphoma, we found enrichment in telomeric DNA binding function 229

(GO:0042162) and in abnormality of hair pigmentation (HP:0009887). For melanoma, the analysis identified 230

an association with 3 KEGG pathways (allograft rejection, intestinal immune network for IgA production, and 231

autoimmune thyroid disease). For colon cancer, the key genes were enriched also in endometrial cancer and 232

renal cell carcinoma KEGG pathways. To determine how similar the key gene predictions are, we correlated 233
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the key gene scores of the 11 cancers to each other. We observed that some gene prioritization scores often 234

have positive correlations, especially between basal cell carcinoma, prostate and breast cancers, highlighting 235

shared genetic signature of the disorders (Figure 3a). Finally, the Downstreamer analysis showed significant 236

enrichment for potentially tumour-associated gene expression in related tissues across 54 GTEx v8 tissues for 237

basal cell carcinoma, breast and prostate cancer S7. 238

In summary, our novel findings confirm shared genetic architecture between cancers, highlight tumour- 239

associated expression patterns that likely stem from germline variation, and provide additional potential 240

regulatory mechanisms through which germline variation can affect cancer risk. 241

Discussion 242

Our results demonstrate the advantages of using joint Bayesian modelling and age-at-onset phenotypes for 243

genomic prediction and GWAS discovery, highlighting how these approaches can be used to improve the 244

utilisation of existing data. Biobanks of large sample sizes are becoming increasingly common worldwide and 245

improved links to electronic health record data enable information to be obtained regarding age-at-diagnosis. 246

Thus, we expect that our approach of incorporating age-at-onset data in the analysis will become commonplace, 247

improving case-control studies using richer information about the disease process. 248

One of the fundamental problems of analysing cancer phenotypes in a case-control fashion is the uncertainty 249

that the control group subjects might later be diagnosed with cancer. Many cancers often become more 250

prevalent only at later ages (Figure 2c), and as biobanks primarily consist of young, healthy individuals, 251

it could distort the inference. For example, that issue can be mitigated by introducing age thresholds to 252

eliminate younger individuals who have been at risk only for a limited amount of time or by age-matching 253

individuals. However, this will always be somewhat arbitrary, reducing the sample size, and there is no 254

guarantee that older individuals will not develop cancer later in life. In contrast, time-to-event analysis treats 255

these individuals as right censored, making no additional assumptions about the cancer occurrence in future, 256

which suggests an alternative with a more sound conceptual background to yield more accurate inferences. 257

Interestingly, time-to-event adjustment tends to yield higher power than the case-control adjustment once the 258

case count is sufficiently high. Hence, time-to-event analyses could become more statistically powerful than 259

their case-control counterparts as cases accrue. 260

There are important caveats to this study. First, our PRS results remain limited as our work represents a 261

re-analysis of a single biobank study to demonstrate the methodological improvements that can be obtained. 262

However, nothing prevents GMRM-BayesW from being run across different studies and posterior mean SNP 263

effects being combined to improve the effectiveness of the PRS, providing predictors with the potential to 264

stratify individuals for screening programs. For example, prostate cancer screening has been found to be 265

only moderately useful for the general population with 17-40% [34,35] reduction in cancer-specific deaths, 266

but as the mortality rate is low (in USA stage I-III 5-year survival rate >95%, stage IV 5-year survival rate 267

30% [36]) and as there are potential complications following the treatment, a general screening program has 268

not been commonly implemented. Nevertheless, there are recommendations for stratified risk communication. 269

For example, the American Cancer Society suggests that men with a first-degree relative with prostate cancer 270

before age 65 should be informed about screening and its risks already at age 45, and men with multiple 271

relatives with prostate cancer before 65 should be informed about screening even at age 40 [37]. Moreover, it 272

has been found that even if screening is not cost-effective for men at average risk of prostate cancer, it is still 273

cost-effective for men at very high risk (five times higher risk than the average) [35]. Our results suggest 274

that the top 5% highest Bayesian polygenic risk scores could serve as a rule to detect those who should be 275

screened and whose risk should be communicated. 276

A second limitation is our study’s restriction to a discovery set of UK Biobank individuals with European 277

ancestry, whereas many other recent studies have instead focused on merging and meta-analysing multiple 278

data sets from various backgrounds. However, our goal was simply to show that discoveries are yet to be 279

made on the existing data set simply by using an enhanced methodology for timing-related traits rather 280

than occurrence-related traits, and these improvements should also transfer when meta-analysing multiple 281

data sets. Third, the low number of cancer cases, such as testicular, ovarian or endometrial cancer, lead to 282

sub-optimal prediction accuracy, while cancers with higher case counts (prostate, breast) yielded larger-scale 283
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improvements in prediction accuracy. Again, as stated above, these analyses should be repeated in data with 284

greater case counts for the cancers with smaller case counts. Fourth, our current analysis combines prevalent 285

and incident cases to maximise the statistical power. However, it has been shown [7] that effect sizes are 286

generally very similar even if we restrict the analysis only to incident cases. Future time-to-event analyses 287

could also benefit from using information about left truncation by including the entry date in the analysis, 288

but the gain is likely marginal if the phenotypic information is derived from the medical records and the 289

onset happens later in life. 290

In summary, we have shown random effect models which utilise time-to-event data, maximise the use of 291

existing data for h2
SNP estimation, genomic prediction and GWAS discovery of 11 common cancers. 292

Methods 293

UK Biobank Data 294

We restricted our discovery analysis in the UK Biobank to a sample of European-ancestry individuals. To 295

infer ancestry, we used both self-reported ethnic background (UK Biobank field 21000-0), selecting coding 1, 296

and genetic ethnicity (UK Biobank field 22006-0), selecting coding 1. We also took the 488,377 genotyped 297

participants and projected them onto the first two genotypic principal components (PC) calculated from 298

2,504 individuals of the 1,000 Genomes project with known ancestries. Using the obtained PC loadings, 299

we then assigned each participant to the closest population in the 1000 Genomes data: European, African, 300

East-Asian, South-Asian or Admixed, selecting individuals with PC1 projection < absolute value 4 and PC 2 301

projection < absolute value 3. Samples were also excluded if in the UK Biobank quality control procedures 302

they (i) were identified as extreme heterozygosity or missing genotype outliers; (ii) had a genetically inferred 303

gender that did not match the self-reported gender; (iii) were identified to have putative sex chromosome 304

aneuploidy; (iv) were excluded from kinship inference; (v) had withdrawn their consent for their data to be 305

used. We used genotype probabilities from version 3 of the imputed autosomal genotype data provided by 306

the UK Biobank to hard-call the genotypes for variants with an imputation quality score above 0.3. The 307

hard-call-threshold was 0.1, setting the genotypes with probability ≤ 0.9 as missing. From the good quality 308

markers (with missingness less than 5% and p-value for Hardy-Weinberg test larger than 10−6, as determined 309

in the set of unrelated Europeans) we selected those with minor allele frequency (MAF) > 0.0002 and rs 310

identifier, in the set of European-ancestry participants, providing a data set 9,144,511 SNPs. From this, we 311

took the overlap with the Estonian Biobank data described below to give a final set of 8,430,446 markers. 312

This provides a set of high quality SNP markers present across both discovery and prediction data sets. For 313

computational convenience when conducting the joint Bayesian analysis we created an additional subset of 314

markers by removing markers in very high LD, through the selection of the highest MAF marker from any 315

set of markers with LD R2 ≥ 0.8 within a 1Mb window. These filters resulted in a data set with 458,747 316

individuals and 2,174,071 markers. 317

We used the recorded measures of individuals to generate the phenotypic data sets for 11 most common 318

types of cancer: bladder, breast, cervix, colon, endometrium, ovary, prostate, testis, basal cell carcinoma, 319

melanoma, and non-Hodgkin’s lymphoma. Then, we created time-to-event phenotypes using either self- 320

reported data or the linked electronic medical records data. For the medical record data, we used UK Biobank 321

field 40008 to get the earliest age at each cancer diagnosis together with fields 40006 and 40013 to indicate 322

the ICD10 or ICD9 cancer type (Table S2). Individuals without an entry on those fields were considered 323

censored and their time was set to their last known age alive (exact birth date imputed to day 15 of a month 324

as only month and year are known) without a cancer diagnosis. Each individual i was therefore assigned a 325

censoring indicator Ci that was defined Ci = 1 if the person had the event before the end of the follow-up 326

period and Ci = 0 otherwise. For self-reported time-to-event phenotypes, we created a pair of last known 327

time (averaged between assessments) without an event and censoring indicator Ci. Similarly to the medical 328

record phenotypes, if the event had not happened, then the last time without having the event was defined 329

as the last date of assessment centre or date of death visit minus date of birth. For creating the self-reported 330

phenotypes, we used UK Biobank field 20001 for the presence or absence of certain cancer type and UK 331

Biobank field 20007 for interpolated ages of individuals when the disease was first diagnosed; we excluded 332
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from the self-reported phenotype analysis individuals who said that they had cancer, but there was no record 333

of the diagnosis age. In an attempt to further increase power and to account for potential missingness, for 334

each individual who had self-reported data about cancer timing but no medical record data, we used used the 335

self-reported age-at-diagnosis instead of treating the individual as censored. However, this approach only 336

yielded marginal improvements compared to using purely medical record information (Figure S4). Finally, 337

the case-control-phenotypes corresponding to the time-to-event phenotypes were defined as the censoring 338

indicators Ci. 339

The analyses were adjusted for the following covariates: sex for sex-unspecific cancers, age in case-control 340

analyses, UK Biobank recruitment center, home location, genotype batch and 20 first principal components 341

(UK Biobank field 22009) to account for the population stratification in a standard way. For the analyses 342

that used age-at-diagnosis as phenotypes, we did not include any covariates of age or year of birth because 343

these are directly associated to our phenotypes. 344

Estonian Biobank Data 345

For the Estonian Biobank data, 195,432 individuals were genotyped on Illumina Global Screening (GSA) 346

arrays and we imputed the data set to an Estonian reference, created from the whole genome sequence data 347

of 2,244 participants [38]. We kept only the European ancestry individuals with available information on 348

sex, age-at-recruitment and date of recruitment. From 11,130,313 markers with imputation quality score > 349

0.3, we selected SNPs that overlapped with those selected in the UK Biobank, resulting in a set of 8,430,446 350

variants out of which 2,174,071 variants were used in the prediction analysis. The 60 previously unreported 351

variants that were found significant in the marginal association analysis of UK Biobank (Table S5) were used 352

in a replication analysis using the same Estonian Biobank individuals. 353

We created the phenotypes for the Estonian Biobank individuals using the respective medical record 354

information. The occurrence of each of the cancers was defined by using the respective ICD10 codes exactly 355

as it was defined for the UK Biobank medical record phenotypes (Supplementary table S2) by first defining 356

the last known time person did not have a respective diagnosis. Individuals with a respective cancer diagnosis 357

received a censoring indicator Ci = 1 and 0 otherwise that then defined the case-control phenotypes adjusted 358

for covariates such as sex for sex-unspecific cancers and age. 359

Analysis with joint Bayesian models 360

Both GMRM-BayesRR-RC and GMRM-BayesW models are based on grouped effects with spike-and-slab 361

mixture priors and provide joint effect estimates [20,39]. Briefly, genetic markers are grouped into annotation- 362

specific sets, e.g. based on MAF or LD, with independent hyperparameters for the phenotypic variance 363

attributable to each group. This allows estimation of the phenotypic variance attributable to the group-specific 364

effects. 365

Assuming N individuals,M genetic markers, and Φ groups, the GMRM-BayesRR-RC model of an observed 366

phenotype vector y is: 367

y = 1µ+
Φ∑

ϕ=1
Xϕβϕ + ε, (1)

where Xϕ is a standardised genotype matrix containing SNPs allocated to group ϕ, µ is an intercept, βϕ is 368

the vector of SNP effects in group ϕ and ε is a vector of Gaussian residuals such that every element in the 369

vector would be distributed as εi ∼ N (0, σ2
e). For each group, we assume that βϕ are distributed according to 370

a mixture of Gaussian components with mixture specific proportions πϕ and mixture variances σ2
ϕ1, . . . , σ

2
ϕL 371

and a Dirac delta at zero which induces sparsity: 372

βϕj ∼ πϕ0δ0 + πϕ1N (0, σ2
1ϕ) + ...+ πϕLN (0, σ2

ϕL), (2)

where L is the number of mixture components. 373
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The GMRM-BayesW follows similar prior and grouping formulation. However, here we assume for an 374

individual i that the age-at-onset of a disease yi has Weibull distribution, with a reparametrisation of the 375

model to represent the mean and the variance of the logarithm of the phenotype as 376

E(log(yi)|µ,β, δ, α) = µ+
Φ∑

ϕ=1
Xϕiβϕ +Ziδ, (3)

377

V ar(log(yi)|µ,β, δ, α) = π2

6α2 (4)

where Zi are additional covariates (such as sex or genetic principal components), δ are the additional covariate 378

effect estimates and α is the Weibull shape parameter. 379

We estimated the hyperparameters such as genetic variance and prior inclusion probability by grouping 380

markers into MAF-LD bins as recent theory suggests this yields improved estimation [39–41]. We ran 381

the GMRM-BayesW model on the UK Biobank data with 8 MAF-LD groups that were defined as first 382

splitting markers by MAF quartiles and then splitting each of those MAF quartiles into two LD score blocks 383

(MAF quartiles are 0.007, 0.020, 0.102; median LD score in each quartile are 2.32, 3.33, 5.69, 9.25, from 384

the lowest MAF quartile respectively). We decided not to split these groups further as the potentially 385

low statistical power of cancer-related phenotypes could lead to many groups with zero genetic variance. 386

Both GMRM-BayesW and GMRM-BayesRR-RC models were executed with mixture components (0.0001, 387

0.001, 0.01, 0.1) for each of the groups, reflecting that the markers allocated into those mixtures explain the 388

magnitude of 0.01%, 0.1%, 1% or 10% of the group-specific genetic variance. We ran the GMRM-BayesW 389

model using the timing of cancers as the phenotype while treating individuals without cancer as censored, 390

and we ran the GMRM-BayesRR-RC type model using the occurrence of cancer as the phenotype. In the 391

GMRM-BayesW analyses we took the covariates into account by estimating the effects of the covariates 392

within the GMRM-BayesW model while in the GMRM-BayesRR-RC we regressed out the covariates from 393

the phenotype prior to the analysis. 394

We specified the hyperparameters for the models such that they would be weakly informative. For 395

GMRM-BayesW model, the choice of hyperparameters and quadrature points was exactly the same as in [20]; 396

for GMRM-BayesRR-RC model the choice was exactly the same in [39]. We ran the chains for each of the 397

cancer types twice for 6000 iterations, discarding the first 2000 iterations as a burn-in and using a thinning 398

step of 5, leaving us with a final of 1600 samples of the posterior distribution. As estimation is done in 399

parallel, the run time will depend on the degree of parallelisation. For example, for basal cell carcinoma we 400

used 11 nodes and 12 tasks per node (total 132 tasks) for GMRM-BayesW and 7 nodes and 12 tasks per node 401

(total 84 tasks) for GMRM-BayesRR-RC. This resulted in a total run time of 67.5 hours (40.5s per iteration) 402

for GMRM-BayesW and 79.7 hours (47.8s per iteration) for GMRM-BayesRR-RC. Although GMRM-BayesW 403

was faster in the absolute time, adjusted for the number of tasks in the example, GMRM-BayesW requires 404

33% more time per iteration than GMRM-BayesRR-RC. Other choices for parallelisation (for example 405

synchronisation rate) were set the same as described in [20] and note that these timings were recorded prior 406

to the recent speed-ups in our GMRM-BayesRR-RC model [15]. 407

Association testing with adjusted marginal models 408

Since many of the assessed cancer traits had imbalanced case-control ratios, we adapted single-variant 409

association testing of REGENIE [17], a two-step method designed to control Type I error in GWAS by 410

using Firth logistic regression or Saddle Point Approximation (SPA). However, instead of running the first 411

step of REGENIE, where 23 leave one chromosome out (LOCO) genetic predictors are generated based on 412

stacked block Ridge regression, we provided the LOCO predictors from the either GMRM-BayesRR-RC or 413

GMRM-BayesW joint analysis: 414

ĝBayes
LOCO,k =

∑
l 6=k

ĝBayes
l , k = {1, ..., 23} (5)
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Here, ĝBayes
l = Xl

UKβ̄l, Xl
UK : N ×Ml matrix of SNPs in the lth chromosome, β̄l is the vector of average 415

effect sizes from joint Bayesian analysis in chromosome l. These Bayesian LOCO predictors were used in the 416

second step of REGENIE that tests genetic markers for association with the phenotype conditional upon the 417

random polygenic effects from other chromosomes ĝBayes
l : 418

ỹk = X̃k
UKj

βj + ε̃ (6)

where ỹk = ỹ− ĝBayes
LOCO,k, ỹ is the binary phenotype, X̃k

UK : N ×Mk matrix of SNPs in the kth chromosome, 419

ε̃ is the error term, βj is the jth SNP effect that we are estimating. All tilde symbols represent adjustment 420

for covariates. We refer to this modified Bayesian version of REGENIE analysis as "GMRM-BayesRR-RC- 421

adjusted" or "GMRM-BayesW-adjusted". 422

For comparison, we ran the standard REGENIE pipeline (Equation 6) with LOCO predictors from step 1 423

ĝREG
LOCO,k =

∑
l 6=k ĝREG

l , k = {1, ..., 23}, to which we refer as "unadjusted" analysis. 424

We used the full overlap of UK Biobank and Estonian Biobank markers giving us a total of 8,433,421 425

markers to be analysed. We provided sex, (if applicable for the cancer), age, UK Biobank assessment centre, 426

coordinates of birthplace, genotype chip, and the leading 20 PCs of the SNP data as covariates. In the first 427

step of REGENIE, we followed recommendations in the [17] and excluded SNPs in inter-chromosomal LD 428

with R2 > 0.1147 from the unadjusted analysis. In the second step of REGENIE, we ran association testing 429

with approximate Firth correction. However, we encountered convergence issues for all 4 female cancers and 430

Testicular cancer potentially due to a very low case count and thus used SPA instead of the Firth correction 431

for these 5 traits in both adjusted and unadjusted analyses. We used the p-value threshold of 5 · 10−8 to 432

determine the significance of each marker. 433

We applied the following steps to the association results to filter out independent and potentially previously 434

undiscovered markers. Firstly, we LD clumped the results such that the index SNPs would have a p-value 435

below 5 · 10−8 and SNPs could be added to a clump if they were 1Mb from the index SNP, they were 436

correlated with r2 > 0.05 and they were nominally significant (P < 0.05). Next, we used COJO method [42] 437

from GCTA software [43] to find clumps with independent signals by conducting a stepwise selection of 438

index SNPs in a 1Mb window and we considered SNPs independent if they had a p-value below 5 · 10−8 in 439

the joint model. To determine novelty, we first removed all markers that were significantly associated in 440

the unadjusted model. We then removed all the markers that had a correlation of r2 > 0.1 with a marker 441

that had been previously found associated with a cancer of interest using GWAS Catalog (published until 442

April 2022) and the LDtrait tool with the British in England and Scotland population. We then again used 443

COJO to condition the remaining markers on the previously identified associations for each cancer of interest 444

and SNPs that did not fall below 5 · 10−8 in the joint model were eliminated. For the remaining SNPs we 445

conducted an additional literature review using the Phenoscanner database [44, 45] to find any previous 446

associations with variants of interest or variants in LD. The remaining candidates of novel associations were 447

concatenated across GMRM-BayesW or GMRM-BayesRR-RC adjusted analyses and then included in the 448

replication analysis using the largest available studies conducted for each specific cancer type. We checked 449

our findings for replication in the FinnGen summary statistics version R8 [46]. Replication was defined as 450

Bonferroni corrected p-value being lower than 0.05 and the direction of the effect size same in both the 451

original analysis and the replication analysis. 452

Liability scale heritability and genetic correlation 453

We used the summary statistics from the marginal association analysis in LD score regression [23] to 454

calculate the observed scale heritability. We used the LD scores from the 1000 Genomes European data 455

https://alkesgroup.broadinstitute.org/LDSCORE/ and the summary statistics were taken from either 456

GMRM-BayesW-adjusted or GMRM-BayesRR-RC-adjusted association analysis. The conversion of the 457

heritability to the liability scale was done using the formula by Lee et al. [47] (Table 2) and using the risks 458

from SEER 2016-2018 (Table S6) [48] using the risks of having cancer diagnoses between ages 0 to 85 for 459

non-Hispanic white people providing similarity with the study population (European ancestry, UK Biobank, 460

oldest person age 86). We further provide an alternative liability scale transformation [24] designed for rare 461

traits. Using the alternative rare trait liability scale transformation we also present the heritability estimates 462
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from the joint Bayesian case-control model (Table S3). In addition, we used cross-trait LD score regression [49] 463

to calculate the genetic correlations using results from REGENIE’s step 2 analyses with GMRM-BayesW or 464

GMRM-BayesRR-RC adjustments and GWAS results for multiple phenotypes released by Neale group [50] 465

and Global Biobank Meta-analysis Initiative consortium [51]. The significance threshold of 0.05 was corrected 466

by the total number of tests (2200). 467

Discovery follow-up analyses 468

We conducted a number of follow-up analyses using the marginal summary statistics obtained from the 469

mixed-linear association model REGENIE that was adjusted with GMRM-BayesW and GMRM-BayesRR-RC 470

LOCO predictors instead of built-in ridge LOCO predictors. 471

We used FUMA (Functional Mapping and Annotation) [52] platform to functionally characterise novel 472

replicated variants and prioritise genes. We defined a threshold for independent significant novel SNPs 473

and corresponding novel genetic regions as LD r2 = 0.6 on the reference panel UKB/release2b. When 474

performing gene mapping, we used 10kb maximum distance for positional mapping, all available tissue types 475

and maximum p-value threshold of 5 · 10−8 for eQTL mapping, and builtin chromatin interaction data with 476

1 · 10−6 FDR threshold for chromatin interaction mapping. We obtained ANNOVAR’s functional annotation 477

and nearest genes [52,53], RegulomeDB categorical score [26], eQTL information, 15-core chromatin state [27], 478

and CADD deleteriousness score [32] from SNP2GENE analysis of FUMA [52]. We considered markers as 479

deleterious if their CADD score exceeded the 12.37 threshold suggested by Kircher et al. (2014) [32] and 480

chromatin state as open/active for SNPs with 15-core chromatin score ≤7 predicted by ChromHMM [27] 481

based on 5 chromatin marks for 127 epigenomes. 482

We annotated the SNPs with DeepSEA Beluga and DeepSEA Sei, deep-learning-based frameworks for 483

systematical prediction of the chromatin effects of sequence alterations and sequence regulatory activities, 484

respectively [28,29]. For each novel genomic region, we report here the DeepSEA Beluga’s maximum mean 485

log e-value (MLE) and disease impact score (DIS) and Sei’s sequence class with the maximum absolute 486

score. We calculated all of the mentioned parameters for each significant independent novel SNP as well as 487

minimum/maximum/common values within the novel genetic regions. 488

We investigated the effects of identified genetic variants on gene regulatory networks by using Downstreamer 489

[33] with the GMRM-BayesW and GMRM-BayesRR-RC marginal summary statistics. This method helped 490

to prioritize key genes and highlight pathway, tissue, and rare disease phenotype enrichment. For key gene 491

enrichment score correlation, we used both significant and insignificant enrichment Z-scores. For the rest of 492

the analysis, we used those genes/samples/pathways/GO terms/tissues which passed both Bonferroni and 5% 493

FDR significance thresholds. 494

Genomic prediction in the Estonian Biobank 495

The predictors based on GMRM-BayesW or GMRM-BayesRR-RC models into Estonian Biobank ĝ were 496

obtained by multiplying the standardised genotype matrix with the average SNP effect across iterations 497

ĝ = XEstβ̂1 = XEstβ̄, (7)

where XEst is NEst ×M matrix of standardised Estonian genotypes (each column is standardised using the 498

mean and the standard deviation of the Estonian data), β̂ is the M × I matrix containing the posterior 499

distributions for M marker effect sizes across I iterations, β̄ is the average SNP effect. We calculated 500

the average predictor from GMRM-BayesW and GMRM-BayesRR-RC models for each cancer using 1600 501

iterations (see Analysis with joint Bayesian models). To facilitate comparison between marginal and joint 502

estimates, we used the same training data set (same 2,174,071 variants and 458,747 individuals) from UK 503

Biobank to estimate the marginal summary statistics for the 11 cancers. The summary statistics were 504

estimated using fastGWA [14], taking into account the relatedness in the data. Then, we used these summary 505

statistics in LDpred-funct method [25]. As annotations for LDpred-funct, we used 8 MAF-LD bins similarly 506

to the Bayesian analyses; we used an LD radius of 1Mb; heritability estimates were taken from LDscore 507

regression, using the fastGWA summary statistics. The weights from LDpred-funct were then applied to 508

11

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 6, 2023. ; https://doi.org/10.1101/2022.03.25.22272955doi: medRxiv preprint 

https://doi.org/10.1101/2022.03.25.22272955
http://creativecommons.org/licenses/by-nc/4.0/


the Estonian Biobank individuals to create the respective genomic predictors that were compared with the 509

GMRM-BayesW and GMRM-BayesRR-RC results. 510

We evaluated the performance of the three genetic predictors for each cancer phenotype by comparing 511

them to the actual phenotype case-control status using logistic regression and true phenotype timing using 512

Cox proportional hazards (PH) model. The three predictors were compared using the top 5% PRS with 513

the rest, the top 10% PRS with the rest, and the effect of one standard deviation increase in PRS. From 514

the logistic regression, we calculated odds ratios for the top 5%, top 10% and scaled change effect. From 515

the Cox PH model, we calculated hazard ratios and Harrell’s C-statistics [54] for the top 5%, top 10% and 516

scaled change effect. In addition to the predictor, gender (if applicable) and age-at-entry were included in 517

the logistic regression and Cox PH model that calculated the hazard ratio. The Cox PH model calculated 518

Harrell’s C-statistic, where the true phenotype was regressed only on the predictor. The results of odds ratios, 519

hazards ratios and Harrell’s C-statistics are shown in Figure 2a and Supplementary figure S3. We further 520

used the top 5% and top 10% PRS individuals to see what percentage of them develop cancer (Figure 2b). 521

Across all the cancers and 4 predictive scores we calculated the respective cumulative incidence curves 522

for the top 5% highest PRS individuals (Figure 2c) adjusting the analysis for the competing risks. The 523

calculation was done using R package cmprsk [55,56]. 524
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SNP rs1015362 rs35763415 rs2853677 rs5007436 rs112836568 rs117972357 rs7902587
Replicated False True False False False True True

Phenotype Basal cell
carcinoma

Basal cell
carcinoma

Bladder
cancer

Breast
cancer NHL NHL Prostate

cancer
Model bW,bR-RC bW bW bW bW,bR-RC bW,bR-RC bW
Eff/Oth C/T T/C G/A C/T A/G G/A C/T

Chromosome 20 17 5 18 18 14 10
Position 32738612 79622370 1287194 25437574 67608842 96043546 105694301
Beta -0.057 0.052 -0.159 0.073 0.435 1.101 0.137
SE 0.010 0.009 0.029 0.013 0.074 0.171 0.025

p-value 4.255e-08 3.307e-08 4.885e-08 4.070e-08 4.222e-08 4.495e-08 4.482e-08
Effect allele
frequency 0.278 0.590 0.577 0.749 0.028 0.003 0.095

Index SNP
CADD score 0.261 1.09 1.28 0.886 6.518 8.4 0.032

Max locus
CADD score 9.674 16.29 2.738 21.4 25.4 8.4 17.93

Sei sequence
class AR Polycomb/

Heterochrom. Polycomb NANOG/
FOXA1

Low
signal

CTCF-
Cohesin

Erythroblast-
like

Index SNP
DeepSEA MLE 0.446 0.425 0.631 0.243 0.301 0.664 0.394

Max locus
DeepSEA MLE 1.207 1.264 0.786 1.042 1.412 0.851 2.553

Index SNP
DeepSEA DIS 0.443 0.583 0.653 0.101 0.030 0.724 0.204

Max locus
DeepSEA DIS 1.664 2.487 1.100 1.702 2.561 1.458 4.292

ANNOVAR
function intergenic intronic intronic intergenic intronic ncRNA

intronic intergenic

ANNOVAR
functional

gene

ASIP
RPS2P1 PDE6G TERT CDH2

RP11-739N10.1 CD226 RP11-1070N10.4 OBFC1
SLK

Index SNP
RDB 5 5 7 5 3a 5

Min locus
RDB 5 2b 5 2b 2c 3a 2b

Min index SNP
chromatin

state
5 2 4 5 3 2 5

Min locus
chromatin

state
1 1 4 1 1 1 1.0

Common index
SNP chromatin

state
15 5 15 15 15 14 15

Common locus
chromatin

state
15 4 14 15 15 5 5

Chromatin
interaction

type
enhancer enhancer

eQTL
min p-value 1.151e-88 3.272e-310 2.990e-08 7.441e-37 3.164e-33 1.858e-30

Table 1. Functional description of the novel and replicated discoveries from case-control
(GMRM-BayesRR-RC) and age-at-onset (GMRM-BayesW) marginal analyses. We performed
the marginal analysis by adjusting the mixed-linear association model REGENIE with GMRM-BayesW or GMRM-BayesRR-RC
genetic LOCO predictors and identified 7 novel genetic loci, 3 of which were replicated in the Estonian Biobank (see Methods for
the pipeline for filtering and replication of the novel loci). Importantly, two out of the three replicated loci were only discovered
using the GMRM-BayesW adjusted model and one was discovered by using both GMRM-BayesW and GMRM-BayesRR-RC
LOCO predictors. We calculated various parameters related to the potential functionality of novel genetic regions for each
significant independent novel SNP and minimum/maximum/common values within the genetic regions (index SNPs and those in
LD r2 > 0.6). The majority of SNPs from the 7 novel genomic regions could be linked to regulatory variation. Here, NHL -
non-Hodgkin’s lymphoma, Heterochrom. - heterochromatin.

559
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Array-based Family-based
BayesW BayesRR-RC estimatea estimateb

Basal cell carcinoma 0.56 (0.36-0.76) 0.56 (0.36-0.76) 0.17 (0.07-0.27)c 0.43 (0.26-0.59)
Bladder cancer 0.06 (0-0.13) 0.06 (0-0.12) 0.08 (0.04–0.12) 0.07 (0.02–0.11)
Breast cancer 0.20 (0.13-0.27) 0.20 (0.13-0.27) 0.10 (0.08–0.13) 0.31 (0.11–0.51)
Cervical cancer 0.05 (0.03-0.06) 0.05 (0.03-0.06) 0.07 (0.02–0.12) 0.13 (0.06–0.15)d

Colon cancer 0.08 (0.04-0.13) 0.08 (0.04-0.13) 0.07 (0.04–0.10) 0.15 (0.00–0.45)
Endometrial cancer 0.07 (0-0.16) 0.07 (0-0.15) 0.13 (0.07–0.18) 0.27 (0.11–0.43)
Melanoma 0.15 (0.03-0.27) 0.15 (0.03-0.27) 0.08 (0.04–0.11) 0.58 (0.43–0.73)
Non-Hodgkin’s lymphoma 0.04 (0-0.10) 0.04 (0-0.10) 0.13 (0.03–0.23) 0.10 (0.08–0.10)d

Ovarian cancer 0.01 (0-0.10) 0.01 (0-0.10) 0.07 (0.01–0.13) 0.39 (0.23–0.55)
Prostate cancer 0.48 (0.21-0.76) 0.48 (0.2-0.76) 0.16 (0.13–0.20) 0.57 (0.51–0.63)
Testicular cancer 0.56 (0.03-1.08) 0.55 (0.02-1.08) 0.26 (0.15–0.38) 0.37 (0.00–0.93)

Table 2. SNP-heritability estimates. Estimates with 95% CI from LD Score regression, using mixed linear association
model estimates from REGENIE’s step 2 adjusted with age-at-onset LOCO predictor (GMRM-BayesW) or with case-control
LOCO predictor (GMRM-BayesRR-RC), as compared with previous array or family based estimates. a - estimate from Rashkin
et al. [7]; b - estimate from Mucci et al. [59]; c - estimate from Kilgour et al. [60]; d - estimates from Czene et al. [61].
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Figure 1. Genetic architecture and polygenicity of 11 cancers. (a) Mean proportion of genetic variance
explained by each of the mixtures components using either case-control or age-at-onset phenotype. We find evidence that
age-at-onset is highly polygenic with most of the genetic variance attributable to SNPs contributed by markers in the 10−4

mixture group, while the majority of the case-control phenotype genetic variance is explained by the markers from the 10−3

mixture group. (b) Number of LD-independent regions (see Methods) needed to explain total genetic variance. The contributions
of LD-independent regions were sorted ascendingly such that the smallest contributing regions were added first. (c) Median
proportion of genetic variance explained by each mixture class and MAF quartile combination, with 95% CI. For both case-control
and age-at-onset models, most of the genetic variance is attributable to the small effect common variants (MAF quartile 4),
however rare variants from the first MAF quartile contribute significantly to the variance for bladder, endometrial, ovarian,
testicular cancers, non-Hodgkin’s lymphoma for the BayesR model. BCC indicates basal cell carcinoma.
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Figure 2. Predictive validation of different polygenic risk scores (PRS) in the Estonian Biobank
data. (a) Odds ratio for diagnosis of a tumour given one standard deviation increase in PRS, with 95% confidence intervals.
(b) Percent of individuals diagnosed with cancer before age 50 having a top 10% or top 5% highest PRS; (c) cumulative incidence
curves adjusted for competing risk for individuals with the top 5% highest PRS. The number of Estonian Biobank individuals
used in the validation was N =195,432. BayesRR-RC and BayesW estimates were obtained by running the corresponding
models on UK Biobank using either case-control or age-at-onset data. The LDpred-funct used the summary statistics that were
calculated using the same UK Biobank individuals and variants as for BayesRR-RC or BayesW using fastGWA method; then
the summary statistics were used in the LDpred-funct method [25] (see Methods). BayesRR-RC and BayesW tend to have
more accurate predictions than the summary statistic approach. For all cancers except breast, cervical, endometrial and ovarian
cancer, BayesW predictor gives a nominally higher odds ratios compared to BayesRR-RC predictor.
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Figure 3. Properties of discoveries and changes in p-values. (a) Pearson correlation between key gene
scores. Correlations were calculated using all key genes (including non-significant ones). (b) Properties of novel replicated genetic
regions. Repl - the discovery was replicated in the Estonian Biobank, CADD - maximum CADD score of the region is equal or
greater than 12.37, DIS - maximum DeepSEA disease impact score (DIS) of the genetic region is equal or greater than 2, MLE -
maximum DeepSEA mean log e-value (MLE) of the region is equal or greater than 2, eQTL - an SNP from the the genetic
region is an eQTL with p-value < 5 · 10−8, OChS - open/active chromatin state (minimum 15-core chromatin score of the lead
SNP is less or equal than 7), RDB - minimum RegulomeDB category of the genetic region is 1 or 2, ENH - SNP is in enhancer
region. (c) Differences between p-values from standard REGENIE analysis and BayesW- or BayesRR-RC-adjusted analyses.
With the exception of two classes in non-Hodgkin’s lymphoma and ovarian cancer (p < 5 · 10−8), the Bayesian adjustments yield
similar or slightly improved results compared to standard REGENIE with notable improvements seen in bladder cancer, cervical
cancer (5 · 10−8 < p < 5 · 10−4), melanoma, non-Hodgkin’s lymphoma (5 · 10−8 < p < 5 · 10−6) and testicular cancer.
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Supplementary material 560

Supplementary tables 561

All Females Males
Cases (%) Mean (sd) Median (Range) Cases (%) Mean (sd) Median (Range) Cases (%) Mean (sd) Median (Range)

Basal cell 26758 (5.8%) 60.6 (9.42) 62.1 (7.5-80.6) 13277 (5.3%) 59.5 (9.73) 61 (7.5-80.6) 13481 (6.4%) 61.8 (8.96) 63.3 (22.2-79.7)
carcinoma
Bladder cancer 2470 (0.5%) 61.3 (9.38) 62.9 (19.1-77.8) 608 (0.2%) 60.8 (9.50) 62.1 (24.7-76.9) 1862 (0.9%) 61.5 (9.34) 63.1 (19.1-77.8)
Breast cancer 16972 (6.8%) 55.7 (9.20) 55.6 (18.8-80.9) 16972 (6.8%) 55.7 (9.20) 55.6 (18.8-80.9)
Cervical cancer 8680 (3.5%) 38.0 (9.27) 36.8 (13.5-76.6) 8680 (3.5%) 38.0 (9.27) 36.8 (13.5-76.6)
Colon cancer 4463 (1.0%) 60.9 (9.13) 62.3 (11.2-78.8) 2009 (0.8%) 60.2 (9.53) 61.4 (11.2-78.0) 2454 (1.2%) 61.5 (8.76) 62.7 (14.0-78.8)
Endometrial 2227 (0.9%) 56.5 (11.22) 58.3 (13.0-76.9) 2227 (0.9%) 56.5 (11.22) 58.3 (13.0-76.9)
cancer
Melanoma 5778 (1.3%) 54.1 (12.16) 55.8 (0.5-77.5) 3243 (1.3%) 52.1 (12.36) 53.3 (1.5-77.5) 2535 (1.2%) 56.6 (11.41) 58.5 (0.5-77.5)
Non-Hodgkin’s 2298 (0.5%) 58.7 (11.36) 61.0 (3.5-79.1) 1026 (0.4%) 58.8 (10.97) 60.9 (5.3-78.1) 1272 (0.6%) 58.7 (11.67) 61.0 (3.5-79.1)
lymphoma
Ovarian cancer 1573 (0.6%) 54.6 (12.38) 56.0 (10.1-79.6) 1573 (0.6%) 54.6 (12.38) 56.0 (10.1-79.6)
Prostate cancer 9824 (4.7%) 64.6 (5.87) 65.2 (22.9-80.2) 9824 (4.7%) 64.6 (5.87) 65.2 (22.9-80.2)
Testicular cancer 886 (0.4%) 40.5 (11.08) 40.0 (0.5-76.0) 886 (0.4%) 40.5 (11.08) 40.0 (0.5-76.0)

Table S1. UK Biobank data composition for the cancer cases and their timings used within
the study.
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ICD10 code ICD9 code
Basal cell C44.0, C44.1, C44.2, C44.3, C44.4, C44.5, C44.6, 173.0, 173.1, 173.2, 173.3, 173.4, 173.5, 173.6,
carcinoma C44.7, C44.8, C44.9, D04.0, D04.1, D04.2, D04.3, 173.7, 173.8, 173.9, 232.1, 232.2, 232.3,

D04.4, D04.5, D04.6, D04.7, D04.8, D04.9 232.4, 232.5, 232.6, 232.7, 232.8, 232.9
Bladder C67.0, C67.1, C67.2, C67.3, C67.4, C67.5, 188.0, 188.2, 188.4, 188.6,
cancer C67.6, C67.6, C67.7, C67.8, C67.9, D09.0 188.8, 188.9, 233.7
Breast C50.0, C50.1, C50.2, C50.3, C50.4, 174.0, 174.1, 174.2, 174.3, 174.4, 174.5,
cancer C50.5, C50.6, C50.7, C50.8, C50.9, 174.6, 174.7, 174.8, 174.9, 233.0

D05.0, D05.1, D05.7, D05.9
Cervical C53.0, C53.1, C53.8, C53.9, 180.0, 180.1, 180.8, 180.9, 233.1
cancer D06.0, D06.1, D06.7, D06.9
Colon C18.0, C18.1, C18.2, C18.3, C18.4, C18.5, 153.0, 153.1, 153.2, 153.3, 153.4, 153.5,
cancer C18.6, C18.7, C18.8, C18.9, D01.0 153.6, 153.7, 153.8, 153.9, 230.3
Endometrial C54.1, D07.0 182.0
cancer
Melanoma C43.0, C43.1, C43.2, C43.3, C43.4, 172.0, 172.1, 172.2, 172.3, 172.4,

C43.5, C43.6, C43.7, C43.8, C43.9 172.5, 172.6, 172.7, 172.8, 172.9
Non-Hodgkin’s C82.0, C82.1, C82.2, C82.7, C82.9, C83.0, C83.1, 202.8
lymphoma C83.2, C83.3, C83.4, C83.5, C83.6, C83.7,

C83.8, C83.9, C85.0, C85.1, C85.7, C85.9
Ovarian C56 183.0
cancer
Prostate C61, D07.5 185
cancer
Testicular C62.0, C62.1, C62.9 186.9
cancer

Table S2. Cancer-specific ICD10 and ICD9 codes used to select cases from the UK and
Estonian biobank studies. For each of the tumour types, the corresponding ICD10 and ICD9 codes are presented that
were used to define cancer occurrence.
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Alternative LDSC
GMRM-BayesW-adjusted

Full Bayesian
GMRM-BayesR

Basal cell carcinoma 0.33 (0.18-0.48) 0.22 (0.2-0.24)
Bladder cancer 0.04 (0-0.1) 0.29 (0.19-0.42)
Breast cancer 0.16 (0.09-0.24) 0.2 (0.17-0.23)
Cervical cancer 0.08 (0.04-0.11) 0.13 (0.08-0.2)
Colon cancer 0.07 (0.03-0.11) 0.19 (0.12-0.28)
Endometrial cancer 0.05 (0-0.12) 0.34 (0.23-0.47)
Melanoma 0.12 (0.01-0.23) 0.18 (0.13-0.24)
Non-Hodgkin’s lymphoma 0.03 (0-0.08) 0.32 (0.23-0.43)
Ovarian cancer 0.01 (0-0.09) 0.49 (0.37-0.61)
Prostate cancer 0.35 (0.1-0.61) 0.33 (0.28-0.4)
Testicular cancer 0.5 (0-1.05) 0.81 (0.73-0.87)

Table S3. Alternative liability scale heritability estimates with 95% CI. We use the observed scale
from LDSC estimates (REGENIE’s summary statistics from GMRM-BayesW-adjusted analysis) and the heritability estimates
from the full Bayesian model (GMRM-BayesRR-RC). Transformation of the observed scale heritabilities is done with a more
conservative approach (Ojavee et al. [24]) better suited for rare diseases.
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Trait 1 Trait 2 BayesW (95% CI) BayesRR-RC (95% CI)
Basal Cell Carcinoma BMI -0.08 (-0.11, -0.05) -0.08 (-0.11, -0.05)
Basal Cell Carcinoma Hypothyroidism -0.13 (-0.18, -0.08) -0.13 (-0.18, -0.08)
Cervical Cancer Age First Live Birth -0.4 (-0.55, -0.24) -0.38 (-0.54, -0.23)
Cervical Cancer Age Last Live Birth -0.46 (-0.64, -0.28) -0.45 (-0.62, -0.27)
Cervical Cancer Age Started Oral Contraceptive -0.43 (-0.62, -0.23) -0.42 (-0.61, -0.22)
Cervical Cancer Educational Attainment -0.27 (-0.38, -0.17) -0.26 (-0.36, -0.16)
Cervical Cancer Ever Smoked 0.29 (0.17, 0.41) 0.28 (0.16, 0.4)
Cervical Cancer Maternal Smoking Around Birth 0.31 (0.18, 0.44) 0.29 (0.17, 0.42)
Cervical Cancer Smoking Status -0.4 (-0.53, -0.28) -0.39 (-0.52, -0.27)
Melanoma Basal Cell Carcinoma 0.44 (0.32, 0.57) 0.44 (0.32, 0.57)

Table S4. Statistically significant cross-trait genetic correlations from LD score regression
analysis. We calculated the genetic correlations between cancers with cross-trait LD score regression [49] applying it to the
results from REGENIE’s GMRM-BayesW or GMRM-BayesRR-RC adjusted analyses and GWAS results for multiple phenotypes
released by Neale group [50] and Global Biobank Meta-analysis Initiative consortium [51]. Both GMRM-BayesRR-RC and
GMRM-BayesW based significant genetic correlations agree on the magnitude of the estimates.

Eff/ p p p β̂ β̂ β̂
Site Chr SNP Oth (BayesW) (BayesRR-RC) (Unadj.) (BayesW) (BayesRR-RC) (Unadj.)
Basal cell carcinoma 17 rs35763415 C/T 3.31 × 10−8 5.81 × 10−8 6.71 × 10−8 0.052 0.051 0.052
Basal cell carcinoma 20 rs1015362 T/C 4.25 × 10−8 6.46 × 10−8 7.94 × 10−8 -0.057 -0.056 -0.057
Bladder cancer 5 rs2853677 A/G 4.88 × 10−8 5.15 × 10−8 1.73 × 10−7 -0.159 -0.158 -0.153
Breast cancer 18 rs5007436 T/C 4.07 × 10−8 6.67 × 10−8 6.00 × 10−8 0.073 0.072 0.073
Non-Hodgkin’s lymphoma 14 rs117972357 A/G 4.50 × 10−8 4.82 × 10−8 8.99 × 10−8 1.101 1.098 1.079
Non-Hodgkin’s lymphoma 18 rs112836568 G/A 4.22 × 10−8 4.40 × 10−8 5.01 × 10−8 0.435 0.434 0.434
Prostate cancer 10 rs7902587 T/C 4.48 × 10−8 1.29 × 10−7 2.63 × 10−7 0.137 0.132 0.131

Table S5. Previously unreported discoveries from GMRM-BayesRR-RC or GMRM-BayesW
analyses in comparison with results from an unadjusted marginal association analysis. We observe
that for the 7 previously unreported variants, the p-value in the unadjusted association analysis with REGENIE is borderline
significant (5 · 10−8 < p < 10−6). However, by using the GMRM-BayesW or GMRM-BayesRR-RC adjustments in the step 1 of
REGENIE, we arrive at statistically significant test statistics.
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Risk (age 0-85)
Basal cell carcinoma 0.3050
Bladder cancer 0.0224
Breast cancer 0.1248
Cervical cancer 0.0054
Colon cancer 0.0232
Endometrial cancer 0.0300
Melanoma 0.0269
Non-Hodgkin’s lymphoma 0.0161
Ovarian cancer 0.0093
Prostate cancer 0.1117
Testicular cancer 0.0051

Table S6. Cancer risk from birth to age 85, SEER estimate 2016-2018 To ensure that the lifetime
risk estimates were similar to the study population (European ancestry, UK Biobank, oldest individual age 86) we used
the estimates from SEER of non-hispanic white of getting diagnosed between ages (0-85). The explorer is accessible from
https://seer.cancer.gov/explorer/. The explorer had a joint estimate for colorectal cancer that we transformed to the risk
of colon cancer using the proportion of colon cancer cases among colorectal cases (70.3% , https://www.cancer.org/cancer/
colon-rectal-cancer/about/key-statistics.html, accessed 24.01.2022). For basal cell carcinoma, we used a lifetime risk
estimate from Miller et al. [62].
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Figure S1. Results from case-control association analysis of 11 tumours, adjusted for BayesW
predictors in other chromosomes. The significance of each SNP was obtained using a logistic regression score test
from step 2 of REGENIE on binary (case-control) phenotype that was adjusted for covariates and BayesW genetic LOCO
predictor. The number of markers analysed was M =8,430,446, the number of individuals and cases for each specific cancer are
shown in the Supplementary information. We present the − log10(p-value), the dotted line indicates a significance threshold of
p = 5 · 10−8.
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Figure S2. Results from case-control association analysis of 11 tumours, adjusted for BayesRR-
RC predictors in other chromosomes. The significance of each SNP was obtained using a logistic regression score
test from step 2 of REGENIE on binary (case-control) phenotype that was adjusted for covariates and BayesRR-RC genetic
LOCO predictor. The number of markers analysed was M =8,430,446, the number of individuals and cases for each specific
cancer are shown in the Supplementary information. We present the − log10(p-value), the dotted line indicates a significance
threshold of p = 5 · 10−8.
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Figure S3. Predictive validation of different PRS on Estonian Biobank data using Harrell’s
C-statistic, hazards ratio or odds ratio with 95% CI. The statistics were calculated by finding the impact of
one standard deviation increase in the PRS (Scaled), by finding the impact of belonging to top 5% quantile of the PRS or by
finding the impact of belonging to the top 10% quantile of the PRS on the likelihood of having cancer. Harrel’s C-statistic was
calculated from Cox proportional hazards model without covariates, odds ratio was calculated from a logistic model using sex
and age-at-entry as covariates, hazards ratio was calculated from Cox proportional hazards model using sex and age-at-entry as
covariates.
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Figure S4. Prediction in Estonian Biobank using either medical record or self-reported phe-
notypic data in BayesW or BayesRR-RC models. The polygenic risk scores that are using medical record
data rather than self-reported data tend to be more predictive across all cancers. The odds ratios were calculated by finding the
impact of one standard deviation increase in PRS in a logistic model using sex and age-at-entry as covariates.
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Figure S5. Mean -log10 p-value from the marginal association analysis adjusted with either
BayesRR-RC, BayesW or without adjustment. The significance of each SNP was obtained using a logistic
regression score test from step 2 of REGENIE on binary (case-control) phenotypes. We observe that BayesW or BayesRR-RC
LOCO adjustments result in similar or decreased p-values suggesting increased statistical power.
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Figure S6. Classification of previously reported discoveries by each cancer type. Case-control
and time-to-event substantially overlap in recovering previous findings (255/261). However, time-to-event adjustment enables
replicating 6 additional loci, 1 for basal cell carcinoma, 2 for breast cancer and 3 for prostate cancer. All case-control approach
discoveries were replicated by the time-to-event approach discovery.
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Figure S7. Tissue-specific enrichment for GTEx v8 tissues. For basal cell carcinoma, breast and
prostate cancer, Downstreamer analysis highlighted significant enrichment in several tissues, including tissue-
specific associations: e.g. in both sun-exposed and not sun-exposed skin for basal cell carcinoma, in mammary
tissue for breast cancer, and prostate for prostate cancer. Enrichment Z-scores that were both Bonferroni and
5% FDR significant are marked with asterisks. Only tissues with significant enrichment Z-scores are shown.
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