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Abstract 
 
Background 
During the COVID-19 pandemic, aerosol spread of SARS-CoV-2 has been a major problem in 
healthcare facilities, resulting in increased use of supplementary HEPA filtration to mitigate 
transmission. We report here a natural experiment that occurred when an air filtration unit 
(AFU) on an inpatient ward for older people was accidentally switched off.    
 
Aim 
To assess aerosol transport within the ward and determine whether the AFU reduced 
particulate matter (PM) levels in the air. 
 
Methods 
Time-series PM, CO2, temperature and humidity data (at 1 minute intervals) was collected from 
multiple sensors around the ward over two days in August 2021. During this period, the AFU 
was accidentally switched off for approximately 7 hours, allowing the impact of the intervention 
on particulates (PM1-PM10) to be assessed using a Mann-Whitney test. Pearson correlation 
analysis of the PM and CO2 signals was also undertaken to evaluate the movement of airborne 
particulates around the ward. 
 
Findings 
The AFU greatly reduced PM counts of all sizes throughout the ward space (p<0.001 for all 
sensors), with PM signals positively correlated with indoor CO2 levels (r = 0.343 – 0.817; all 
p<0.001). Aerosol particle counts tended to rise and fall simultaneously throughout the ward 
space when the AFU was off, with PM signals from multiple locations highly correlated (e.g. r = 
0.343 – 0.868 (all p<0.001) for PM1). 
 
Conclusion 
Aerosols freely migrated between the various sub-compartments of the ward, suggesting that 
social distancing measures alone cannot prevent nosocomial transmission of SARS-CoV-2. 
The AFU greatly reduced PM levels throughout the ward space.  
 
 
 
 
Practical implications 

• Aerosols can freely migrate throughout whole wards, suggesting that social distancing 
measures alone are not enough to prevent SARS-CoV-2 transmission. 

• Appropriately sized supplementary room air filtration, if utilised correctly, can greatly 
reduce aerosol levels throughout ward spaces.  

• Air filtration devices are often placed in rooms without any consideration given to their 
performance. It is therefore important to commission air filtration devices using PM and 
CO2 sensors before they are utilised in order to demonstrate that they are effective 
throughout entire ward spaces.  
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Introduction 
 
The COVID-19 pandemic has led to major advances in understanding how respiratory viral 
infections are spread within buildings, and it is now known that small aerosol particles play a 
dominant role in the transmission of SARS-CoV-2 [1-6]. These are formed when exhaled 
respiratory droplets, <100 µm in diameter, evaporate to become aerosol particles [7, 8] 
approximately 20–34% of their original size [9]. Particles of this size can remain suspended in 
the air for many minutes [10] and can be readily inhaled, with those in the size range 2.5 - 20 
µm thought to account for 90% of the viral transmission at the nasopharynx [9]. As such, 
transmission of SARS-CoV-2 is thought to primarily occur when infectious aerosol particles in 
this size range come into contact with angiotensin-converting enzyme 2 (ACE2) receptors in 
the nasopharynx. [11]. However, ACE2 receptors are also found throughout the respiratory tree 
including on the alveolar epithelial cells, and therefore inhalation of smaller infectious aerosol 
particles <5 µm that can travel deeper into the lungs may also contribute to the burden of 
disease [12, 13]. 
 
Infectious respiratory aerosols can be liberated in large quantities when talking, singing, or 
simply breathing [14-16] and may build up to high concentrations in room air, if the space is not 
adequately ventilated [10]. Consequently, poorly ventilated spaces that may contain infectious 
individuals, such as hospital wards, can pose a considerable threat to patients and healthcare 
workers (HCWs) alike, with numerous nosocomial COVID-19 outbreaks reported in the 
literature [17-25]. The problem can be particularly acute in wards containing older and/or 
immunocompromised patients who are vulnerable to developing severe disease following viral 
infection. Furthermore, in open-plan wards with multi-bedded bays, pressure gradients may 
exist due to room mechanical ventilation or wind pressure, with the result that respiratory 
aerosol particles can migrate considerable distances. As such, vulnerable patients who are at 
some distance (>2 m) from an infector can become exposed [26]. Realisation of this issue has 
led to growing interest in non-pharmaceutical interventions such as supplementary room air 
filtration [27] and air disinfection [28, 29], and also utilising carbon dioxide (CO2) monitoring [30, 
31] to optimise ventilation [32]. These aim to mitigate the transmission of SARS-CoV-2 in 
clinical settings, and it is within this context that we report our findings. 
 
Here we report the results of a natural experiment that occurred on a medicine for older people 
ward at an NHS University hospital in the UK on the 3rd and 4th August 2021, when a room air 
filtration unit (AFU), containing high efficiency particulate air (HEPA) filters and an ultraviolet 
(UV) air disinfection lamp (at 254 nm), was being commissioned. The experiment arose 
because the AFU was accidentally switched off for several hours. We were able to analyse in 
detail the impact of this natural intervention on the airborne particulate matter (PM) and CO2 
levels in the ward space, because the space was fitted with automatic sensors that recorded 
minute-by-minute PM and CO2 levels in the air, as well as temperature and relative humidity 
(RH). Comparing these markers of air quality across similar time periods on consecutive days, 
when the AFU was switched off and then turned back on again, we were able to test the 
hypothesis that PM levels in the air were higher when the AFU was not in operation compared 
with a matched period on the following day when the AFU was in operation. We were also able 
gain insights into the transport of aerosols around the ward by correlating the various PM 
signals from the respective sensors. We report our findings here to raise awareness about the 
ease with which aerosols can migrate in clinical settings, and also to demonstrate the potential 
benefits of employing supplementary room air filtration in ward spaces. 
 
 
Methods 
 
Ward layout and ventilation  
 
The study took place in half of a ward, the layout of which and the locations of the AFU and 
sensors are shown in Figure 1. The ward, which was on the sixth floor, contained several 
bedded bays open to a central corridor and side rooms with doors to the corridor, which were 
frequently opened for patient care activities. The AFU was located in an open communal space 
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within the ward. The study half of the ward comprised three side rooms and two bays, each 
with six beds. Sensor *A* was situated close to the AFU at a height of 2m (remaining sensors 
between 1.5m and 1.7m high; dictated by available electrical outlets). PM, CO2, temperature 
and RH data was collected automatically by the seven sensors which were wall mounted 
spaced around the ward as described in Figure 1 and Table 1. 
 
The ward was ventilated by the combination of a central ducted mechanical ventilation system 
and openable aluminium sash windows, with the bed bays and side rooms being positively 
pressurised with respect to the central corridor. Historical records (measured by the hospital 
estates department) suggested that the ward ventilation rates ranged from 1.7 - 5.8 air changes 
per hour (ACH), with the median being 4.0 ACH. 
 
Ward operation 
 
For both days included in this natural experiment (3rd and 4th August) the daytime nursing shift 
was from 07:30 to 19:30, with breakfast, lunch and dinner commencing at approximately 08:00, 
12:00 and 17:00 respectively. The daily multidisciplinary team meeting commenced at 
approximately 08:45 on each day, in a room outside the study area, and ward rounds then 
commenced at approximately 09:15-09:30. The communal space where the AFU was situated 
was utilised daily by staff who congregated there to plan care activities as part of the ward 
round (Figure 2). Consequently, this was usually the most densely populated area of the ward.     
 
With regard to the operation of the AFU, this was accidentally switched off early in the morning 
of the 3rd August – a mistake that was rectified in the afternoon of the same day, some time 
after 15:00 when the device was restarted. Immediately prior to being switched off, the ADU 
had been operating on speed setting 2, which is its night-time default setting. On being re-
started the ADU was inadvertently operating at speed setting 2, a mistake that was corrected 
on the morning of 4th August when it was adjusted to speed setting 3. 
 
Air filtration unit (AFU)  
 
A single AFU (AeroTitan3000; AirPurity UK Ltd, Cambridge UK) was sited opposite the two six 
bedded patient bays (Figures 1 and 2). To maximise the impact of the AFU, care was taken to 
ensure that the clean air discharge velocity was high to promote good air mixing throughout the 
ward space. Performance details of the AFU are presented in Table 2 including fan delivery 
rates for the various speed settings. The AFU was a hybrid encapsulated system which 
combined a series of HEPA filters and UV-C lamps (at 254 nm) over multiple heights and large 
surface areas to control the environment. The AFU was designed to manipulate the indoor 
environment by creating air currents resulting in both proximal and distant (>10m) cleaning and 
dilution through high laminar flow. 

 
Sensors  
 
A group of sensors (AeroSentinel.v1; AirPurity UK Ltd, Cambridge UK) were used to relay 
environmental data back into a remote cloud system at 5 second intervals. These recorded the 
environmental data with the following accuracies: PM1 and PM2.5 (±10 μg/m3); PM4 and PM10 
(±25 μg/m3); CO2 (±30 ppm); temperature (±0.4oC); and RH (±3%).       
 
Data  
 
The data collected comprised time-series signals from the seven automatic sensors located on 
the ward as shown in Figure 1 and described in Table 1. The collected data from the various 
sensors was sampled every 1 minute, giving a total of 2782 data points per sensor over the 
two-day period. Across all the sensors a total of 7.6% of the data was missing. This missing 
data was imputed as being the mean value of the adjacent data points. For each sensor the 
data extracted is as shown in Table 3, with the PM fractions (i.e. the PM mass between the 
various intervals), hereafter simply referred to as PM1, PM2.5, PM4 and PM10 respectively.  
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Vapour pressure 
 
As well as monitoring PM1, PM2.5 and CO2, the sensors also recorded air temperature and 
RH. However, as RH is a relative value which is a function of temperature and vapour pressure 
(VP), in order to perform meaningful analyses it was necessary to compute the VP signal from 
the temperature and RH signals. This was done using the equations (1) and (2) below.   
 

Saturated vapour pressure [33]: 
⎟
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Where; ps is saturated vapour pressure (kPa) and T is air temperature (oC). 
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     (2) 

 
Where; pv is vapour pressure (kPa) and φr is relative humidity (%). 
 
Change point analysis and validation 
 
As the work reported here is an after-the-fact study of a natural experiment that occurred due to 
unforeseen circumstances, care was taken to minimise the use of any a priori assumptions. For 
example, because contemporaneous records were not kept, no assumptions were made 
regarding the precise points in time when the AFU was switched off and on, or when the speed 
settings were changed. These were not recorded at the time and could only be confirmed after-
the-fact by extracting the memory cards from the AFU, something that we reserved for 
validation purposes only. Consequently, when analysing the data we decided to employ a 
change point methodology to identify natural breaks in the time-series data – a process which 
required no a priori information.  
 
Change point analysis is a technique which seeks to identify points in time where structural 
changes have occurred in a time-series signal [34, 35]. As such, it is frequently used to 
retrospectively identify when events have occurred. One commonly used approach in change 
point analysis is to identify when the mean of the signal has significantly altered [36]. 
Accordingly, we used the ‘cpt.mean’ function in the ‘changepoint’ package in R, which utilised a 
pruned exact linear time (PELT) methodology [36] to identify break points where the mean of 
the PM1 signal from sensor *A* structurally changed. This sensor which was selected because 
it was located in the communal space, near to the AFU and as such was ideally placed to 
monitor both changes in occupancy level as well as the operation of the AFU.  
 
The aim of the change point analysis was to identify (from the PM1 signal alone) points in time 
where structural changes occurred, so that these could be compared with events that 
happened on the ward. For simplicity, minor change points that occurred when the PM1 signal 
was transient during the period in which the AFU was not in operation were ignored. This was 
because the PM levels were not controlled when the AFU was off, resulting in large fluctuations 
in the PM1 signal and considerable transience, which led to multiple mini-change points being 
identified during this period, as illustrated in Figure 3. Change points were therefore deemed to 
have occurred at all points where major changes in the structural mean of the signal happened. 
These were identified by visual inspection and statistically tested by applying the Chow test, 
with p<0.05 deemed to be significant. 
 
Primary statistical analysis 
 
The hypothesis tested was that the respective signal levels were higher when the AFU was not 
in operation on the 3rd August compared with a matched period on the 4th August when the 
AFU was in operation. This was tested using an unpaired Mann-Whitney test in R (R Core 
Team (2021). URL https://www.R-project.org/). The observed effect size was evaluated using 
Cliff's delta statistic, with the magnitude assessed using the thresholds provided by Romano et 
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al [37] (i.e. |δ| < 0.147 deemed negligible; 0.147 ≤ |δ| < 0.33 deemed small; 0.33 ≤ |δ| < 0.474 
deemed medium, and 0.474 ≤ |δ| deemed large). 
 
To assess the relationships between the signals from the individual sensors, the Pearson 
correlation r values were computed together with their statistical significance. This was done for 
each individual sensor using the entire data set over the entire two-day study period. 
 
In addition, the extent to which airborne PM might be migrating around the ward was assessed 
by analysing the between sensor correlation using only the data collected when the AFU was 
not in operation on the 3rd August. 
 
For all tests, p<0.05 was deemed as being significant. 
 
Secondary post hoc analysis 
 
Having conducted the initial change-point analysis and tested the primary hypothesis, the 
results suggested that further secondary post hoc analysis was worth pursuing. This involved 
post hoc testing of a secondary hypothesis, namely that increasing the AFU speed setting from 
2 to 3 on the 4th August reduced the levels of the respective signals from the various sensors. 
This was tested using an unpaired Mann-Whitney test, with p<0.05 deemed as being 
significant. The effect size was assessed using Cliff's delta statistic.  
 
In order to estimate the additional air change rate provided by the AFU, post hoc decay 
analysis was performed on the PM1 signal collected from sensor *A* near to the AFU. This 
involved analysing a section of the signal from epoch 880 (14:40 on 3rd August) to epoch 1000 
(16:40 on 3rd August), which included the point in time when the AFU was switched on again. 
The decay analysis was performed using equation 3 below. 
 
 

   ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×−=

0

ln
1

N

N

t
k t

       (3) 

 
Where:  Nt is the number of aerosol particles in the air at time t hours; N0 is the number of 
aerosol particles in the air at time t = 0 hours (i.e. the initial state); t is time in hours; and k is the 
decay constant representing the rate at which particles are removed from the air (h-1). The 
decay rate constant, k, is generally expressed in terms of equivalent air changes per hour 
(AC/h) for air cleaning devices. 
 
Using Equation 3, it is possible to determine the particle removal rate experimentally by simply 
measuring the time taken for the particle concentration in the air to fall by a certain pre-
determined fraction. This fraction can be any value, but by convention is usually the time taken 
for the particle concentration in the air to reduce by half.  
  
 
 
Results 
 
Change point analysis results 
 
Five major change points were identified across the time period examined (Table 4, figures 3 
and 4).  Of these, CP1, CP2 and CP4 closely coincided with the time-stamps that were 
recovered from the AFU memory card in December 2021 (Table 4), namely: 08:16 (epoch 496) 
for the device being turned off; 15:34 (epoch 934) for the device being restarted on speed 
setting 2; and 09:05 (epoch 1985) for the speed setting being increased from 2 to 3. However, 
due to technical difficulties (missing data points, etc.), the recovered time-stamp data had to be 
estimated and therefore can only be considered approximate only, and indicative of points in 
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time where changes occurred. Details of the computed change points and the respective 
validation time-stamps are shown in Table 4.  
 
Time series results 
 
The collated time-series results are presented in figures 5-9, which show the respective PM 
and CO2 signals from all the sensors for 3rd and 4th August, together with the change points and 
meal times mapped on top. Examining the particulates across the range of sizes measured 
reveals similar patterns to the PM1 signal shown in figures 3 and 4, whilst comparison of PM 
data from all sensors demonstrated large increases in particulates throughout the ward when 
the AFU was not operational.  This widespread pattern of particulate counts implies both the 
free movement of aerosols between sub-compartments (ward bays etc.) and an impact of air 
filtration beyond the immediate environment of the AFU itself (>10m). Although the AFU had an 
impact on all particulate sizes, its effect was particularly marked in the larger sizes (PM4 and 
PM10), which were rendered almost undetectable during AFU operation.  Notably, CO2 levels 
showed a similar change (Figure 9), implying the AFU possibly had an impact on overall ward 
ventilation.   Overlaying the times for breakfast, lunch and dinner illustrates the diurnal variation 
in particulates and CO2 and suggests that human activity is the major driver of aerosol 
generation on the ward. This is evident from the signal spikes that occurred during the daytime 
on both 3rd and 4th August. Having said this, it is noticeable that for all particulate sizes the 
variance in the PM signals greatly reduced when the AFU was in operation.   
 
Descriptive statistics results 
 
The signals shown in figures 5-9 are summarized in Table S1 in the Supplementary Material, 
which shows the descriptive statistics for the signals from the various sensors. (NB. All sensors 
produced an identical vapour pressure signal). The results in Table S1 show the means and 
standard deviations for the different signals from the various sensors for the time periods 
between the identified change points. From this it can be seen that for all the sensors, the 
observed signal readings were much higher between CP1 and CP2, when the AFU was off, 
compared with the other periods when it was in operation.   
 
Statistical analysis results 
 
The results of the statistical analysis to test the hypothesis that the AFU reduced the respective 
sensor signal levels are presented in Table 5. This hypothesis stated that the signal levels were 
higher when the AFU was not in operation (i.e. from CP1 to CP2 – 08:17 to 15:34 on the 3rd 
August) compared with a matched period (08:17 to 15:34) on the 4th August when the AFU was 
in operation. 
 
From Table 5 it can be seen that for all the sensors the action of the AFU was associated with a 
large effect on PM1, PM2.5, CO2 and VP levels, which was highly significant. This strongly 
suggests that for the respective matched periods on the 3rd and 4th August, when the ward was 
busy, the action of the AFU was associated with large reductions in the level of these signals. 
By comparison, although statistically significant reductions were also observed for the PM4 and 
PM10 signals, the effect size for many of the sensors was much smaller, reflecting the lower 
particle counts in this size range and the fact that these large particles tend to settle out of the 
air at a faster rate. As such, the hypothesis can be accepted for all the signals. 
 
When Pearson correlation analysis was performed on data collected from the individual 
sensors, high positive correlations were observed between most of the signals. This is well 
illustrated in Figure 10 and Table 6, which show the respective signals and correlations for 
sensor *G*. From these it can be seen that all the PM signals are strongly correlated with each 
other (i.e. r>0.7). The CO2 and VP are also positively correlated with the PM signals and each 
other, although not as strongly.    
 
Correlation analysis of the PM, CO2 and VP signals from the other sensors revealed similar r 
value ranges as follows: sensor *A* (r = 0.315 – 0.998; all p<0.001); sensor *B* (r = 0.292 – 
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0.973; all p<0.001); sensor *C* (r = 0.232 – 0.996; all p<0.001); sensor *D* (r = 0.337 – 0.992; 
all p<0.001); sensor *E* (r = 0.279 – 0.986; all p<0.001); and sensor *F* (r = 0.448 – 0.999; all 
p<0.001). More specifically, for the relationship between CO2 and the various PM signals, the 
correlation means and ranges were: PM1 (r = 0.690 (0.551 – 0.817); all p<0.001); PM2.5 (r = 
0.682 (0.604 – 0.755); all p<0.001); PM4 (r = 0.531 (0.347 – 0.639); all p<0.001); and PM10 (r 
= 0.525 (0.343 – 0.636); all p<0.001). Collectively, this indicates that over the whole study 
period the PM and CO2 signals from the individual sensors in the ward space tended to rise 
and fall together, with CO2 most strongly correlated with the smaller aerosols.  
 
One surprising finding is that the action of the AFU greatly reduced CO2 levels throughout the 
ward when in operation. From Figure 9 it can be seen that this effect was not localised, but 
occurred simultaneously in all the sub-compartments of the ward. This effect is difficult to 
explain, but may be due to a combination of better mixing of the ward air and increased 
entrainment of fresh air from outside through the windows due to the higher room air velocities 
when the AFU was in operation. 
 
Another unexpected finding was that for many of the sensors, the ward vapour pressure (VP) 
was positively correlated with both the PM signals and CO2, as can be seen in Table 6, which 
shows the correlations between the signals from sensor *G*, located in a side room with a door 
that could be closed. From this it can be seen that for this sensor, VP was most strongly 
correlated with PM1 (r = 0.732, p<0.001), compared with PM2.5 (r = 0.554, p<0.001) and CO2 
(r = 0.559, p<0.001). However, other sensors exhibited much weaker VP correlations, with for 
example sensor *B* (located in Bay 1) the correlation involving VP ranging from r = 0.123 for 
PM1 (p = 0.01) to r = 0.332 for PM10 (p<0.001). Indeed, for sensor *E* none of the correlations 
between VP and the PM signals reached significance.   
 
The between-sensor correlations for the matching PM and CO2 signals from the respective 
sensors when the AFU was not in operation were also very strong. This is illustrated in Table 7, 
which shows the correlations between the PM1 signals from the respective sensors, all of 
which were highly significant (p<0.001). From this it can be seen that the correlations between 
all the sensor PM1 signals were all very strong, with the possible exception of those for sensor 
*F* located in the corridor, which tended to exhibit weaker correlations. 
 
Between-sensor analysis of the other signals for the period when the AFU was not in operation 
(i.e. between CP1 and CP2) revealed strong positive correlations between the PM signals from 
all the sensors, except for sensor *F* which exhibited noticeably weaker correlations. Excluding 
sensor *F*, the r value ranges between the various sensors were: PM2.5 (r = 0.560 – 0.904; all 
p<0.001); PM4 (r = 0.434 – 0.891; all p<0.001); and PM10 (r = 0.442 – 0.886; all p<0.001). As 
such, this indicates that the signals from most of the sensors in the ward space tended to rise 
and fall together, suggesting that when the AFU was not in operation, aerosols of various sizes 
were freely migrating between the various zones within the ward. The equivalent r value ranges 
for sensor *F* were somewhat lower (PM2.5 (r = 0.239 – 0.473; all p<0.001); PM4 (r = 0.189 – 
0.425; all p<0.001); and PM10 (r = 0.184 – 0.421; all p<0.001), although still strongly 
significant. 
 
Analysis of the relationship between CO2 and the various PM signals during the period when 
the AFU was not in operation revealed the correlation means and ranges to be: PM1 (r = 0.514 
(0.394 – 0.624); all p<0.001); PM2.5 (r = 0.463 (0.300 – 0.616); all p<0.001); PM4 (r = 0.410 
(0.263 – 0.577); all p<0.001); and PM10 (r = 0.401 (0.264 – 0.570); all p<0.001). Although 
these correlations are weaker than those exhibited for the whole study period, they still indicate 
that a close relationship existed between CO2 and the various PM signals, particularly the 
smaller aerosols, during the period when the AFU was off. 
 
Post hoc analysis results 
 
The results of the post hoc analysis to test whether or not increasing the AFU speed setting 
from 2 (i.e. from CP2 to CP4) to 3 (i.e. after CP4) had any effect on the PM, CO2 and VP signal 
levels are presented in Table 8. From this it can be seen that a complex picture emerges. While 
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increasing the fan speed of the AFU from setting 2 to 3 clearly resulted in a large significant 
reduction in the PM1 and PM2.5 counts recorded by sensor *A* (i.e. the sensor located closest 
to the AFU), the corresponding counts for the other sensors all significantly increased (although 
the magnitude of this effect was negligible), as did the PM4 and PM10 counts for all the 
sensors. This indicates that apart from cleaning the air in the vicinity of the AFU, increasing the 
fan speed from 2 to 3 had little impact on PM levels elsewhere on the ward. Indeed, in most 
locations the PM counts actually marginally increased when the speed setting was changed at 
9:02 on the 4th August, something that probably reflected increased ward activity during the 
daytime compared with night-time. Interestingly, increasing the speed setting did lead to a 
modest reduction in CO2 levels for some of the sensors, but noticeably not for sensor *A*. 
 
When the AFU was switched on again at approximately CP2, a dramatic decrease in PM1, 
PM2.5 and CO2 levels was observed throughout the ward space. In order to better understand 
this event, post hoc decay analysis was performed on the PM1 signal from sensor *A*, which is 
visualised in Figure 11. From this it can be seen that the PM1 level was approximately constant 
until about 15:15 when it started to fall for reasons unknown.  However, at 15:34 the AFU 
started up and the rate of decay increased. Analysis of the decay curve using Equation 3 
revealed the equivalent ventilation rate achieved by the AFU to be 3.433 air changes per hour 
(AC/h) in the vicinity of the device. Similar decay rates were also observed in other parts of the 
ward, as illustrated in Figure 5. 
 
 
Discussion 

This natural experimental study is the first of its kind to comprehensively evaluate both the 
sequential transport of airborne PM around a medical ward, and to assess the impact of air 
filtration devices on this. While we did not distinguish between bioaerosols and inert aerosols, 
the fact that viral particles tend to occur mostly in smaller respiratory aerosols <5 µm diameter 
[38-40] means that the behaviour of monitored PM signals is likely to have been indicative of 
any bioaerosols present in the ward air. As such, the study sheds new light on the transport of 
aerosols around hospital wards that might be helpful in better understanding the dynamics of 
airborne nosocomial transmission of viruses such as SARS-CoV-2 in clinical settings.  

The principal findings of the study were that: (i) the action of the AFU greatly reduced airborne 
particulate levels of all sizes throughout the ward space; (ii) airborne PM levels of all sizes were 
positively correlated with indoor CO2 levels; and (iii) for all PM sizes, the aerosol particle counts 
tended to rise and fall simultaneously throughout the ward space, with PM signals from multiple 
locations being highly correlated. Indoor CO2 levels tend to reflect occupancy patterns [41-44], 
with exhaled CO2 being positively correlated with respiratory aerosol emissions [45]. Therefore, 
the diurnal variation in the PM, CO2 and VP signals, together with their close correlation 
suggests that aerosols associated with human activity were the major driver of the particulate 
burden. While many of these particulates will be associated with the shedding of skin squamae 
[46] and activities such as bed making and the washing of patients, etc. [47], respiratory 
aerosols generated when exhaling or talking are also likely to have made a substantial 
contribution to the overall burden in the air [14, 16]. Notably, the PM signals indicate that 
aerosols were widely disseminated around the ward and that they seemed to move freely from 
sub-compartment to sub-compartment, illustrating the potential for exposure at a distance. The 
striking effect of the AFU indicates that room air cleaning can be a useful intervention to 
prevent the build-up of respiratory aerosols and other airborne PM in ward spaces. As such, 
our findings may help to explain why nosocomial outbreaks of COVID-19, including 
superspreading events involving multiple sub-compartments, have occurred in many hospital 
wards despite the application of social distancing measures [19].  

One of the most important findings of the study is that airborne particulates rapidly migrated 
between the various sub-compartments within the ward. This is evident from Table 7, from 
which it can be seen that strong correlations existed between the PM1 signals from sensors 
located remotely to each other (e.g. sensors *G* and *A* (PM1: r = 0.834; p<0.001)) during the 
period when the AFU was not in operation. Similar results were also observed for the PM2.5 
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signals (e.g. sensors *G* and *A* (PM2.5: r = 0.765; p<0.001)). This indicates that when the 
AFU was switched off, particulates were being transported considerable distances on air 
currents around the ward space. This phenomenon may also have been assisted by the 
turbulent wakes created by the movement of HCWs, which have been shown to transport 
airborne particulates considerable distances [10, 48]. Collectively this suggests that respiratory 
aerosols, many of which are <5 µm diameter [9], can be widely disseminated around wards 
under normal circumstances, and that social distancing measures alone are unlikely to be 
enough to prevent the transmission of infection [26]. 

Although the AFU was situated in a single fixed point in the ward, it is notable that its operation 
resulted in large reductions in PM of all sizes across the ward and not simply proximal to the 
AFU.  This suggests that the strategy of employing a laminar discharge on the AFU with a high 
velocity to promote good air mixing had the beneficial effect of extending the air cleaning 
impact of the unit. Indeed, post hoc analysis of the decay in the PM1 signal immediately after 
CP2 (Figure 11) suggests that when the AFU was restarted it provided a total equivalent 
ventilation rate in the region 3.4 AC/h, an effect that was mirrored throughout the ward space. 
As the majority of airborne virus is thought to be contained in particles of <5 µm [39, 40, 49], 
the results reported here imply that appropriately sized and situated air filtration devices, 
supplementing ward ventilation,  may have a significant impact on the nosocomial transmission 
of viral and other microbial infections. Interestingly, Conway-Morris et al [38] observed most 
viral particles to be in aerosol particles of 1-4 µm diameter, with some in aerosols >4 µm.  As 
well as impacting in the nasopharynx, these smaller aerosols can travel deeper into the lungs to 
the alveolar level, and there is evidence that this may be associated with more severe disease 
[12, 13]. Therefore, it would seem that the AFU used in this study was optimally sized for 
removing viruses from the air, and so it can be hypothesized that the AFU might also reduce 
the incidence of airborne viral infections on the ward. However, further epidemiological work will 
be required to confirm this.  

Airborne infection risk can be assessed using indoor CO2 levels [50], and this has led to the 
widespread use of CO2 monitoring to help mitigate the transmission of SARS-CoV-2 in 
buildings [30, 31]. Indoor CO2 levels can also be used as a surrogate for human activity within 
buildings [41-44]. With respect to this, we found that when the AFU was not in operation there 
was a moderately strong positive correlation between PM and CO2, especially for the smaller 
particulates, and also with VP - although the correlations involving VP exhibited considerable 
variability. Furthermore, both CO2 and VP exhibited diurnal variation that was likely related to  
human activity and exhaled breath. Collectively, this suggests that most of the particulates 
found in the ward air were associated with human activity, and as such this corroborates 
Roberts et al [47] finding that aerosol production on a respiratory ward was associated with 
activities such as bed making, ward rounds, curtain drawing, etc. all of which liberated copious 
quantities of PM into the air.  

Interestingly, when the AFU was in operation, both the PM counts and the CO2 levels were 
greatly reduced, which was an unexpected finding because the AFU should have had no direct 
effect on CO2 levels within the ward. While the reasons for this observation are unclear, it may 
be that the AFU promoted better mixing of the air on the ward, preventing the CO2 from 
stratifying, and thus reducing its concentration in the lower part of the room space. 
Alternatively, the AFU may also have increased air velocities within the ward space to such an 
extent that additional 'fresh air' might have been entrained in from outside. While both 
explanations appear plausible, it is difficult to explain the magnitude to the reduction in CO2 
levels observed in Figure 9 simply by better mixing alone, especially as the sensors were 
mounted >1.5 m above floor level. It might therefore be that the low PM levels observed on the 
ward while the AFU was in operation arose from a combination of the air filtration and improved 
ventilation of the space. However, further investigation will be required to determine whether or 
not this was the case. 

With regard to the change in the AFU fan speed that occurred on the morning of the 4th August, 
the results of our post hoc analysis were somewhat inconclusive. Although increasing the fan 
speed from setting 2 to 3 appeared only to have a localised effect in the vicinity of sensor *A*, 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 29, 2022. ; https://doi.org/10.1101/2022.03.25.22272953doi: medRxiv preprint 

https://doi.org/10.1101/2022.03.25.22272953
http://creativecommons.org/licenses/by-nc-nd/4.0/


we cannot say for certain that this is the case. This is because the change in the speed setting 
approximately coincided with the time (9:00 am) when activity on the ward greatly increased. 
Thus even though the PM levels observed for most sensors actually increased when the fan 
speed was increased, we cannot be confident that increasing the fan speed had no beneficial 
effect. It could be the case that due to increased activity, the PM counts throughout the ward 
might have been much higher, and that increasing the fan speed actually limited the magnitude 
of this potential rise.     

Although the positive correlations exhibited between the PM, CO2 and VP signals indicate that 
the liberation of PM into the air was strongly associated with human activity on the ward (e.g. 
talking, ward rounds, bed making, etc.) as others have found [47, 51], we were not able to 
determine the proportion of airborne particulates that comprised respiratory aerosols. Previous 
studies have shown that respiratory viruses are most likely to be recovered from particles  <5 
µm [38-40, 49], suggesting that they are contained in exhaled bioaerosols that have undergone 
rapid evaporation [7]. Such aerosols are thought to reduce in size to approximately 30% of their 
original diameter under normal room conditions [52], which means that exhaled respiratory 
droplets as large as 100 µm diameter have the potential to transmit SARS-CoV-2 because of 
evaporation [6, 53]. Indeed it has been shown that when speaking, 80-94% of the respiratory 
droplets produced are 100 µm or less [54], indicating that the vast majority of the droplets 
exhaled become aerosolised, with only droplets larger than this threshold behaving ballistically 
[55, 56]. Having said this, because aerosol particles >10 µm diameter tend to fall out of the air 
fairly rapidly within a few minutes, it means that the ones most likely to persist in room air will 
be the smaller aerosols, say <5 µm, which may explain why viruses are most likely to be 
recovered from aerosols in this size range [38-40, 49]. Given that median (range) aerosol 
particle emission rates of: 135 (85-691) particles/s for breathing; 270 (120-1380) particles/s for 
normal talking; and 570 (180-1760) particles/s for loud talking, have been recorded [16], this 
suggest that on a typical medical ward many thousands of respiratory aerosols are likely to 
liberated into the air when the ward is busy, with many remaining airborne for some 
considerable time [54].    

Although the study was a natural experiment that came about because of a chance mistake, 
the data yielded has been highly informative, highlighting the ease with which respiratory sized 
aerosols can be widely disseminated around medical wards - implying that social distancing 
measures alone are unlikely to be enough to prevent the nosocomial spread of viral infections 
such as SARS-CoV-2. The data also indicate that air filtration technologies have considerable 
potential to reduce transmission of airborne pathogens in shared spaces on the basis that they 
may reduce the viral dose inhaled and thus the likelihood of disease transmission. Air filtration 
devices may therefore be applicable not only to pathogens traditionally considered as airborne 
such as measles and tuberculosis (TB), but also to fungal and bacterial infections which may 
have a component of aerial dissemination in the transmission cycle such as C. diff. spores [57]. 

While the study yielded useful insights, it is important to remember its limitations. For example, 
while historical data existed concerning air change rates on the ward, because it was a natural 
experiment we do not know the actual baseline ventilation rates that occurred on the 3rd and 4th 
August 2021. Furthermore, although we generated detailed data regarding airborne 
particulates, CO2 and VP we did not record staff occupancy and movement, or window and 
door opening.  As a result, our conclusions around the mechanisms by which these particulates 
and gases were generated, and the mechanism by which the AFU altered them remain 
hypothesis generating rather than confirmed.  However, given the known nature of microbial 
bioaerosols in hospitals [9, 38-40], it is highly likely that reduction in these by any mechanism 
will improve the quality of indoor air and reduce infection transmission. Also, the study was 
conducted in a single ward in a hospital built before the regulations required higher air change 
rates and the installation of doors to separate bays, and this is likely to have influenced the free 
flow of particulates between the sub-compartments in the ward.  As such, we cannot be certain 
that the results will be generalisable to other settings, although wards of this age and design 
are not uncommon within the UK or indeed other settings worldwide. 
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It is worth noting that the study reported here only came about because of a mistake that 
occurred when the AFU was being commissioned as part of a larger study involving both 
intervention and control wards. As such, it highlights the need to use PM and CO2 from sensors 
to commission such devices. Without these, it is not possible to demonstrate that the filtration 
device is having an effect, let alone measure the magnitude of that effect. Furthermore, the 
study also highlighted the need to ensure that any filtration units used have a long-range 
impact, rather than just a localised effect. Unfortunately, air filtration devices are all too often 
placed in rooms without any consideration given to commissioning or indeed how their 
performance can be validated. It is therefore recommended that future work be undertaken to 
identify how room air filtration devices should be best be applied, optimised and validated in 
order maximise their effectiveness in the clinical setting. 

 

Conclusions 

This study builds on previous work showing that air filtration units utilising HEPA filters and 
UVC light have the potential ability to reduce microbial contamination in ward air [38]. As such, 
it demonstrates that a single high throughput (2550-3000 m3/h) AFU can greatly reduce the 
burden of particulate matter in air throughout a large hospital ward. The application of a 
combined HEPA and UV-C AFU in a medicine for older people ward led to substantial 
reductions in airborne PM levels, most notably in the range of particle sizes that are associated 
with infectious respiratory viruses, such as SARS-CoV-2. The study also found that airborne 
particulates associated with human activity were able to freely migrate considerable distances 
throughout the ward space, an observation that suggests that social distancing measures alone 
are unlikely to be enough to prevent the transmission of viral infection. Collectively, this 
suggests that the application of appropriately sized air filtration units in poorly ventilated 
hospital wards has the potential to significantly reduce rates of nosocomial viral infection in 
such settings and warrants further investigation. Furthermore, the study highlights the 
importance of commissioning such devices, considering their effect on air flow and the removal 
of contaminants in order to optimise the systems ability to clean the air in the ward space.  
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Tables 
 
 

Sensor Location 
*A* Communal space outside bays 1 & 2 
*B* Bay 1 (Bed 2) 
*C* Bay 1 (Bed 3) 
*D* Bay 1 (Bed 4) 
*E* Bay 2 (Bed 6) 
*F* Corridor between bay 2 & side room E 
*G* Side Room 1 (SR1) 

 
Table 1. Locations of sensors on the ward.  

 
 
 
 
 

Speed Nominal Airflow m3/h Filters + UVC lamp spec. 
1 2250 Filters: G4 pre-filter; carbon filter; and 

H13 HEPA. 
Total UVC power 24W (wavelength 
254 nm)  

2 2550 
3 3000 
4 3450 

clean room function 3900 
 

Table 2. AFU Outline Specification 
 
 
 
 
Signal Description Abbreviation Units 
PM1 fraction Particle diameter < 1 μm   PM1 μg/m3 
PM2.5 fraction Particle diameter between 1 and 2.5 μm   PM2.5 μg/m3 
PM4 fraction Particle diameter between 2.5 and 4 μm   PM4 μg/m3 
PM10 fraction Particle diameter between 4 and 10 μm   PM10 μg/m3 
CO2 Carbon dioxide level CO2 ppm 
Temperature Air temperature T oC 
Humidity Relative humidity RH % 
 

Table 3. Signals extracted from the sensors on the ward. 
 
 
 
 
 

Change 
point 
(CP) 

CP 
epoch 

CP time and 
date 

Significance 
(p value) 

Time-stamp 
recovered from 
AFU 

Reason for change 

CP1 497 08:17 (3rd Aug.) <0.001 08:16 (3rd Aug.) AFU switched off 
CP2 935 15:35 (3rd Aug.) <0.001 15:34 (3rd Aug.) AFU switched on 
CP3 1092 18:12 (3rd Aug.) <0.001 n.a. Not known 
CP4 1982 09:02 (4th Aug.) <0.001 09:05 (4th Aug.) AFU speed setting adjusted 
CP5 2389 15:49 (4th Aug.) <0.001 n.a. Not known 

 
Table 4. Occurrence of major change points in PM1 signal for sensor *A*, together with time-

stamp data recovered from the air disinfection unit (AFU). 
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    AFU off AFU off AFU on AFU on Significance Effect size Effect 

Signal Sensor ID Mean SD Mean SD p-value Cliff's delta magnitude 

PM1 *G* 3.728 1.299 1.026 0.418 6.83E-141 0.986 large 

  *F* 5.054 2.347 1.103 0.709 2.11E-134 0.963 large 

  *E* 2.827 0.696 0.893 0.399 6.72E-138 0.976 large 

  *A* 2.961 0.871 0.352 0.235 9.32E-145 1.000 large 

  *B* 2.607 0.572 0.896 0.434 6.91E-134 0.961 large 

  *C* 2.599 0.574 0.815 0.380 1.02E-138 0.979 large 

  *D* 2.641 0.613 0.820 0.385 1.58E-138 0.978 large 

PM2.5 *G* 0.394 0.308 0.063 0.032 1.86E-137 0.974 large 

  *F* 0.747 0.650 0.091 0.155 2.10E-123 0.922 large 

  *E* 0.217 0.125 0.061 0.066 8.15E-126 0.930 large 

  *A* 0.201 0.140 0.018 0.014 1.08E-145 0.999 large 

  *B* 0.198 0.106 0.064 0.071 1.31E-117 0.899 large 

  *C* 0.153 0.078 0.045 0.041 7.72E-126 0.930 large 

  *D* 0.168 0.094 0.047 0.041 1.06E-124 0.925 large 

PM4 *G* 0.146 0.194 0.004 0.012 3.31E-67 0.594 large 

  *F* 0.369 0.425 0.022 0.097 3.38E-72 0.627 large 

  *E* 0.044 0.073 0.008 0.038 9.93E-28 0.326 small 

  *A* 0.046 0.085 0.001 0.004 3.87E-23 0.266 small 

  *B* 0.039 0.066 0.010 0.043 1.89E-24 0.318 small 

  *C* 0.021 0.047 0.004 0.023 9.74E-18 0.224 small 

  *D* 0.031 0.058 0.005 0.020 4.27E-27 0.342 medium 

PM10 *G* 0.030 0.039 0.001 0.003 2.42E-64 0.550 large 

  *F* 0.074 0.086 0.004 0.019 6.57E-71 0.600 large 

  *E* 0.009 0.015 0.002 0.008 1.29E-22 0.263 small 

  *A* 0.024 0.044 0.001 0.003 4.63E-24 0.263 small 

  *B* 0.007 0.013 0.002 0.008 2.66E-18 0.237 small 

  *C* 0.011 0.025 0.002 0.012 2.93E-16 0.204 small 

  *D* 0.017 0.031 0.003 0.011 5.27E-26 0.326 small 

CO2 *G* 815.175 139.885 513.280 109.663 4.96E-118 0.902 large 

  *F* 734.244 80.023 479.591 111.878 1.49E-112 0.880 large 

  *E* 691.243 72.783 501.255 72.280 6.77E-123 0.920 large 

  *A* 713.817 80.280 499.449 78.060 1.23E-120 0.912 large 

  *B* 818.856 115.035 520.789 105.350 1.41E-124 0.927 large 

  *C* 833.165 121.853 494.870 85.350 2.84E-130 0.948 large 

  *D* 748.612 113.939 447.098 102.953 1.09E-124 0.927 large 

VP All sensors 1.368 0.051 1.179 0.063 4.90E-139 0.980 large 

 
Table 5. Results of statistical test of the hypothesis that the signal levels were higher when the 
AFU was not in operation on the 3rd August compared with a matched period on the 4th August 
when it was in operation. (NB. All results were strongly significant after Bonferroni correction.) 
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 PM1 PM2.5 PM4 PM10 CO2 VP 
PM1 1.000       0.884       0.718       0.719       0.713       0.732       
PM2.5 0.884       1.000       0.959     0.958     0.675     0.554     
PM4 0.718       0.959     1.000       0.996      0.578      0.387      
PM10 0.719       0.958     0.996      1.000       0.582    0.390    
CO2 0.713       0.675     0.578      0.582    1.000       0.559 
VP 0.732       0.554     0.387      0.390    0.559 1.000       
NB. All correlations significant at p<0.001. 
 
Table 6. Pearson correlation r values for signals from sensor *G* over the entire two-day study 

period. 
 
 
 
 
 

 *G* *F* *E* *A* *B* *C* *D* 
*G* 1 0.540 0.868 0.834 0.764 0.753 0.771 
*F* 0.540 1 0.552 0.54 0.386 0.343 0.371 
*E* 0.868 0.552 1 0.816 0.758 0.765 0.772 
*A* 0.834 0.54 0.816 1 0.791 0.723 0.759 
*B* 0.764 0.386 0.758 0.791 1 0.838 0.822 
*C* 0.753 0.343 0.765 0.723 0.838 1 0.844 
*D* 0.771 0.371 0.772 0.759 0.822 0.844 1 

  NB. All correlations significant at p<0.001. 
 

Table7. Pearson correlation r values for the PM1 signals from respective sensors over the 
period for which the AFU was not in operation. 
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    Speed 2 Speed 2 Speed 3 Speed 3 Significance Effect size Effect 

Signal Sensor ID Mean SD Mean SD p-value Cliff's delta magnitude 

PM1 *G* 0.984 0.374 1.179 0.339 1.30E-56 -0.417 medium 

  *F* 0.999 0.298 1.262 0.527 7.34E-50 -0.391 medium 

  *E* 1.010 0.274 1.126 0.379 2.76E-14 -0.200 small 

  *A* 1.002 0.266 0.466 0.236 7.79E-237 0.865 large 

  *B* 1.014 0.268 1.073 0.366 2.70E-05 -0.110 negligible 

  *C* 0.901 0.265 0.970 0.324 6.69E-09 -0.153 small 

  *D* 0.898 0.264 0.946 0.317 1.39E-05 -0.114 negligible 

PM2.5 *G* 0.060 0.045 0.070 0.024 8.04E-60 -0.427 medium 

  *F* 0.058 0.023 0.086 0.109 4.54E-49 -0.386 medium 

  *E* 0.058 0.017 0.069 0.048 2.78E-17 -0.222 small 

  *A* 0.049 0.013 0.023 0.013 1.41E-217 0.825 large 

  *B* 0.058 0.016 0.068 0.051 7.67E-06 -0.117 negligible 

  *C* 0.044 0.014 0.050 0.030 2.52E-06 -0.123 negligible 

  *D* 0.044 0.014 0.049 0.030 1.94E-06 -0.124 negligible 

PM4 *G* 0.003 0.021 0.002 0.009 0.081* -0.017 negligible 

  *F* 0.001 0.007 0.011 0.069 3.35E-09 -0.050 negligible 

  *E* 0.000 0.002 0.004 0.027 1.11E-10 -0.044 negligible 

  *A* 0.000 0.000 0.001 0.003 1.06E-08 -0.033 negligible 

  *B* 0.000 0.000 0.005 0.030 1.51E-17 -0.067 negligible 

  *C* 0.000 0.000 0.002 0.016 2.21E-09 -0.034 negligible 

  *D* 0.000 0.001 0.003 0.015 1.02E-10 -0.056 negligible 

PM10 *G* 0.001 0.004 0.000 0.002 0.209* -0.009 negligible 

  *F* 0.000 0.001 0.002 0.014 5.08E-07 -0.033 negligible 

  *E* 0.000 0.000 0.001 0.005 1.53E-07 -0.030 negligible 

  *A* 0.000 0.000 0.000 0.002 1.71E-07 -0.026 negligible 

  *B* 0.000 0.000 0.001 0.006 9.82E-11 -0.039 negligible 

  *C* 0.000 0.000 0.001 0.008 2.65E-08 -0.029 negligible 

  *D* 0.000 0.000 0.001 0.008 7.55E-15 -0.060 negligible 

CO2 *G* 452.777 38.378 476.447 88.527 1.09E-06 0.128 negligible 

  *F* 417.488 21.310 447.883 85.022 1.38E-08 -0.149 small 

  *E* 465.581 24.384 462.914 63.162 4.50E-63 0.441 medium 

  *A* 454.248 18.598 469.784 62.436 1.46E-05 0.114 negligible 

  *B* 468.980 35.658 474.443 86.655 7.69E-66 0.451 medium 

  *C* 464.864 48.653 461.177 69.010 1.14E-64 0.447 medium 

  *D* 406.183 44.869 403.196 84.075 2.51E-76 0.487 large 

VP All sensors 1.169 0.046 1.196 0.075 4.11E-26 -0.278 small 

 
 
Table 8. Results of the post hoc statistical test to determine whether or not the signal levels 
were lowered when the AFU speed setting was increased from 2 to 3 at CP4 on the 4th August.  
(NB. All results were strongly significant after Bonferroni correction, except those marked * 
which did not reach significance.) 
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Figures 
 
 

 
 
 

Figure 1. Layout of the medicine for older people ward showing the positions of the AFU and 
sensors. 

 
 
 

   (A)       (B) 
 

Figure 2. (A) Photograph showing the location of the AFU in the ward, and (B) detail showing 
the air intakes and outlets of the AFU. 

 
 
 

Forward air 
inflow  
 
Intake 
Height:  
(0 to 2m+) 

Dual side 
clean air 
outflows  
 
Clean Air 
Outflow 
Height:  
(0 to 2m+) 
 

Actual position within ward 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 29, 2022. ; https://doi.org/10.1101/2022.03.25.22272953doi: medRxiv preprint 

https://doi.org/10.1101/2022.03.25.22272953
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
Figure 3. Results of change point analysis showing the PM1 signal from sensor *A* (black), 
with the interrupted mean signal (blue) for each section. Change points were identified at 

epochs 497, 596, 681, 866, 918, 935, 1092, 1982 and 2389. 
 

 
Figure 4. PM1 signal from sensor *A* (black) with the interrupted mean signal (blue) for the 

sections between the major change points. Major change points were identified at epochs 497, 
935, 1092, 1982 and 2389. 
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Figure 5. Collated smoothed PM1 signals from all the sensors for 3rd and 4th August. The black 
dashed lines denote where the change points (CPs) occurred and the dashed red lines denote 
when breakfast (B), lunch (L) and dinner (D) were served to the patients on the ward. (Noise 
from the PM signals was removed using a cubic smoothing spline in R (R Core Team (2021). 

URL https://www.R-project.org/.), with the smoothing parameter set to 0.1.) 
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Figure 6. Collated smoothed PM2.5 signals from all the sensors for 3rd and 4th August. The 
black dashed lines denote where the change points (CPs) occurred and the dashed red lines 
denote when breakfast (B), lunch (L) and dinner (D) were served to the patients on the ward. 
(Noise from the PM signals was removed using a cubic smoothing spline in R (R Core Team 

(2021). URL https://www.R-project.org/.), with the smoothing parameter set to 0.1.) 
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Figure 7. Collated smoothed PM4 signals from all the sensors for 3rd and 4th August. The black 
dashed lines denote where the change points (CPs) occurred and the dashed red lines denote 
when breakfast (B), lunch (L) and dinner (D) were served to the patients on the ward. (Noise 
from the PM signals was removed using a cubic smoothing spline in R (R Core Team (2021). 

URL https://www.R-project.org/.), with the smoothing parameter set to 0.1.) 
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Figure 8. Collated smoothed PM10 signals from all the sensors for 3rd and 4th August. The 
black dashed lines denote where the change points (CPs) occurred and the dashed red lines 
denote when breakfast (B), lunch (L) and dinner (D) were served to the patients on the ward. 
(Noise from the PM signals was removed using a cubic smoothing spline in R (R Core Team 

(2021). URL https://www.R-project.org/.), with the smoothing parameter set to 0.1.) 
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Figure 9. Collated CO2 signals from all the sensors for 3rd and 4th August. The black dashed 
lines denote where the change points (CPs) occurred and the dashed red lines denote when 

breakfast (B), lunch (L) and dinner (D) were served to the patients on the ward. 
 
 
 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 29, 2022. ; https://doi.org/10.1101/2022.03.25.22272953doi: medRxiv preprint 

https://doi.org/10.1101/2022.03.25.22272953
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
Figure 10. Smoothed PM, CO2 and VP signals from sensor *G* in the ward side room. 

 
 

 
Figure 11. Decay in PM1 levels that occurred at sensor *A* when the AFU was switched on. 
 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 29, 2022. ; https://doi.org/10.1101/2022.03.25.22272953doi: medRxiv preprint 

https://doi.org/10.1101/2022.03.25.22272953
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
Supplementary Material 
 
 

   Before CP1 Before CP1 CP1-CP2 CP1-CP2 CP2-CP3 CP2-CP3 CP3-CP4 CP3-CP4 CP4-CP5 CP4-CP5 After CP5 After CP5 

Signal Sensor ID Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD 

PM1 *G* 2.673 0.339 3.728 1.299 1.424 0.683 0.906 0.205 1.054 0.424 1.285 0.189 

  *F* 2.401 0.320 5.054 2.347 1.366 0.359 0.935 0.232 1.134 0.727 1.370 0.204 

  *E* 2.273 0.303 2.827 0.696 1.364 0.253 0.947 0.226 0.898 0.412 1.317 0.203 

  *A* 0.830 0.178 2.961 0.871 1.361 0.213 0.939 0.221 0.291 0.140 0.614 0.197 

  *B* 2.597 0.323 2.607 0.572 1.373 0.257 0.950 0.215 0.894 0.449 1.223 0.164 

  *C* 2.303 0.283 2.599 0.574 1.284 0.319 0.833 0.186 0.822 0.393 1.094 0.173 

  *D* 2.221 0.257 2.641 0.613 1.260 0.339 0.834 0.186 0.826 0.398 1.048 0.171 

 Mean 2.185 0.286 3.202 0.996 1.347 0.346 0.906 0.210 0.846 0.420 1.136 0.186 

PM2.5 *G* 0.153 0.020 0.394 0.308 0.102 0.103 0.052 0.012 0.065 0.033 0.074 0.012 

  *F* 0.138 0.020 0.747 0.650 0.082 0.042 0.054 0.014 0.094 0.160 0.079 0.012 

  *E* 0.131 0.018 0.217 0.125 0.079 0.019 0.054 0.013 0.062 0.069 0.076 0.013 

  *A* 0.040 0.009 0.201 0.140 0.066 0.011 0.046 0.011 0.016 0.011 0.030 0.010 

  *B* 0.149 0.019 0.198 0.106 0.080 0.016 0.055 0.013 0.064 0.074 0.070 0.010 

  *C* 0.115 0.044 0.153 0.078 0.062 0.017 0.041 0.010 0.045 0.043 0.053 0.009 

  *D* 0.108 0.013 0.168 0.094 0.062 0.018 0.041 0.010 0.047 0.042 0.051 0.010 

 Mean 0.119 0.020 0.297 0.214 0.076 0.032 0.049 0.012 0.056 0.062 0.062 0.011 

PM4 *G* 0.000 0.000 0.146 0.194 0.017 0.053 0.000 0.001 0.004 0.013 0.000 0.000 

  *F* 0.000 0.004 0.369 0.425 0.004 0.018 0.000 0.000 0.024 0.100 0.000 0.000 

  *E* 0.000 0.000 0.044 0.073 0.001 0.005 0.000 0.000 0.008 0.040 0.000 0.000 

  *A* 0.000 0.000 0.046 0.085 0.000 0.000 0.000 0.000 0.001 0.005 0.000 0.000 

  *B* 0.000 0.000 0.039 0.066 0.000 0.000 0.000 0.000 0.010 0.044 0.000 0.000 

  *C* 0.002 0.035 0.021 0.047 0.000 0.000 0.000 0.000 0.005 0.024 0.000 0.000 

  *D* 0.000 0.002 0.031 0.058 0.001 0.003 0.000 0.000 0.006 0.021 0.000 0.000 

 Mean 0.000 0.006 0.099 0.135 0.003 0.011 0.000 0.000 0.008 0.035 0.000 0.000 

PM10 *G* 0.000 0.000 0.030 0.039 0.003 0.011 0.000 0.000 0.001 0.003 0.000 0.000 

  *F* 0.000 0.001 0.074 0.086 0.001 0.003 0.000 0.000 0.005 0.020 0.000 0.000 

  *E* 0.000 0.000 0.009 0.015 0.000 0.001 0.000 0.000 0.002 0.008 0.000 0.000 

  *A* 0.000 0.000 0.024 0.044 0.000 0.000 0.000 0.000 0.001 0.003 0.000 0.000 

  *B* 0.000 0.000 0.007 0.013 0.000 0.000 0.000 0.000 0.002 0.009 0.000 0.000 

  *C* 0.001 0.018 0.011 0.025 0.000 0.000 0.000 0.000 0.002 0.012 0.000 0.000 

  *D* 0.000 0.001 0.017 0.031 0.000 0.001 0.000 0.000 0.003 0.011 0.000 0.000 

 Mean 0.000 0.003 0.025 0.036 0.001 0.002 0.000 0.000 0.002 0.009 0.000 0.000 

CO2 *G* 469.307 13.578 815.175 139.885 489.345 84.741 446.327 13.966 518.482 112.203 441.099 33.428 

  *F* 445.665 8.453 734.244 80.023 433.748 47.122 414.619 9.472 485.906 113.827 415.909 13.646 

  *E* 470.582 8.077 691.243 72.783 481.153 52.930 462.834 12.553 503.166 74.680 429.066 12.241 

  *A* 467.185 10.276 713.817 80.280 464.744 40.040 452.397 10.138 502.820 79.962 442.005 10.755 

  *B* 466.868 10.582 818.856 115.035 500.493 73.982 463.421 18.145 523.991 108.488 432.777 11.614 

  *C* 443.028 22.364 833.165 121.853 516.107 102.240 455.824 20.135 497.942 87.750 430.261 14.356 

  *D* 398.425 8.607 748.612 113.939 451.045 91.525 398.269 21.924 450.621 105.655 363.316 12.350 

 Mean 451.580 11.705 765.016 103.400 476.662 70.369 441.956 15.190 497.561 97.509 422.062 15.484 

VP All sensors 1.296 0.035 1.368 0.051 1.210 0.027 1.162 0.045 1.161 0.056 1.225 0.076 

Legend: PM1 – Particulate matter (PM) fraction < 1 μm diameter (μg/m3); PM2.5 – PM fraction between 
1 and 2.5 μm diameter (μg/m3); PM4 – PM fraction between 2.5 and 4 μm diameter (μg/m3); PM10 – PM 
fraction between 4 and 10 μm diameter (μg/m3); CO2 – carbon dioxide (ppm); VP – vapour pressure 
(kPa); and CP1-5 – change points 1 to 5.   
 
Table S1. Descriptive statistics for the various sensor signals divided into change point blocks.  
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