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Abstract  31 

Background: Pregnancy in women with multiple sclerosis (MS) is associated with a 32 

reduction of long-term disability progression. The mechanism that drives this effect is 33 

unknown, but converging evidence suggests a role for epigenetic mechanisms altering 34 

immune and/or central nervous system function. Objectives: We aimed to identify whole 35 

blood and immune cell-specific DNA methylation patterns associated with parity in relapse-36 

onset multiple sclerosis. Methods: We compared whole-blood methylation patterns between 37 

96 matched pairs of nulligravida and parous females with MS (n=192). Parity was defined as 38 

at least one term or pre-term birth, and nulligravida was defined as no prior pregnancies. 39 

Methylation was measured with Illumina EPIC arrays, and data was pre-processed and 40 

statistically analysed using the ChAMP package. Cell-type proportions were estimated using 41 

the EpiDISH package, and cell-specific analysis conducted using linear regression. Gene-set 42 

enrichment analysis (GSEA) was performed with ToppGene API and GOmeth. Methylation 43 

age was calculated with the methyAge package. Methylation age acceleration (MAA) was 44 

calculated by regressing methylation age on chronological age. FDR<0.05 was used to assess 45 

significance. Results: The median time from last pregnancy to blood collection was 16.66 46 

years (range = 1.45 – 44.42 years). We identified 903 differentially methylated positions 47 

(DMPs) in whole blood; 365 were hypomethylated and 528 were hypermethylated in parous 48 

women. We further identified two differentially methylated regions (DMRs) in CRYGN on 49 

Chromosome 7 and an intergenic region on Chromosome 15. There were four and eight cell 50 

type specific DMPs in CD4+ and CD8+ cells, respectively. Differentially methylated genes 51 

were enriched in neuronal plasticity pathways. Parity was associated with reduced MAA by a 52 

mean of 1.44 to 2.27 years using the PhenoAge (p = 0.002) and GrimAge (p = 0.005) 53 

algorithms. Conclusion: Whole-blood methylation patterns are associated with birth history 54 

in females with relapse-onset multiple sclerosis. We found enrichment of differentially 55 
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methylated genes encoding neuronal processes and reduced MAA in parous women. These 56 

methylation changes could mediate the long-term benefit of pregnancy for disease 57 

progression in multiple sclerosis.  58 
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Introduction 59 

Multiple sclerosis (MS)  is most prevalent in females, with a sex ratio of 3:11. It is frequently 60 

diagnosed between 20-40 years of age, the prime reproductive years for women. 61 

Understanding the effect of pregnancy on disease activity and progression is a priority for 62 

women with MS (wwMS) and their care teams.  63 

 64 

Pregnancy has been shown to reduce MS relapse rates and short- and long-term disability 65 

outcomes in wwMS, regardless of the outcome of the pregnancy2. With respect to long-term 66 

outcomes, in a study of 2,557 wwMS, a history of childbirth delayed the onset of a clinically 67 

isolated syndrome (CIS, the first demyelinating event indicative of  a future MS diagnosis) by 68 

3.4 years3. Additionally, in the largest real-world study of 1830 wwMS, one or more 69 

pregnancies after MS onset were associated with lower disability scores after ten years4. 70 

Notably, the protective effect of pregnancy in this cohort was four-fold greater than that of 71 

first line DMT exposure in the same timeframe4. The biological mechanisms underpinning 72 

these long-term effects of pregnancy are not understood. As the effect of pregnancy on age at 73 

CIS onset3 and disability progression extends for years beyond birth4, it cannot be explained 74 

exclusively by transient hormonal and immunological changes during pregnancy.  75 

 76 

Epigenetic mechanisms regulate gene expression in a dynamic and reversible manner. DNA 77 

methylation is a key epigenetic mechanism. The presence or absence of a methyl group on 78 

cytosine-phosphate-guanine (CpG) dinucleotides generally activates or represses gene 79 

transcription, respectively. Epigenetic mechanisms are influenced by life events and 80 

environmental factors, including the multitude of physiological and hormonal changes of 81 

pregnancy. DNA methylation enzymes are specifically influenced by estrogen signalling, 82 

which increases in pregnancy and peaks in the third trimester. Converging evidence outlines a 83 
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role for DNA methylation in the effect of pregnancy on outcomes in wwMS through altering 84 

immune and central nervous system (CNS) function: 1) estrogen signalling influences DNA 85 

methylation enzymes5, 2) pregnancy has been shown to reduce immune epigenetic age in 86 

women without MS6, and 3) pregnancy induces changes in the expression of immune-87 

activation7 and axon-guidance8 genes in wwMS for up to 19 years after pregnancy. However, 88 

no epigenome-wide association study (EWAS) of parity in wwMS has been reported to date.   89 

 90 

The objective of this study was to understand the long-term impact of parity on DNA 91 

methylation patterns in women with relapse-onset multiple sclerosis. We first sought to 92 

identify whole-blood and immune cell-specific DNA methylation patterns, across autosomes, 93 

associated with parity. Secondly, we aimed to compare methylation age acceleration (MAA) 94 

between nulligravida and parous wwMS, to determine whether reductions in MAA reported 95 

in health were also evident in an MS cohort. 96 

 97 

 98 

Materials and Methods 99 

Ethics approvals  100 

Ethics approval for the collection of demographic, clinical, treatment and pregnancy history 101 

data via the MSBase Registry9 was obtained from the Alfred Health Human Research Ethics 102 

Committee (528/12), and institutional review boards at all participating centres. Approval for 103 

the collection of genetic data was obtained from the Australian National Mutual Acceptance 104 

Scheme (HREC/13/MH/189). Written informed consent was obtained from participants as 105 

per local laws at each study site. 106 

 107 

Clinical data collection 108 
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This study utilised clinical data from the MSBase Registry, an international, prospective, 109 

observational MS clinical outcomes register. Data are collected in a unified manner, and 110 

include patient demographics, expanded disability status scale (EDSS) scores, relapse, 111 

treatment and pregnancy data, as previously described9,10.  112 

 113 

Participant recruitment, parity definitions and sample collection 114 

Whole-blood samples were obtained from 1,984 participants. From this cohort, we selected 115 

192 matched participants based on geographical location (Australia), sex (female), birth 116 

history availability (nulligravida or parous) and age (groups age-matched within three years, 117 

Supplementary Fig. 1).  118 

 119 

DNA methylation is associated with age11 and geographical location11. Therefore, we 120 

restricted participants to Australians matched by age (within three years). Participants were 121 

also matched by Age-Related Multiple Sclerosis Severity (ARMSS) scores12 due to non-122 

negligible differences between nulligravida and parous groups (Table 1). Participants were 123 

matched using the optmatch package13 in the R statistical environment.  124 

 125 

The timing of pregnancy effects on methylation patterns remains unclear in wwMS, as does 126 

the impact of pregnancies resulting in miscarriage or termination compared to birth. We 127 

therefore excluded gravida women (i.e., those experiencing a miscarriage or induced abortion 128 

only) and restricted study inclusion to women who had at least one preterm or term birth prior 129 

to the date of blood collection, or those who were nulligravida. We included wwMS from the 130 

Royal Melbourne Hospital (VIC, n=73), Box Hill Hospital (VIC, n=56), John Hunter 131 

Hospital (NSW, n=25), and Flinders Medical Centre (SA, n=38). A total of 96 nulligravida 132 

and 96 parous females with RMS were included in this study (n=192).  133 
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 134 

DNA extraction 135 

At each site, genomic DNA was extracted from whole blood using standard protocols and 136 

procedures.  137 

 138 

Methylation arrays 139 

DNA samples were processed for methylation arrays at the Hunter Medical Research Institute 140 

(NSW). DNA quantity and quality were assessed using Qbit (Invitrogen™, USA) and 141 

TapeStation (Agilent™, USA), respectively. Samples meeting concentration and quality 142 

requirements were bisulfite converted using the EZ-DNA Methylation™ Kit (Zymo) 143 

according to manufacturer guidelines. Converted DNA was hybridised to Illumina 144 

Methylation EPIC BeadChip arrays (EPIC arrays). Samples were randomised based on clinic 145 

site using the OSAT R package to avoid batch effects. EPIC arrays were read using an iScan 146 

(Illumina™) and raw Idat files were produced for analysis.  147 

 148 

Genotyping arrays 149 

Genomic DNA was sent from participating study sites to the Center for Genome Technology, 150 

John P. Hussman Institute for Human Genomics, University of Miami, for quality assessment 151 

and genotyping. Genotyping was performed in two batches using Illumina Multi-ethnic 152 

genotyping array (MEGAEX) arrays. Genotype calling was conducted in GenomeStudio v2.0 153 

(Illumina).  154 

 155 

DNA methylation analysis pipeline  156 

Our EWAS analysis was informed by the guidelines described in Campagna et al. (2021)14. 157 

The Chip Analysis Methylation Pipeline (ChAMP) Bioconductor package15 was used for 158 
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methylation data pre-processing in the R statistical environment. Raw Idat files were filtered 159 

to exclude low quality samples (failed to successful probe ratio > 0.1), low quality probes 160 

(detection p-value > 0.01, bead count < 3 in ≥5% of samples), non-CpG probes, SNP-related 161 

probes, non-autosomal probes, and multi-hit probes. Additional multi-hit probes were 162 

excluded based on Pidsley (2016) Supplementary Table 116. Beta values were normalised 163 

using the beta-mixture quantile (BMIQ) method17. Batch effects at the array and chip level 164 

were identified with singular value decomposition (SVD) analysis18, and corrected for using 165 

the Combat algorithm19.  166 

 167 

Primary differential methylation analysis  168 

Differential methylation (Dmeth ) between nulligravida and parous groups was identified at the 169 

single CpG level i.e. differentially methylated positions (DMPs), and genomic region level 170 

i.e. differentially methylated regions (DMRs) using the filtered and normalised beta matrix, 171 

as previously described14. We used the ChAMP function champ.DMP to implement an 172 

unadjusted logistic model of methylation level at each probe and parity group. A false 173 

discovery rate (FDR) threshold of 0.05 was used to assess statistical significance for all 174 

analyses. Methylation beta values equate to percentage methylation, and thus going forward 175 

we report methylation differences (effect size) as a percentage (e.g., Dmeth of 0.01 = 1%). 176 

DMPs with an Dmeth less than 1% were removed to avoid false positives produced from 177 

technical error.  178 

 179 

We identified DMRs using a two-pronged approach. Firstly, with the DMRcate R package20 180 

using the following parameters: at least three DMPs within 1000bp of the adjacent DMP, a 181 

DMP and DMR threshold of FDR < 0.05. Secondly, using the DMP list to identify at least 182 

three DMPs with an FDR < 0.05 and the same direction of effect, located within 1000bp of 183 
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each other. The validity of this strategy to identify DMRs in studies with small sample and/or 184 

effect sizes has previously been shown21,22. 185 

 186 

As methylation can be cell type specific, immune cell type proportions were estimated to 187 

confirm that differential methylation in whole blood was not driven by differences in cell 188 

type proportions. Immune cell type proportions were estimated using the EpiDISH R 189 

package23, using methylation M-values and the reference-based CIBERSORT algorithm24. 190 

Subsequently, cell-type specific DMPs (csDMPs) were identified using a modified version of 191 

the cellDMC function of the EpiDISH R package23. We used linear regression where the 192 

outcome was methylation M-value and the predictors were cell type proportion estimate, and 193 

an interaction term of cell type proportion and parity. A separate model was run for each cell 194 

type. We used a genome-wide threshold of p ≤ 9x10-8 to assess statistical significance. 195 

 196 

Sensitivity analyses 197 

Sensitivity analyses were performed to assess the potential impact of a series of demographic, 198 

clinical, biological, and environmental covariates on the primary methylation analysis. 199 

Covariates were selected based on non-negligible differences between groups (Cohen’s d > 200 

0.15), or a priori selected. They included symptom duration, annualised relapse rate (ARR), 201 

cell type proportion estimates (B cells, CD4+ cells, CD8+ cells, NK cells, monocytes, and 202 

granulocytes), and methylation age acceleration (PhenoAge and GrimAge). Environmental 203 

factors including treatment at blood collection (yes or no) and smoking status at blood 204 

collection (ever or never) were also tested. An FDR threshold of 0.05 was used to assess 205 

statistical significance for all sensitivity analyses. 206 

 207 
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Nulligravida and parous participants were matched by age at blood collection and ARMSS 208 

scores (n=192, 96 pairs) and the difference in methylation at each probe (Dmeth) was 209 

calculated. Subsequently, the correlation between each Dmeth and covariate was tested. 210 

Pearson’s correlation tests were used for continuous covariates (ARR, symptom duration, 211 

years follow-up in MSBase and number of available EDSS scores available). ANOVA tests 212 

were used for categorical covariates (treatment and smoking status). For categorical 213 

variables, pairs were required to have the same value for the correlation with methylation to 214 

be tested. Of 96 pairs in total, 40 pairs were on treatment at blood collection and 14 were off 215 

treatment, while eight pairs were ‘ever’ smokers at blood collection and two were ‘never’ 216 

smokers. Smoking history was unavailable for the remaining pairs. DMPs were filtered for 217 

2,622 known smoking-associated CpGs identified by Johanes et al. (2016, Supplementary 218 

Table 2)25 due to the known effect of smoking on the methylome, and limited smoking data 219 

available for this cohort. 220 

 221 

Single Nucleotide Variant analysis  222 

Quality control was performed with PLINKv1.926. Single Nucleotide Variants (SNVs) were 223 

excluded based on low call rate (<95%), low minor allele frequency (MAF < 0.05), violation 224 

of Hardy–Weinberg equilibrium (p < 1×10–5), monomorphism and non-autosomal location. 225 

Samples were excluded based on sex inconsistencies, low call rate (<95%) and relatedness 226 

(pi-hat > 0.05).  Relatedness was assessed using Identity by Descent (IBD) analysis in 227 

PLINKv1.9, followed by confirmation in KING27. Principal components (PC) analysis was 228 

implemented in EIGENSTRAT28. PCs were projected to 1000 Genomes Project29 data to 229 

assess population stratification effects, and exclude population outliers. Genotypes were then 230 

imputed using Haplotype Reference Consortium30 on the Michigan Imputation Server 231 
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(https://imputationserver.sph.umich.edu/index.html#!), and converted to genotype calls in 232 

PLINKv1.9.  233 

 234 

Methylation quantitative trait loci (mQTL) analysis 235 

Differential methylation at certain genetic loci may be influenced by the underlying SNVs at 236 

or near that site, known as methylation quantitative trait loci (mQTLs). Therefore, we tested 237 

the relationship between genotype and methylation at CpGs in the identified DMR to 238 

determine whether differential methylation was associated with, or independent of, 239 

underlying genotype. 240 

 241 

We extracted genotypes at SNVs located five kilobases (kb) up and downstream of DMRChr21 242 

boundaries using the KRIS R package31, and assessed linkage disequilibrium (LD) using 243 

bivariate correlations of genotype frequencies with a significance threshold of p < 0.05.  244 

 245 

To test if differential methylation within DMRs was driven by genetic effects rather than 246 

parity, we performed a linear regression with methylation as the dependent variable and 247 

genotype and parity as the independent variables. 248 

 249 

Multi-factor feature selection 250 

Elastic net regression is a form of penalised regression that is useful for uncovering multiple 251 

conjoint effects in datasets with correlated features (e.g., methylation) and a greater number 252 

of features than samples (p>>>n). This method can be useful for identifying important 253 

features with greater sensitivity than conventional EWAS analyses. We used machine 254 

learning to build an elastic net regression model to identify CpGs at which methylation was 255 

associated with parity, inputting beta values at approximately 748,000 CpGs. Samples were 256 
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split into training (n=134) and testing sets (n=58) to reduce overfitting. The model was 257 

trained using a cross-validation resampling method with 10 iterations, with the train function 258 

of the caret R package32. The optimal alpha value was used in a subsequent k-fold cross-259 

validation elastic net regression to identify the minimum lambda value; using the cv.glmnet 260 

function of the glmnet R package33. These alpha and lambda values were used in the final 261 

elastic net regression model that was applied to the testing set using the glmnet function of 262 

glmnet R package33. Features (CpGs) identified by the model to be associated with parity 263 

were compared to DMPs and DMRs identified in the primary analysis, as well as mapped to 264 

genes for GSEA performed as described above. 265 

 266 

Gene-set enrichment analysis (GSEA) 267 

We used gene-set enrichment analysis (GSEA) to generate hypotheses about the functional 268 

consequence of differentially methylated genes between nulligravida and parous women. All 269 

CpGs that were associated with parity in the primary differential methylation analysis and 270 

elastic net regression were used as input. We conducted GSEA using two methods. Firstly, 271 

the ToppGene online application programming interface (API)34 which takes an FDR ranked 272 

gene list ranked as input, with hypomethylated and hypermethylated genes analysed 273 

separately. Secondly, we used the GOmeth function35 of the missMethyl R package36 to 274 

address probe number and multi-gene bias specific to methylation data from arrays. A list of 275 

DMPs and all CpGs tested were used as input, and both Gene Ontology (GO) and KEGG 276 

pathway collections were tested. We used a Benjamini-Hochberg adjusted p-value (FDRB&H) 277 

threshold of 0.05 to assess the statistical significance of enriched gene sets. 278 

 279 

Methylation age analysis 280 
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Methylation age is the prediction of biological age from methylation levels at a subset of 281 

CpGs (clock CpGs).  PhenoAge37 and GrimAge38 are the most accurate and widely used 282 

methylation age algorithms, and have been associated with increased risk of various 283 

morbidities and mortality37–39. 284 

 285 

We estimated methylation age using the PhenoAge37 algorithm with the methyAge function 286 

of the ENmix R package40. GrimAge was calculated with the online calculator at 287 

https://dnamage.genetics.ucla.edu/.  MAA was defined as the residual term from regressing 288 

chronological age on methylation age estimates. For each algorithm, Shapiro-Wilk normality 289 

tests were used to test the normality of the MAA distribution. To test if mean MAA was 290 

significantly different between groups a one tailed t-test was used for the PhenoAge 291 

algorithm, and a Mann-Whitney test for the GrimAge algorithm. 292 

 293 

Results 294 

Cohort descriptive statistics  295 

This study included 192 females with RMS across four study sites. Participants were 296 

categorised as nulligravida (n=96) or parous (n=96) based on available pregnancy history 297 

data. For parous participants, the median time from last conception to blood collection was 298 

16.66 years (range = 1.45 – 44.42 years, Table 1). 299 

 300 

Differential methylation analysis – whole blood 301 

After methylation data pre-processing, approximately 747,000 (86%) of 867,000 probes 302 

remained for differential methylation analysis (Supplementary Fig. 2). Batch effect analysis 303 

identified Plate, Sentrix ID and Sentrix Position as significant sources of technical variation 304 
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(p < 0.01), which were corrected and reduced to negligible effects using the Combat 305 

algorithm19 (Supplementary Fig. 2).  306 

 307 

Whole-blood methylation analysis revealed 903 differentially methylated positions (DMPs) 308 

surpassing genome-wide thresholds (FDR < 0.05 and Dmeth > 1%, Table 2 shows the top 10 309 

DMPs by effect size (full list is available in Supplementary Table 1. DMPs mapped to 585 310 

genes and 318 unannotated genomic locations. Of the 903 DMPs, 365 (40%) were 311 

hypomethylated and 528 (60%) were hypermethylated in the parous group relative to the 312 

nulligravida group (Supplementary Fig. 3). Dmeth ranged from -13.28% to 16.10%. CpG 313 

islands are associated with gene promoter regions, in which methylation is likely to impact 314 

gene transcription. Only 106 (11.7%) of DMPs were in islands, with 173 (19.2%) in shores, 315 

64 (7.1%) in shelves and the majority in open sea regions (560, 62.0%). Of 903 DMPs, five 316 

overlapped with the 10,592 DMPs identified by Mehta et al. (2019, Supplementary Table 317 

2). 318 

 319 

No differentially methylated regions (DMRs) were identified using the DMRcate algorithm at 320 

an FDR threshold of 0.05. Therefore, we identified DMRs from our DMP list, defining a 321 

DMR as a region containing at least three DMPs with the same effect direction and FDR < 322 

0.01, within 1000bp of the adjacent DMP/s21. Using this definition, we identified five DMRs 323 

on Chromosomes 7, 15, 17, 18 and 21 (Table 3). However, only DMRChr7 (∆max = 0.029, FDR 324 

= 0.021, Supplementary Fig. 4a) and DMRChr15 (∆max = 0.049, FDR = 0.015, Supplementary 325 

Fig. 4b) remained after mQTL analysis (see below). DMRChr7 mapped to CRYGN, while 326 

DMRChr15 mapped to an intergenic region. Both DMRs were hypermethylated in the parous 327 

group, relative to the nulligravida group.  328 

 329 
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Differential methylation analysis – immune cell specific   330 

Differential methylation analysis of whole blood may not be sensitive to cell specific DMPs 331 

associated with outcome. Therefore, we estimated and compared the proportion of immune 332 

cell types between groups. There were no significant differences in immune cell type 333 

proportions between nulligravida and parous women (data not shown), and therefore we did 334 

not need to adjust our whole blood analysis for this variable. Statistical deconvolution 335 

revealed four CD4+ (Table 4) and eight CD8+ T cell specific DMPs (Table 4). All CD4+ T 336 

cell DMPs were hypermethylated in the parous group compared to the nulligravida group, 337 

and only one DMP mapped to a gene (cg14172633, HMCN1). In CD8+ T cells, three DMPs 338 

were hypermethylated and five were hypomethylated in the parous group. The DMP 339 

cg25577322 had the largest effect size (estimate = -8.32, SE = 1.45) and mapped to AHR. 340 

Seven of the eight DMPs mapped to a gene, and two DMPs mapped to OR2L13 (cg08944170 341 

and cg20507276). 342 

 343 

Sensitivity analysis  344 

Sensitivity analyses revealed no major effects of symptom duration, ARR, cell type 345 

proportion estimates (B cells, CD4+ cells, CD8+ cells, NK cells, monocytes, and 346 

granulocytes), methylation age acceleration (PhenoAge and GrimAge), treatment at blood 347 

collection (yes or no) or smoking status at blood collection (ever or never) on differential 348 

methylation in this cohort, as demonstrated by the lack of association between CpGs and the 349 

covariates tested (data not shown). Therefore, these covariates were not included in the 350 

differential methylation analyses so as not to unnecessarily burden the model and reduce 351 

statistical power. One CpG (cg03708250) showed suggestive association with age at blood 352 

collection (FDR = 0.042) but was not identified as a DMP. Of the 2,622-smoking associated 353 
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CpGs from Joehanes (2016) and 903 DMPs identified in this study, 25 overlapped and were 354 

removed prior to downstream analyses to avoid confounding (Supplementary Table 3). 355 

 356 

Methylation quantitative trait loci (mQTL) analyses  357 

After quality control and filtering, 183 patients remained for mQTL analysis. SNVs located 358 

within 5kb up/downstream of each DMR were identified for LD. DMRChr7 contained five 359 

independent SNVs (Supplementary Table 4). Methylation at cg23666844, cg16077872 and 360 

cg17362899 was associated with genotype at 7:151133104:G:C, 7:151135503:C:T, 361 

7:151137301:G:C and 7:151140431:T:C (Supplementary Table 5). After accounting for 362 

genotype at these SNVs, methylation at cg23666844, cg16077872 and cg17362899 remained 363 

associated with parity despite the presence of mQTLs (Supplementary Table 5).  364 

 365 

DMRChr15 contained five independent SNVs (Supplementary Table 4). Methylation at 366 

cg26795333 was associated with genotype at all SNVs. Methylation at cg20560283 and 367 

cg17174814 was associated with genotype at 15:67224485:A:G, 15:67224701:G:C, 368 

15:67224979:C:G and 15:67228085:C:T (Supplementary Table 5). After accounting for 369 

genotype at these SNVs, methylation at cg26795333, cg20560283 and cg17174814 remained 370 

associated with parity despite the presence of mQTLs  (Supplementary Table 5).  371 

 372 

DMRChr17 contained four independent SNVs (Supplementary Table 4). Methylation at 373 

cg22349396 was associated with genotype at 17:67225730:G:C, 17:67226643:C:T and 374 

17:67227383:A:T. Methylation at cg06444025 and cg01726265 was not significantly 375 

associated with genotype at any SNV (data not shown). However, methylation at all CpGs 376 

was no longer associated with parity after accounting for genotype at these four SNVs 377 

(Supplementary Table 5).  378 
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 379 

DMRChr18 contained six independent SNVs (Supplementary Table 4). Methylation at 380 

cg23973972 was associated with genotype at 18:67224072:A:C, 18:67226036:G:A, 381 

18:67226036:G:A and 18:67227787:A:C (Supplementary Table 5). Methylation at 382 

cg15682262 was associated with genotype at 18:67224072:A:C, 18:67226036:G:A, 383 

18:67226036:G:A and 18:67227787:A:C. Methylation at cg27477494 was associated with 384 

genotype at 18:67226036:G:A, 18:67226036:G:A and 18:67227787:A:C. After accounting 385 

for genotype at these SNVs, methylation at cg23973972, cg15682262 and cg27477494 was 386 

no longer associated with parity (Supplementary Table 5).  387 

 388 

DMRChr21 contained three independent SNVs: 21:44782007:C:T, 21:44782634:C:A and 389 

21:44782732:A:C (Supplementary Table 4). Methylation at cg17577862, cg02260098, 390 

cg25191041 and cg14081667 was not associated with genotype at any SNV (data not shown). 391 

After accounting for genotype at these SNVs, methylation at cg17577862  remained 392 

associated with parity, however, methylation at cg02260098, cg25191041, cg14081667 was 393 

no longer associated with parity (Supplementary Table 5). 394 

 395 

After accounting for genotype at independent SNVs located within (plus 5kb up/downstream) 396 

of each DMR, only DMRChr7 and DMRChr15 contained enough DMPs (≥ 3) to be considered 397 

DMRs. 398 

 399 

Multi-factor feature selection 400 

Using elastic net regression, we identified a panel of CpGs conferring a conjoint association. 401 

We determined the optimal alpha (0.1) and lambda (0.02) values for our data using a cross 402 
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validation approach. With an alpha value closer to zero than one, our elastic net regression 403 

resembled a lasso regression more closely than a ridge regression.  404 

 405 

Using these model parameters, our elastic net regression model selected 1556 CpGs 406 

associated with parity (top 10 shown in Table 5, full list in Supplementary Table 6 in our 407 

training dataset (n=134, 70% of cohort). Of these, 322 CpGs (34.5%) were also identified as 408 

DMPs in our primary analysis. The most important CpG in the model, cg08186508 (variable 409 

importance = 100), is located on Chromosome 14 and maps to the PIGH gene. However, 410 

cg08186508 was not identified as a DMP in our primary analysis suggesting its effect is in 411 

correlation with other CpGs.  412 

 413 

Gene-set enrichment analysis (GSEA) 414 

We conducted GSEA on all differentially methylated genes identified in the primary 415 

methylation analysis and elastic net regression to elucidate potentially small but cumulative 416 

effects of parity on methylation patterns (Supplementary Table 7). 609 of 903 DMPs (67%), 417 

and 1208 of the 1556 CpGs (78%) identified in the elastic net regression, mapped to a gene. 418 

In total, 1318 unique genes were used for GSEA.  419 

 420 

ToppGene revealed that differential methylation, regardless of direction of effect, was 421 

primarily enriched in biological processes (Figure 1a) and cellular compartments (Figure 422 

1b) related to neuroplasticity, including neurogenesis (ngenes = 178, FDRB&H = 2.77x10-5), 423 

neuron projection morphogenesis (ngenes = 87, FDRB&H = 2.77x10-5) and neuron projection 424 

(ngenes = 175, FDRB&H = 6.96x10-10). Furthermore, the top enriched molecular functions 425 

related to ion transport including cell adhesion molecule binding (ngenes = 70, FDRB&H = 426 

2.06x10-4) and GTPase regulator activity (ngenes = 61, FDRB&H = 3.29x10-5, Figure 1c). 427 
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 428 

Hypomethylated genes (n=576) drove the enrichment of neuron development and growth 429 

biological processes and cellular compartments. Alternatively, hypermethylated genes 430 

(n=775) drove the enrichment of signal transduction biological processes and molecular 431 

functions. 432 

 433 

There were no enriched gene ontology terms using GOmeth with an FDR threshold of 0.05. 434 

This suggests that our ToppGene findings could be a result of probe number or multi-gene 435 

bias. However, we used GSEA as an exploratory analysis to generate hypotheses about the 436 

mechanism in which pregnancy impacts MS clinical outcomes and have therefore interpreted 437 

the results with caution. 438 

 439 

Methylation age analysis  440 

Methylation Age Acceleration (MAA) measures the disparity between chronological and 441 

biological age as estimated using methylation age algorithms, and can provide insight into an 442 

individual’s health and lifespan39,37,38. As groups were a priori matched by age, there were no 443 

significant differences in chronological age between groups (Table 1).  444 

 445 

The correlation between chronological age and methylation age using the PhenoAge and 446 

GrimAge algorithms were 0.77 and 0.91, respectively. We did not find any evidence for 447 

differences in methylation age between groups using the GrimAge algorithm (p = 0.854). 448 

However, we did find significant differences in methylation age between groups using the 449 

PhenoAge algorithm (p = 0.034, Supplementary Fig. 5).  450 

 451 
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MAA was calculated as the residual term from regressing chronological age on methylation 452 

age. Residual terms were normally distributed for the PhenoAge (p = 0.551) algorithm, but 453 

not the GrimAge algorithm (p = 3.52x10-05). There were significant differences in MAA 454 

between nulligravida and parous groups using both the PhenoAge (mean difference =  2.27 455 

years, p = 0.001) and GrimAge algorithms (mean difference =  1.44 years, p=0. 0.005, 456 

Figure 2).  457 

 458 

 459 

Discussion  460 

Studies have demonstrated an association between pregnancy and reduced disability 461 

accumulation in women with MS (wwMS)2, lasting for up to ten years post pregnancy4. 462 

Recent studies have identified associations between birth history and methylation patterns in 463 

health41–43 and MS8, as well as negative associations between birth history and methylation 464 

age acceleration in women without MS6. No methylome-wide studies to date have examined 465 

associations between methylation patterns and parity, or methylation age acceleration in 466 

wwMS.  467 

 468 

Our primary EWAS of whole blood methylation differences between nulligravida and parous 469 

wwMS identified 903 differentially methylated positions (DMPs) across autosomes. Of the 470 

DMPs identified in our study, five overlapped with those previously identified by Mehta and 471 

colleagues (2019)8. This is reasonably explained by differences in cohort size and study 472 

design, where Mehta et al. (2019) sought to identify DMPs in genes that were identified a 473 

priori8, compared to our genome-wide approach. Moreover, they included women with a 474 

history of pregnancy, compared to our study which included only women with a history of 475 

birth. The overlapping DMPs mapped to PRIC285, GRTP1, SIM2 and CCDC90B, and one 476 
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intergenic region. PRIC285 is a nuclear transcriptional co-activator and an interferon effector 477 

gene that is integral to antiviral immune responses44. GRTP1, is a GTPase activator 478 

associated with platelet counts45. Notably, SIM2 is a transcription factor and master regulator 479 

of central nervous system development and neurogenesis46, and a link between neurogenesis, 480 

neuronal reserve and MS outcomes is frequently hypothesised47. Further, CCDC90B is a 481 

protein coding gene which regulates mitochondrial calcium ion concentrations affecting ATP 482 

production45. A link between mitochondrial dysfunction in neurons and MS outcomes has 483 

recently been identified48. While we identified a different direction of effect at CCDC90B 484 

between our study and Mehta et al. (2019), this may be due differences in sample size or 485 

timing of sample collection. In this study, we confirm that genes related to these processes 486 

are differentially methylated between nulligravida and parous wwMS for up to 44.4 years 487 

post-pregnancy. Single nucleotide variants associated with mitochondrial and CNS function 488 

were recently shown to associate with MS severity outcomes49. Our study demonstrates a 489 

putative mechanism by which pregnancy may impact long-term legacy effects on outcomes 490 

in wwMS. 491 

 492 

In addition to 903 DMPs, we identified two differentially methylation regions (DMRs) on 493 

Chromosome 7 and 15. DMRChr7 contains three DMPs in the transcript start site (up to 494 

1500bp 5' of 5'UTR) promoter region of CRYGN which encodes crystallin gamma N, a 495 

structural protein in eye lenses. The literature on CRYGN is limited, and it has not previously 496 

been linked to pregnancy or MS. Our finding requires validation in an independent cohort 497 

and replicated DMP/DMR signals would provide a strong rationale for in vitro functional 498 

studies of gene and protein expression control mediated by the DMR. 499 

 500 
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Using statistical deconvolution, we identified four CD4+ T cell specific DMPs (csDMPs). 501 

CD4+ T cells are central to immune regulation and tolerance, and have been strongly linked 502 

to both MS50 and pregnancy51. Multiple studies have reported changes in the epigenetic 503 

patterns of CD4+ T cells during pregnancy in wwMS7,52,53. The only gene-associated DMP 504 

was at the transcription start site for hemicentin 1 (HMCN1), a member of the 505 

immunoglobulin superfamily. However, to date HMCN1 has not been associated with 506 

differential methylation in healthy populations or wwMS during pregnancy52. Nor is there 507 

literature linking HMCN1 to MS risk. Therefore, this finding, together with the association of 508 

differential methylation of CRYGN is highly novel and requires independent validation. 509 

 510 

We also identified eight CD8+ T cell csDMPs that map to six genes and one intergenic 511 

region. The involvement of CD8+ T cells in MS pathophysiology is well established50. 512 

During pregnancy CD8+ T cells are critical for maternal–fetal tolerance and protection 513 

against viruses54. The functions and diseases associated with the CD8+ T cell csDMPs 514 

identified in this study suggest they are markers of pregnancy outcomes, rather than genes 515 

implicated in the modulation of MS outcomes due to pregnancy (e.g., OR2L1, HOOK2 and 516 

CUL2). Most notably, Aryl Hydrocarbon Receptor (AHR, cg25577322) is upregulated in 517 

decidual natural killer cells in women with recurrent spontaneous abortion and was 518 

hypomethylated in parous women in our study55. Here, we excluded pregnancies ending in 519 

miscarriage or termination to prevent identifying epigenetic biomarkers of miscarriage or 520 

termination. While it is possible that this signal was driven by unreported terminations and/or 521 

unknown miscarriages, it was identified in peripheral CD8+ T cells only (not whole blood) 522 

and is therefore unlikely to be a marker of recurrent spontaneous abortion in this cohort. 523 

Furthermore, multiple studies have recently correlated AHR agonist activity with MS subtype 524 

and prognosis56,57. In these studies, AHR agonist activity increase was associated with relapse 525 
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in CIS and RRMS56. A decrease in AHR agonist activity was associated with RRMS 526 

remission56 and progressive MS,57 thus implicating AHR in neuroinflammatory processes. In 527 

our study, AHR was hypomethylated. Hypomethylation is often, but not always associated 528 

with upregulation of gene expression. Unfortunately, we did not assess gene expression. 529 

However, this provides a plausible mechanism by which pregnancy could modulate disease 530 

outcomes and warrants further investigation.  531 

  532 

We conducted GSEA on 1318 differentially methylated genes identified in the primary 533 

analysis and elastic net regression to generate hypotheses about the functional role of these 534 

genes in long-term MS outcomes. Hypomethylated genes in parous wwMS were enriched in 535 

neuron development and growth biological processes and cellular compartments, and 536 

hypermethylated genes were enriched in signal transduction biological processes and 537 

molecular functions. Mehta et al. (2019) similarly found enrichment of neuronal pathways 538 

including axon guidance in their study of differentially expressed genes between nulliparous 539 

and parous wwMS8. While the majority of DMPs (95.9%) in our primary differential 540 

methylation analysis had small effect sizes, the strength of our penalised regression approach 541 

is the ability to reveal small, correlated relationships between features. Taken together, these 542 

findings suggest that methylation impacts neuraxonal maintenance and neurite growth in 543 

parous women in a small but cumulative manner, up to 44.4 years after pregnancy. These 544 

findings are consistent with reports that the brains of women who have children undergo 545 

pronounced morphological changes as a result of pregnancy58. 546 

     547 

Ours is the first study to report a reduction in MAA in parous wwMS, compared to age-548 

matched nulligravida wwMS. We demonstrated that parous women have a reduced mean 549 

MAA of between 1.44 - 2.27 years depending on the algorithm employed.  This shows that, 550 
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as in health, parity is associated with a reduction in MAA in wwMS6. GrimAge is the newest 551 

algorithm with robust associations with morbidity and mortality38. Furthermore, PhenoAge 552 

acceleration is associated with an increased risk of physical functioning problems59. As a 553 

whole, our findings demonstrate slower biological aging in parous wwMS, and potentially a 554 

longer period of health and lifespan59. 555 

 556 

Ours is the largest study to date investigating the association between genome-wide 557 

methylation and parity in women with relapse-onset MS. We identified hundreds of 558 

methylation changes associated with parity that may underlie long-term outcomes in wwMS.  559 

Cohort matching by age limited confounding and erroneous associations between methylation 560 

patterns and parity. We aimed to mitigate against confounding by disease severity by 561 

matching for ARMSS scores, therefore allowing us to study the relationship between 562 

methylation patterns and parity specifically. Whether these changes are specific to wwMS or 563 

a broader response to pregnancy remain to be confirmed in future studies. We were 564 

underpowered to adjust for a range of clinical and environmental factors potentially 565 

associated with methylation patterns, including number of births and DMT60. Study power 566 

also limited our ability to identify small cell type-specific effects beyond those identified in T 567 

cells. Therefore, our findings require validation in a larger, independent cohort of wwMS. As 568 

ours is a retrospective and cross-sectional study, we were not able to establish a causal link 569 

between pregnancy, methylation pattern changes, and long-term clinical outcomes in wwMS. 570 

We are currently undertaking a longitudinal and prospective study of methylation changes 571 

during and after pregnancy relative to a nulligravida baseline, to investigate temporal and 572 

causal relationships between pregnancy, methylation, and disease outcomes in wwMS. This 573 

could lead to the identification novel therapeutic targets. 574 

 575 
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Conclusion  576 

We investigated the association between whole blood and cell type specific genome-wide 577 

methylation patterns and parity in 192 women with relapse-onset MS. We identified small but 578 

potentially cumulative differences in whole-blood and T-cell methylation patterns in genes 579 

related to neural plasticity, offering a putative molecular mechanism driving the long-term 580 

effect of pregnancy on MS outcomes. We further identified reduced methylation age 581 

acceleration in parous wwMS, demonstrating slower biological aging compared to 582 

nulligravida wwMS. As methylation patterns can be cell type specific, our results suggest a 583 

potential ‘CNS signature’ of methylation in peripheral immune cells, as previously described 584 

in relation to MS progression61.  This is the first genome-wide methylation study of parity in 585 

wwMS and therefore, validation studies are needed to confirm our findings.  586 
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Data availability 587 

Supplemental files contain data supporting the conclusions in this article. Data access 588 
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(vilija.jokubaitis@monash.edu). Clinical data from the MSBase Registry: To protect 590 

participant confidentiality, de-identified patient-level data sharing may be possible in 591 
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Figure 1. Gene Set Enrichment Analysis (GSEA) using ToppGene API. Input data were genes identified in 

both the differential methylation analysis and elastic net regression (n=1318). The a) ten most significantly 

enriched biological processes, b) ten most significantly enriched cellular compartments, c) ten most significantly 

enriched molecular functions. Gene ratio is the ratio of the number of genes in the query list and the hit count 

for that gene set in the genome.   
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Figure 2. Methylation age acceleration (MAA) by sample group using the PhenoAge and GrimAge 

algorithms. There are significant differences in MAA between groups using the PhenoAge and GrimAge 

algorithms. PhenoAge: nulligravida mean = 1.14 (SE = 0.502), parous mean = -1.14 (SE = 0.504), mean 

difference =  2.27 years, p = 0.001. GrimAge: nulligravida mean = 0.720 (SE = 0.749), parous mean = -0.720 

(SE = 856), mean difference =  1.44 years, p=0. 0.005. 

Abbreviations: SE = standard error 
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Tables  

Table 1. Cohort summary statistics   

Characteristics   
Nulligravida  

(n=96) 

Parous 

(n=96) 

All 

(n=192) 

Cohen’s 

d 

Time from last 

pregnancy to 

blood 

collection 

(years) 

Median (IQR) NA 
16.66 (9.13, 

27.66) 
NA - 

Range NA 1.45 – 44.42  NA  

ARMSS score Median (IQR) 
6.63 (1.47, 

8.73) 

7.08 (1.29, 

8.22) 

6.99 (1.39, 

8.37) 
0.01 

  Range 0.16 – 9.55 0.19 – 9.91 0.16 – 9.91   

Disease course 
RRMS 57 (60.0%) 63 (66.3%) 120 (63.2%) 

NA 
SPMS 38 (40.0%) 32 (33.7%) 70 (36.8%) 

Sex 
Female 124 (100.0%) 96 (100.0%) 220 (100.0%) 

NA 
Male 0 (0%) 0 (0%) 0 (0%) 

Age at most 

recent visit 

Median (IQR) 
48.3 (40.7, 

56.6) 

48.6 (39.5, 

57.2) 

48.9 (40.7, 

57.1) 
0.03 

Range 27.6 – 70.6 24.2 – 69.8 24.2 – 70.6   

Age at blood 

collection 

Median (IQR) 
48.7 (41.2, 

57.0) 

48.9 (40.3, 

57.9) 

48.9 (40.7, 

57.1) 
0.03 

Range 28.3 – 70.6 26.8 – 69.8 26.8 – 70.6   

Follow-up in 

MSBase 

(years) 

Median (IQR) 
6.26 (3.46, 

8.91) 

6.92 (5.51, 

9.42) 

6.54 (4.16, 

8.99) 
0.26 

Range 0.00 – 24.80 0.00 – 19.30 0.00 – 24.80   

Number of 

EDSS scores 

assessed 

Median (IQR) 7.5 (4.0, 9.0) 8.5 (6.0, 9.0) 8.0 (5.0, 9.0) 0.35 

Range 1.0 – 9.0 1.0 – 9.0 1.0 – 9.0   
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Symptom 

duration 

(years) 

Median (IQR) 
15.77 (9.62, 

24.60) 

14.98 (8.84, 

20.65) 

15.11 (9.26, 

22.15) 
0.15 

Range 1.01 – 42.37 0.21 – 41.56 0.21 – 42.37   

ARR in year 

preceding 

blood 

collection 

Median (IQR) 0.0 (0.0 – 0.0) 0.0 (0.0 – 0.0) 0.0 (0.0 – 0.0) 

0.08 
Range 0.0 – 3.0 0.0 – 2.0 0.0 – 3.0 

Number of 

births prior to 

blood 

collection 

0 96 (100%) 0 (0%) 96 (50%) 

- 

1 0 (0%) 29 (30%) 29 (15%) 

2 0 (0%) 46 (48%) 46 (24%) 

3 0 (0%) 14 (15%) 14 (7%) 

³4 0 (0%) 7 (7%) 7 (4%) 

DMT at blood 

collection 

None 37 (38%) 34 (35%) 71 (37%) 

- 

Alemtuzumab 0 (0%) 1 (1%) 1 (1%) 

Dimethyl 

fumarate 
2 (2%) 8 (8%) 10 (5%) 

Fingolimod 21 (22%) 25 (26%) 46 (24%) 

Glatiramer 

acetate 
7 (7%) 3 (3%) 10 (5%) 

Interferon beta 12 (13%) 10 (11%) 22 (11%) 

Natalizumab 17 (18%) 11 (12%) 28 (15%) 

Teriflunomide  0 (0%) 4 (4%) 4 (2%) 

Smoking 

history at 

blood 

collection  

Ever 16 (16.7%) 39 (40.6%) 55 (28.6%) - 

Never 17 (17.7%) 28 (29.2%) 45 (23.4%)  

Unknown 63 (65.6%) 29 (30.2%) 92 (47.9%)  

Abbreviations: ARMSS = Age-Related Multiple Sclerosis Severity Score, IQR = Interquartile Range, EDSS = Expanded Disability Status 

Scale, ARR = Annualised Relapse Rate, DMT = Disease Modifying Therapy 
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Table 2. Top 10 differentially methylated positions (DMPs) by effect size (∆meth) 

CpG CHR MAPINFO ∆meth FDR Gene Feature CGI 

cg12036633 15 63758958 –0.161 0.036 
 

IGR opensea 

cg02122327 13 50194322 0.133 0.028 
 

IGR opensea 

cg03885684 2 120770471 0.108 0.014 EPB41L5 TSS200 island 

cg24000535 14 91110600 –0.083 0.037 LOC101928909 Body opensea 

cg08166072 2 46213920 0.080 0.017 PRKCE Body opensea 

cg14248704 5 151470842 0.074 0.014 CTB-12O2.1 Body opensea 

cg10140164 9 75597328 –0.072 0.029 
 

IGR opensea 

cg07723864 13 25670042 –0.069 0.029 PABPC3 TSS1500 island 

cg06809965 14 70070333 –0.063 0.024 
 

IGR opensea 

cg19938535 6 25341389 0.063 0.047 LRRC16A Body opensea 

 Abbreviations: Chr = Chromosome, bp = base pair, CpG = cytosine-phosphate-guanine, CGI = CpG island, max = 

maximum, IGR = intergenic region, TSS200 = transcript start site (up to 200bp 5' of 5'UTR) promoter region, Body = gene 

body, TSS1500 = Transcript start site (up to 1500bp 5' of 5'UTR) promoter region   
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Table 3. Differentially methylated region (DMR)  

Chr Start (bp) End (bp) Width n 
CpGs ∆max* ∆mean

* 
Gene Feature CGI CpG Names 

7 151137882 151138295 413 3 0.029 0.023 CRYGN TSS1500 Shore 
cg23666844, 
cg16077872, 
cg17362899 

15 67228722 67228986 264 3 0.049 0.039  IGR Open 
Sea 

cg26795333,  
cg20560283, 
cg17174814 

17 4803684 4804357 673 3 –
0.045 –0.042 CHRNE Body Island 

cg22349396, 
cg06444025, 
cg01726265 

18 72152075 72152314 239 3 0.046 0.033  IGR Open 
sea 

cg23973972, 
cg15682262, 
cg27477494 

21 44782331 44782497 166 4 0.022 0.018 LINC01679 TSS200, 
IGR Island 

cg17577862, 
cg02260098, 
cg25191041, 
cg14081667 

*Change from nulligravida to parous groups 

Abbreviations: Chr = chromosome, bp = base pair, CpG = cytosine-phosphate-guanine, CGI = CpG island, max = 

maximum, CRYGN =crystallin gamma N, CHRNE = cholinergic receptor nicotinic epsilon subunit, LINC01679 = long 

intergenic non-coding RNA 1679, TSS1500 = transcript start site (up to 1500bp 5' of 5'UTR) promoter region , TSS200 = 

transcript start site (up to 200bp 5' of 5'UTR) promoter region, IGR = intergenic region   
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Table 4. Cell specific differentially methylated positions (csDMPs) 

CpG Est. SE p Nulligravida 
mean* 

Parous 
mean*  

Direction 
of 
effect** 

Chr bp Gene Feature 

CD4+ T cells 

cg14172633 –3.64 0.62 1.7x10-8 –3.10 –2.84 Hyper. 1 185703557 HMCN1 TSS200 

cg15145296 –3.23 0.56 3.6x10-8 –4.24 –3.98 Hyper. 3 125709740   

cg06032337 –3.17 0.56 5.1x10-8 –2.82 –2.71 Hyper. 6 29648468   

cg06818823 –5.88 1.04 5.8x10-8 –6.55 –5.90 Hyper. 6 46459236   

CD8+ T cells 

cg01858500 –4.27 0.71 1.1x10-8 –3.57 –3.52 Hyper. 17 68202566   

cg08944170 –2.78 0.48 2.3x10-8 –3.38 –3.60 Hypo. 1 248100614 OR2L13 1stExon 

cg25577322 –8.32 1.45 4.0x10-8 –6.33 –6.94 Hypo. 7 17338213 AHR TSS200 

cg16402757 –2.14 0.38 4.6x10-8 –2.14 –2.05 Hyper 10 35311004 CUL2 Body 

cg03495768 –3.05 0.54 6.1x10-8 –2.98 –3.07 Hypo. 13 100637113 ZIC2 Body 

cg04798314 –2.71 0.48 6.7x10-8 –2.35 –2.56 Hypo. 1 246668601 SMYD3 Body 

cg11738485 –2.42 0.43 6.8x10-8 –2.79 –2.51 Hyper 19 12877000 HOOK2 Body 

cg20507276 –2.68 0.48 8.6x10-8 –3.40 –3.55 Hypo. 1 248100600 OR2L13 1stExon 

*Mean M-values reported as M-values used in cell-specific statistical analyses  

**Nulligravida to parous  

Abbreviations: CpG = cytosine-phosphate-guanine, Est = estimate (from linear regression), SE = standard error, Hyper. = 

hypermethylated, Chr = chromosome, bp = base pair, TSS200 = transcript start site (up to 200bp 5' of 5'UTR) promoter 

region  
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Table 5. Top ten CpGs associated with parity as selected by the elastic net model   
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Abbreviations: Chr = Chromosome, bp = base pairs 

 

CpG Importance Chr Position (bp) Gene Feature 

cg08186508 100.00 14 68067006 PIGH 5'UTR 

cg26506013 99.95 5 133984553 SEC24A 1stExon 

cg23841819 99.92 1 204970383 NFASC Body 

cg25485991 99.86 17 8066461 VAMP2 TSS200 

cg23367339 99.74 17 36622717 ARHGAP23 Body 

cg17070338 99.69 13 111268441 CARKD Body 

cg07360021 99.49 6 151186904 MTHFD1L 1stExon 

cg11918372 99.14 2 48132755 FBXO11 5'UTR 

cg27573735 99.04 3 82857144   

cg12835012 98.88 4 183795785   
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