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Abstract 1

Background: Non-pharmaceutical interventions (NPI) play a key role in manag- 2

ing epidemics, yet it is challenging to evaluate their impacts on disease spread and 3

outcomes. 4

Methods: To estimate the effect of a mask-wearing intervention to mitigate the 5

spread of SARS-CoV-2 on the island of Ireland, we focused on the potential for inter- 6

individual infectious contact over time as the outcome. This is difficult to measure 7

directly; in a companion paper we estimated it using a multi-strain epidemiological 8

model. We used data on mask-wearing and mobility in both Northern Ireland (NI) 9

and the Republic of Ireland (ROI) to predict independently the estimated infectious 10

contact over time. We made counterfactual predictions of infectious contact rates and 11

hospitalisations under a hypothetical intervention where 90% of the population were 12

wearing masks during early 2020, when in reality few people were wearing masks in 13

public; this was mandated in both jurisdictions on 10th August 2020. 14

Results: There were 1601 hospitalisations with COVID-19 in NI between 12th 15

March and 10th August 2020, and 1521 in ROI between 3rd April and 10th August 16

2020. Under the counterfactual mask-wearing scenario, we estimated 512 (95% CI 400, 17

730) hospitalisations in NI, and 344 (95% CI 266, 526) in ROI, during the same periods. 18

Conclusions: We have estimated a large effect of population mask-wearing on 19

COVID-19 hospitalisations. This could be partly due to other factors that were also 20

changing over time. 21
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Introduction 22

Non-pharmaceutical interventions (NPI) are actions taken by individuals or commu- 23

nities that aim to reduce infectious contacts between susceptible and infectious people 24

during an epidemic [1]. Often governments may mandate such actions. Examples in- 25

clude reducing the number of physical contacts (e.g., closure of schools, workplaces, 26

commercial establishments, roads, and public transit; restriction of movement; can- 27

cellation of public events; maintenance of physical distances in public), reducing the 28

chance of infection upon contact (e.g., mandatory use of personal protective equip- 29

ment), and identifying and isolating those that may be infected (e.g., contract tracing 30

and digital surveillance). By slowing the surge of infection, communities are afforded 31

an opportunity to reduce infection-induced mortality and morbidity, alleviate health 32

care burden and wait out an epidemic until pharmaceutical solutions (i.e. treatment 33

and vaccines) become available. Public health policies to reduce the mixing of suscep- 34

tible and infectious people have been instrumental in historical outbreaks, including 35

during the 1918 influenza pandemic where rapid implementation of NPI mandates was 36

crucial for reducing excess death in the United States [2]. 37

Due to the rapid spread of SARS-CoV-2 and the initial lack of effective therapy, 38

NPI have been central to managing the COVID-19 pandemic globally. NPI such as 39

staying at home and mask-wearing, both of which are often mandated, can reduce the 40

reproductive number (i.e., the average number of secondary cases per infectious host) 41

and sometimes bring it below 1, thereby halting the growth of SARS-CoV-2 infec- 42

tions in a population [3, 4]. Reducing inter-individual infectious contact has also been 43

shown to reduce the relative advantage of highly transmissible variants [5]. Even after 44

a widespread rollout of vaccines, understanding the effectiveness of NPI and the role 45

of mandating them remains pertinent as vaccination alone is unlikely to put an end 46

to the pandemic [6] and vaccination and NPI can synergistically reduce SARS-CoV-2 47

transmission [7]. Despite their public health benefits, social distancing measures have 48

been shown to incur high costs in several domains, including in the economy [8], mental 49

health [9], and civil liberty [10]. Thus, it is crucial to quantify the effectiveness of in- 50

terventions to achieve desired public health outcomes and improve policy transparency 51

and public engagement. 52

Mechanistic epidemiological models have been widely applied to study the dynam- 53

ics of SARS-CoV-2, and to make predictions of clinical outcomes under alternative 54

scenarios (e.g. an assumed decrease in physical contact [11]). Furthermore, fitting a 55

mathematical model to data on observed processes such as reported cases and hospital 56

admissions allows estimation of inter-individual infectious contact [12, 13]. In a com- 57

panion paper, we have estimated longitudinal infectious contact ratios for SARS-CoV-2 58

in Northern Ireland (NI) and the Republic of Ireland (ROI) using a multi-strain com- 59

partmental model ( [14]). While mechanistic epidemiological models are not primarily 60

intended for the estimation of the effects of NPI, there has been some recent work on 61

incorporating effect estimation in a mechanistic or semi-mechanistic modelling frame- 62

work. For example, the Institute for Health Metrics and Evaluation (IHME) COVID-19 63

Modelling Team used compartmental epidemiological models to estimate time-varying 64

rates of infection of susceptibles, and subsequently used regression models to predict 65

these rates in terms of NPI variables; this allowed them to make forecasts of infection 66
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rates, hence mortality and morbidity outcomes [15]. Other relevant approaches that 67

link NPI to disease transmission include those that incorporate digital mobility data 68

in a (semi-)mechanistic disease model (e.g., [16,17]). An alternative approach involves 69

structural equations that model potential outcomes such as deaths or cases in terms 70

of interventions of interest (e.g., [18–20]). 71

Our aim in this paper was to investigate outcomes under a counterfactual scenario 72

wherein most people wore masks in public during the early part of the COVID-19 73

epidemic in Ireland, which included the first wave. In reality, public health advice 74

discouraged population mask-wearing during the early part of the epidemic, and few 75

people wore masks in public places during the first wave [21]. We compiled and de- 76

scribed data on actions that aimed to reduce the potential for inter-individual infectious 77

contact on the island of Ireland, including relevant data on behavioural changes such as 78

mobility patterns and mask wearing prevalence. We used these data to independently 79

predict infectious contact ratios we had previously estimated for both jurisdictions on 80

the island of Ireland ( [14]). We made counterfactual predictions of infectious contact 81

and ensuing hospitalisations under a hypothetical intervention where 90% of the pop- 82

ulation were wearing masks in public during the first six months of the epidemic in 83

Ireland. 84

Methods 85

The infectious contact ratio 86

The infectious contact rate at any point in time is a measure of the potential for 87

inter-individual infectious contact; we estimated this as a ratio relative to its value at 88

the beginning of community spread in Ireland, which we previously estimated to be 89

around 5th March 2020 ( [14]). To estimate longitudinal infectious contact ratios, we 90

used a discrete-time compartmental model that incorporates multiple virus strains with 91

different transmissibilities. We estimated these by week for both NI and the ROI over 92

the first year of the pandemic (5th March 2020-28th February 2021), fitting the model 93

to longitudinal data on hospital admissions with COVID-19 and proportion of B.1.1.7, 94

or Alpha, strain cases in each jurisdiction. To parameterise the model, distributions 95

of the time from infection to transmission, and from infection to hospitalisation for 96

hospitalised cases, were based on published evidence [22–24]. As our epidemiological 97

model allowed for durations in each disease compartment informed by evidence, we 98

were able to model accurately the short-term dynamics of the disease, meaning that 99

the infectious contact ratios we estimated reflect short-term behaviour. This makes the 100

infectious contact ratio a suitable outcome for modelling in terms of predictors that 101

also changed in short time frames, such as mobility. The model, model fitting in a 102

Bayesian framework, and results are described in detail in our companion paper [14]. 103

For subsequent analyses in the current paper, we took a single replicable draw from the 104

posterior distribution of estimated weekly infectious contact ratios over the first year 105

of the pandemic for each jurisdiction, and used the posterior medians as our measure 106

of infectious contact. 107
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Data to predict infectious contact ratio 108

The governments of ROI and NI carried out a series of public health interventions to 109

curtail the transmission of SARS-CoV-2. We used publicly available sources to compile 110

data on timing and type of policy restrictions in NI the ROI between March 2020 and 111

March 2021, further detail on these is available in [14]. NI followed a different approach 112

to the ROI in introducing and easing restrictions; the UK has a COVID-19 alert system 113

with five levels of alert depending on the level of COVID-19 in the community [25], 114

whereas the ROI defined levels of restriction to mitigate the impact of the virus [26]. 115

As a measure of the extent of physical contact between people, we extracted data 116

from the COVID-19 Google Community Mobility reports for NI and the ROI. These 117

provide six population mobility streams relative to a pre-pandemic baseline [27]. We 118

computed a seven-day moving average of three streams, namely workplaces, transit 119

stations and retail and recreation, as these are thought to be the most appropriate to 120

reflect relevant mobility patterns ( [28] used an average of these three streams plus 121

grocery and pharmacy to reflect relevant movement patterns outside the home). As 122

the mobility data for NI were reported by local government district, we calculated an 123

overall seven-day moving average weighted by the population of each district. Further 124

detail on the mobility streams is provided in Supporting Information S1. 125

We gathered data on the population proportion reporting to be wearing masks in 126

public, and other behavioural data, from behavioural surveys published by the Irish 127

Department of Health, and the Northern Ireland Statistics Research Agency (NISRA) 128

[29,30]. These were based on regular cross-sectional behavioural surveys of 1200 people 129

in NI and 1500-2000 in the ROI; the NI samples were weighted for household size 130

and nonresponse and the ROI samples weighted to demographics [29,31]. While these 131

behavioural surveys were done from March 2020 in ROI and April 2020 in NI, questions 132

about mask use in public places were only included from 2020-05-04 in the ROI, and 133

from 2020-06-17 in NI. We assumed 1% of the population were wearing masks in public 134

at the beginning of the epidemic on the island of Ireland, and fit a binomial regression 135

model with a spline smooth for time to predict proportion wearing masks on dates not 136

reported in the surveys. 137

Seasonality may play a role in virus transmission, as people are more likely to be 138

in indoor settings more conducive to disease spread during colder months [32]. To 139

define seasons, we used Met Éireann daily weather data from Dublin airport [33]. We 140

calculated 7-day running means of the median daily temperature, and defined the 141

summer season to start when this temperature first exceeded 10.5 degrees centigrade, 142

and to end when it first dropped below this value. The summer season thus defined 143

ran from 17th May until 21st September. Using warmer temperatures to define the 144

summer period aims to identify a period when people are less likely to be indoors. 145

Regression models 146

We described the relationship between the estimated weekly infectious contact ratios, 147

the overall Google mobility stream (modelled linearly), and longitudinal mask-wearing 148

proportion in each jurisdiction. We fitted a regression model with response the nat- 149

ural log of the weekly contact ratios and predictors the jurisdiction (NI or ROI), the 150

season (summer or winter), the Google mobility stream, and smoothed proportion 151
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mask-wearing at the mid-point of each week. We assumed the effect of mask wearing 152

conditional on the other predictors to be linear and the same in each jurisdiction. We 153

included an interaction term between season and proportion mask-wearing to allow 154

for a different effect of mask-wearing in the winter when people are more likely to be 155

indoors. We included an interaction term between mobility and mask wearing to allow 156

for a change in the effects of each as the level of the other changes. For instance, the 157

effect of increasing mobility may be attenuated when most people are wearing masks 158

compared to when few people are wearing masks. To explore assumptions of linearity, 159

we also fit a model including spline smooths for the effect of the proportion wear- 160

ing masks on the response. We calculated goodness-of-fit statistics for the predictive 161

models. 162

Our regression model assumes that the responses are independent, which is not 163

the case, as they are correlated over time due to the smoothing described in Kamiya 164

et al. [14]. Therefore, we estimated heteroskedasticity and autocorrelation consistent 165

Newey-West standard errors for the parameter estimates, hence adjusted the confidence 166

intervals for the predicted responses from separate models for each jurisdiction [34]. 167

Counterfactual scenarios 168

We compared the observed responses with predicted responses under a hypothetical 169

intervention where 90% of the population were wearing masks during the early months 170

of the pandemic. In effect, we leveraged observed data from late 2020, when over 90% 171

of the population were wearing masks, to estimate the counterfactual scenario. 172

We checked that the number of hospitalisations predicted by the epidemiological 173

model under no intervention was consistent with the observed number of hospital- 174

isations. We then used our multi-strain epidemiological model to predict hospital 175

admissions from the counterfactual infectious contact ratio. We compared the sum of 176

predicted hospital admissions under the intervention with observed hospital admissions 177

up to the date of the mask mandates (2020-08-10 in both jurisdictions). 178

We estimated confidence intervals for the difference in hospital admissions for the 179

counterfactual scenario versus reality in each jurisdiction by bootstrapping the pro- 180

cess of estimating regression models, predicting the outcome under the counterfactual 181

scenario, and using this predicted outcome (the counterfactual infectious contact ra- 182

tio) to predict counterfactual hospital admissions from the multi-strain epidemiological 183

model. We ran 10,000 bootstrap replications, and estimated bias-corrected and accel- 184

erated (BCa) confidence intervals. 185

We considered the possible impact of confounding by including potential measured 186

confounding variables that were also changing over time in the regression models, and 187

considering the possible impact of unmeasured confounding. 188

Results 189

Estimated infectious contact and mobility 190

Infectious contact is likely affected by the extent of physical contact between people, 191

which may be reflected by digital mobility data. To better understand how mobility 192
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behaviour affects infectious contact, we explored the relationship between the infec- 193

tious contact ratio and the overall Google mobility data stream described above. We 194

observed that the relationship between infectious contact and mobility shifted in early 195

summer 2020 and again in January 2021 (Figures 1 & 2). This finding mirrors that of 196

Nouvellet et al [28] who demonstrated a change in the relationship between mobility 197

and the reproductive number in mid-2020 in many countries, which they attributed 198

to the increased use of NPI, such as contact tracing. We also note that the change in 199

the relationship between infectious contact ratio and mobility in both NI and the ROI 200

coincides with an increase in mask wearing (see Figure 3). A later change in the rela- 201

tionship, in January 2021 may be due to the beginning of the vaccination programme 202

(and this effect appears larger in NI, where the vaccination roll out was faster; albeit 203

few second doses were administered during the period we study [35,36]). 204

Mask mandates and mask-wearing behaviour 205

Google mobility data and our epidemiological model demonstrate that decreases in 206

mobility (and infectious contact ratios) preceded lockdowns (Figures 1 & 2). Change 207

in behaviour ahead of government mandates is also evident from comparing mask 208

mandates with level of self-reported mask wearing in public places (Figure 3). In both 209

NI and ROI, around 90% of people reported wearing masks before the date of the 210

national mask mandates on 2020-08-10. While early advice largely discouraged people 211

from wearing masks (e.g., [37]), the US Center for Disease Control and Prevention 212

changed their advice to recommend mask wearing in public places on 2020-04-03 [38], 213

closely followed by the European Centre for Disease Prevention and Control on 2020- 214

04-08 [39]. While behavioural data on mask wearing in public was only collected from 215

May in the ROI and from June in NI, 16% of people in the NI reported wearing masks 216

in early May, and the proportion of people wearing masks increased more rapidly after 217

the World Health Organisation changed their advice to recommend them on 2020- 218

06-05 [40]. Taken together, global and international public health advice likely had 219

a greater influence on the masking-wearing behaviour than the subsequent national 220

mandates in both ROI and NI. Thus, we focus our attention on estimating the impacts 221

of actual behavioural change, in particular mask wearing, rather than the impacts of 222

government mask-wearing mandates. 223

Regression models to predict infectious contact ratio 224

We fit regression models for 2020 data only, as we have observed that the relationship 225

between our response variable and mobility changes around the end of 2020, around the 226

time the vaccination programme began, and it is possible this would have impacted on 227

the potential for inter-individual infectious contact. We found that the regression model 228

with a linear effect of proportion wearing masks predicts the log weekly contact ratios 229

reasonably well (Figure 4; broken lines); with AIC -208.6 and R2 0.77. A spline smooth 230

for mask-wearing provides a better fit with AIC -218.1 and R2 0.81. However the 231

improvement is not vast, and the assumption of a linear relationship with log contact 232

ratio is more consistent with other evidence about population mask-wearing [41]; we 233

therefore assume a linear effect for the subsequent counterfactual analysis. 234
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Figure 1: Restriction level, mobility and contact ratios for the Republic of Ireland. Red
shaded regions show periods of the highest restrictions (i.e. lockdown). Median weekly
contact ratios are shown as purple dots. The averaged Google mobility stream is shown
as a black dashed line. In Panel A, the mobility stream is scaled to coincide with contact
ratios at the beginning of the period (up to mid May). In Panel B, the mobility stream is
scaled to coincide with period May-December.
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Figure 2: Restriction level, mobility and contact ratios for Northern Ireland. Red shaded
regions show periods of the highest restrictions. Median weekly contact ratios are shown
as purple dots. The averaged Google mobility stream is shown as a black dashed line. In
Panel A, the mobility stream is scaled to coincide with contact ratios at the beginning of
the period (up to mid May). In Panel B, the mobility stream is scaled to coincide with
period May-December.
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Figure 3: Reported use of face masks in public places on the island of Ireland, with spline
smooths for each jurisdiction. Dates of public health mandates to wear masks on public
transport (2020-06-10 in NI, 2020-06-13 in ROI), and in all public places (2020-08-10 in
both NI and ROI) are shown as black vertical lines. The dates on which major public health
institutions changed their recommendations on mask wearing for the general population
from advising against wearing masks to wearing masks in indoor public places are shown as
dashed vertical lines (US Centers for Disease Control and Prevention, CDC (2020-04-03),
European Centre for Disease Prevention and Control, ECDC (2020-04-08), World Health
Organisation, WHO (2020-06-05).
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Figure 4: The dots show the log weekly contact ratios. The dotted lines are the predicted
log contact ratios from a linear regression model with predictors jurisdiction, season, av-
erage mobility and proportion of people wearing masks. The solid lines show predicted
log contact ratios and 95% CIs under a hypothetical intervention where 90% of people
wore masks throughout. In the hypothetical situation, mobility is assumed to remain as
observed in reality.
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Newey-West heteroskedasticity and autocorrelation consistent sandwich estimators 235

for the parameter variances in regression models for each jurisdiction separately gave 236

slightly decreased standard errors of most parameter estimates [34]. This deflated 237

pointwise confidence intervals for predicted responses slightly in some regions, and 238

inflated them slightly in others (See Supporting Information S2). As the impact on 239

the confidence bands for predicted log infectious contact was small, we ignored the 240

non-independence of responses when estimating confidence intervals for the number of 241

hospitalisations saved. 242

Counterfactual scenarios 243

We used the linear regression model to predict log infectious contact under the coun- 244

terfactual scenario that 90% of the population were wearing masks during the early 245

part of the epidemic on the island of Ireland up to the date of the mask mandates, 246

while mobility remained as observed in reality. The counterfactual scenario predicts a 247

marked decrease in infectious contact during the first wave in both jurisdictions com- 248

pared with that observed in reality (Figure 4; solid lines). Supporting Information 249

S3 shows a contour plot of observed data together with the model predictions as a 250

function of mobility and mask wearing for summer and winter separately. We have 251

considered an intervention on mask wearing for which we have a reasonable amount of 252

observed data to estimate the counterfactual scenario. However this does involve some 253

extrapolation beyond the range of the observed data to a region of high mask wearing 254

and very low mobility. 255

While there were in total 1,601 observed COVID-19 hospitalisations in NI from 256

12th March until the date of mask mandate on 10th August (1690.3 predicted from 257

epidemiological model), we predicted 512.0 (95% CI 399.6, 729.8) under the counterfac- 258

tual scenario - that is 1089 (871,1201) fewer hospitalisations. Daily hospital admissions 259

in the ROI were not publicly available before 3rd April, but there were 1,521 admissions 260

between this date and the mask mandate (1531.8 predicted from the epidemiological 261

model), while our counterfactual mask-wearing scenario predicted 343.8 (95% CI 266.2, 262

526.2) between 3rd April and 10th August - that is 1177 (995, 1255) fewer hospitalisa- 263

tions. 264

The behavioural data reported by the Irish Department of Health also included 265

information on other NPI measures: the proportions of people reporting to be sitting 266

further apart from others, and distancing when in a queue, compared to before the 267

pandemic, and the proportions of people washing their hands, and using sanitiser 268

[29]. We estimated the predicted proportions of these NPI variables from binomial 269

regression models with spline smooth for time, as we did to estimate the predicted 270

proportion wearing face masks at intermediate dates. As a sensitivity analysis for 271

confounding by other NPI variables, we fit regression models for the log weekly contact 272

for the ROI as above, and also adjusting for predicted value of each NPI variable, 273

and an interaction between mask-wearing and the other NPI variable to reflect the 274

assumption that the effects of multiple NPI are not additive. Figure 5 shows for 275

each NPI variable that the predicted log contact ratio under the 90% mask-wearing 276

intervention with adjustment for the NPI variable, was only slightly different than 277

without each adjustment. However, pointwise 95% confidence intervals were greatly 278
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inflated for each adjustment apart from hand-washing, so that the actual log contact 279

ratios fell within the adjusted confidence bands. The proportion hand washing was high 280

and fairly constant throughout the period considered; the other three NPI variables 281

were increasing at the same time as mask wearing, though none to the same extent. The 282

inflation of pointwise confidence intervals could be due to co-linearity of the predictor 283

variables. 284

Discussion 285

Most attempts to estimate the effects of non-pharmaceutical interventions on COVID- 286

19 outcomes — either by incorporating effect estimation in a mechanistic epidemio- 287

logical model, or by using structural equations models — have been in a US setting 288

(e.g., [15–20]). 289

In the Irish context, compartmental models been used by several other research 290

groups to understand the dynamics of the virus, make forecasts of outcomes under 291

various scenarios, and assess economic impacts of policy restrictions. For example, 292

the Irish Epidemiological Modelling Advisory Group fit compartmental models to case 293

data, and forecast scenarios under different values of the reproductive number [42]. Ó 294

Náraigh and Byrne [43] applied optimal control theory to data on cases and deaths, and 295

found the optimal strategy to control the epidemic required large and early mitigation 296

strategies. Cazelles et al. [44] used a stochastic model with time-varying parameters 297

and studied the prevalence and tracked the effective reproductive number and its per- 298

centage reduction between restriction periods during the first year of the epidemic. 299

Jaouimaa et al. [45] incorporated an age-structured contact matrix to their compart- 300

mental model and explored the evaluation of an age-related economic cost of different 301

lockdown measures in the ROI. Several UK studies also included NI data to understand 302

regional COVID-19 dynamics [46,47]. 303

An important difference between the infectious contact parameter and time varying 304

reproductive number is that the former is unaffected by changes in virus transmissibil- 305

ity, which is modelled independently in our approach [14]. This separation is especially 306

useful in estimating the effects of NPI (such as mask wearing) that might be expected 307

to have similar effects on infectious contact regardless of the variant (or mixture of 308

variants) currently dominant in the population. In contrast, biases may result from 309

estimating the effect of NPI on the time varying reproductive number during transi- 310

tion periods where this mixture in the population is changing. Taking advantage of 311

the estimated infectious contact ratio, we examined its relationship with mobility and 312

mask-wearing. 313

A further advantage of using the infectious contact ratio as the outcome in our 314

investigation of the effect of population mask-wearing is that the proportion wearing 315

masks may affect the infectious contact ratio at the current week, but should not af- 316

fect the infectious contact ratio at other (future) weeks. In infectious disease studies, 317

estimating the effect of interventions is challenging when the intervention on one unit 318

can affect the outcome of another, as could be the case if the outcome were the level 319

of infection in the community. Our use of the infectious contact ratio bypasses this 320

problem of interference, with the caveat that there is autocorrelation between succes- 321
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Figure 5: Republic of Ireland: The dots show the log weekly contact ratios. The dotted
lines are the predicted log contact ratios from a linear regression model with predictors
season, average mobility, proportion of people wearing masks, and the NPI variable of the
title. The solid lines show predicted log contact ratios and 95% CIs under a hypothetical
intervention where 90% of people wore masks throughout. In the hypothetical situations,
mobility and the other NPI variable are assumed to remain as observed in reality.
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sive estimated contact ratios due to the smoothing described in Kamiya et al [14]. 322

Nonetheless, we also found in that study that the bias was small and unlikely to have 323

a substantive effect on our results. 324

In estimating the effect of mask-wearing on the infectious contact ratio, we have 325

not adjusted for all potential sources of confounding. For example, other actions to 326

mitigate the spread of the virus may also have been changing at the same time as 327

mask wearing, and may be partly responsible for the effect we attribute to wearing 328

masks. Behavioural survey data from the Irish Department of Health and NISRA 329

indicate that many of the relevant behaviours that could bias the effect remained fairly 330

constant throughout (for example hand washing, which was high from early during the 331

period considered), or increased to a smaller extent than mask-wearing (eg self-reported 332

social distancing) [29] [30]. When we included other NPI variables in the regression 333

model, counterfactual predictions were little changed, but confidence intervals were 334

inflated; this could be due to co-linearity. 335

It is possible that early adopters of mask wearing were those who were at higher risk 336

of severe COVID-19, so that the observed effect of mask wearing reflects the patterns 337

of uptake in the population, and cannot be interpreted as the effect of adoption by a 338

random proportion of the population. We do not have demographic information on 339

the mask-wearers, so cannot adjust for demographic variables that predict COVID-19 340

severity, such as average age of mask wearers at each time. Over time, people could 341

have been becoming better at taking various different actions to mitigate the spread 342

of the virus, and we have no measure of improvement in implementation of NPI. 343

As we did not observe many combinations of mask-wearing and mobility, especially 344

when mobility was very low, the counterfactual scenario involves some model extrap- 345

olation. This influenced our modelling assumption that the effects of mask wearing 346

on log contact ratio are linear rather than using the better fitting spline smooth; the 347

latter is consistent with the evidence that the the population proportion not wearing 348

masks has a multiplicative effect on the reproductive number [41]. 349

In the regression models, we have treated the observed responses as independent, 350

but there is some dependence in estimated weekly infectious contact ratios over time. 351

Calculating Newey-West heteroskedasticity and autocorrelation consistent sandwich 352

estimators for the parameter variance matrices in the regression models deflated the 353

confidence intervals for the predicted responses slightly in some cases, and increased 354

them slightly in others, but the difference to confidence intervals for predicted responses 355

assuming independence was small. 356

In summary, we have predicted infectious contact from season, population mask 357

wearing, and mobility, in the specific context of the island of Ireland. Our study corrob- 358

orates the body of literature demonstrating the effectiveness of mask-wearing [48, 49]. 359

We found that increasing mask-wearing to 90% throughout early 2020 would have de- 360

creased inter-individual infectious contact during the first wave, and, in consequence, 361

led to substantially fewer predicted hospitalisations. This effect is likely to have been 362

at least partly due to changes in other factors that mitigate the spread of the virus 363

and were also changing over time, and may be better interpreted as an effect of many 364

accumulated actions to prevent the spread of the virus that were changing over time. 365

Mask-wearing was the one NPI for which international public health bodies and West- 366

ern governments changed their recommendations; as we have previously noted, early 367
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advice strongly discouraged mask-wearing, even claiming this put mask-wearers at 368

higher risk of becoming infected; however by the summer of 2020 the consensus was 369

that mask wearing was beneficial. Changes in public health recommendations about 370

mask wearing likely played a role in the patterns of mask-wearing uptake, leading to 371

very large increases in mask-wearing between March and August 2020; this is in con- 372

trast to data on other NPI where the public health messaging was more consistent and 373

changes in behaviour were not as large. It is unlikely that the smaller changes in other 374

NPI could account for the entire effect of mask-wearing we have reported. 375
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