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Key Points 

Question: Are metabolites associated with stroke, dementia, and MRI markers of cerebral 

small vessel disease? 

Findings: In an analysis of individual-participant data from 118,021 participants, we 

identified 289 metabolites that were significantly associated with stroke, dementia, and MRI 

markers of small vessel disease. 

Meaning: Metabolic markers were associated with risk of stroke, dementia, and MRI 

markers of small vessel disease, which could be used to develop personalized prediction 

models and novel treatment approaches for patients at increased risk of vascular-related 

conditions. 
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Abstract 

Background: Cerebral small vessel disease is a major cause of ischemic stroke and vascular 

dementia, which are among the leading causes of death and disability worldwide.  

Metabolomics can help identify novel risk factors to better understand pathogenesis, predict 

disease progression and severity, and identify therapeutic targets. 

Methods: We analyzed metabolomics profiles from 118,021 UK Biobank participants with 

baseline metabolomics measurements (baseline surveys, 2006-2010; latest follow-up, March 

2022). We examined cross-sectional associations of 325 metabolites with clinical diagnoses 

of stroke and dementia and MRI markers of small vessel disease. We also evaluated 

relationships between metabolites and future risk of stroke and dementia and performed 

Mendelian randomization to ascertain causal relationships. 

Results: Among 118,021 participants (54% women; mean recruitment age, 56.5 years), 2,477 

stroke and 1,785 dementia events were recorded (median follow-up, 13.1 years). In cross-

sectional analyses, lower levels of apolipoproteins, free cholesterol, cholesteryl esters, fatty 

acids, lipoprotein particle concentrations, phospholipids, and triglycerides were associated 

with increased white matter microstructural damage on diffusion tensor MRI. Lower levels of 

amino acids and fatty acids and higher levels of ketone bodies were associated with increased 

risk of dementia. In longitudinal analyses, lipoprotein subclasses of very large HDL were 

associated with increased risk of stroke, and acetate, 3-hydroxybutyrate, and relative 

lipoprotein lipid concentrations were associated with increased risk of dementia. Mendelian 

randomization analyses identified strong evidence supporting causal relationships for many 

associations. 

Conclusions: In this large-scale metabolomics study, we found multiple metabolites 

associated with stroke, dementia, and MRI markers of small vessel disease. Further studies 

may help develop personalized prediction models for patients at increased risk of stroke and 

dementia and provide insights into mechanistic pathways and future treatment approaches. 
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Introduction 

There are 6.3 million deaths due to stroke and 1.9 million deaths due to dementia each year,1 

and 50 million people currently living with dementia.2 Improved techniques are needed to 

identify better predictive markers and uncover novel disease mechanisms to develop new 

treatments. 

Increasing evidence implicates vascular risk factors and chronic cerebrovascular disease in 

the pathogenesis of not only vascular dementia, but also neurodegenerative dementias such as 

Alzheimer’s disease (AD).3 Recent data have suggested treating vascular risk factors, 

particularly hypertension, may reduce dementia risk.4 This emphasizes the potential for 

targeting cerebrovascular disease to reduce the burden of all types of dementia. Even with 

small treatment effects this could have a major global impact. 

One specific subtype of cerebrovascular disease which appears closely linked to dementia 

risk is cerebral small vessel disease (SVD), a disease of the small perforating vessels within 

the white matter and deep grey matter nuclei. SVD results in lacunar infarcts and more 

chronic changes seen on MRI, including white matter hyperintensities (WMH), cerebral 

microbleeds, enlarged perivascular spaces, brain atrophy, and diffuse white matter damage 

identified using diffusion tensor imaging (DTI).5 SVD is the major pathology underlying 

vascular dementia, and it also interacts with Alzheimer’s pathology to increase the 

probability of developing clinical dementia.6 Therefore it represents an important treatment 

target not only to reduce vascular dementia, but also to reduce the impact of 

neurodegenerative dementias such as AD. 

Metabolomics, the high-throughput identification and quantification of small molecules in 

biological samples,7 enables detailed quantification of metabolic phenotypes, which can be 

used to identify novel biomarkers to diagnose and monitor disease and characterize metabolic 

pathways underlying disease pathogenesis.8 Metabolomics has been applied in cardiovascular 

and dementia research previously,9–11 but most of the studies have been relatively small (less 

than 10,000 individuals). In this analysis we analyzed metabolomics profiles from 118,021 

participants in the UK Biobank to characterize cross-sectional and longitudinal associations 

of 325 metabolites with clinical diagnoses of stroke and dementia and MRI markers of SVD. 

We also ascertained whether these relationships are likely to be causal using Mendelian 

randomization. 
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Methods 

Data source 

UK Biobank is a prospective cohort study of over 500,000 participants recruited from 22 

centers across the United Kingdom.12 Participants were aged between 40-69 at baseline 

assessment in 2006-2010. Participants completed a comprehensive questionnaire and verbal 

interview and provided blood samples for metabolomics assays and genetic analyses. 

Metabolomics data 

Metabolic biomarker profiling of EDTA plasma samples was performed at Nightingale 

Health’s laboratories in Finland from a random subset of 121,695 non-fasting participants, of 

which 118,021 were from baseline recruitment (2006-2010).13 High-throughput nuclear 

magnetic resonance (NMR) spectroscopy was used to obtain 249 metabolic measures, 168 in 

absolute levels and 81 ratio measures, covering both routine biomarkers and emerging 

biomarkers with medical relevance (Supplementary Table 1). The biomarkers included 

detailed measures of cholesterol metabolism, fatty acid compositions, and various low-

molecular weight metabolites, such as amino acids, ketones, and glycolysis metabolites. For 

14 lipoprotein subclasses, the lipid concentrations and composition were measured in terms 

of triglycerides, phospholipids, total cholesterol, cholesterol esters, free cholesterol, and total 

lipid concentration within each subclass. 

The samples were prepared directly in 96 well-plates by UK Biobank. At least 85 μL plasma 

was aliquoted into each well using TECAN freedom EVO 150 robotic liquid handlers, which 

have coefficients of variation in pipetting volume at <0.75% across 8 tips. Plasma samples 

were shipped to Nightingale Health’s laboratories on dry ice in sample batches of ~5,000-

20,000. 

Details of the metabolic biomarker profiling platform and experimentation have been 

described previously.14,15 In brief, EDTA plasma samples were stored at -80°C. Before 

preparation, frozen samples were slowly thawed at +4°C overnight, and then mixed gently 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 25, 2022. ; https://doi.org/10.1101/2022.03.24.22272911doi: medRxiv preprint 

https://doi.org/10.1101/2022.03.24.22272911
http://creativecommons.org/licenses/by/4.0/


6 
 

and centrifuged (3 min, 3400´g, +4°C) to remove possible precipitate. Aliquots of each 

sample were transferred into 3-mm outer-diameter NMR tubes and mixed in a 1:1 ratio with a 

phosphate buffer (75mM Na2HPO4 in 80%/20% H2O/D2O, pH 7.4, including also 0.08% 

sodium 3-(trimethylsilyl) propionate-2,2,3,3-d4 and 0.04% sodium azide) automatically with 

an automated liquid handler (PerkinElmer Janus Automated Workstation). 

The prepared samples were loaded onto a cooled sample changer, which maintained the 

temperature of samples waiting to be measured at +6°C. Two spectra were recorded for each 

plasma sample using a 500 MHz NMR spectrometer (Bruker AVANCE IIIHD). The first 

spectrum was a presaturated proton NMR spectrum, which featured resonances arising 

mainly from proteins and lipids within various lipoprotein particles. The other spectrum was 

a T2-relaxation-filtered spectrum where most of the broad macromolecule and lipoprotein 

lipid signals were suppressed, leading to enhanced detection of low-molecular-weight 

metabolites. Automated quality control of the spectral data was performed. The metabolic 

biomarkers were quantified using Nightingale Health’s proprietary software (Nightingale 

Health biomarker quantification library 2020). 

To account for technical variation in metabolite levels, a multi-step processing procedure was 

applied as described previously.16 In brief, for the 168 biomarkers that were measured in 

absolute levels, the concentrations were log transformed and adjusted in a robust linear 

regression model that accounted for the time between sample preparation and sample 

measurement, systematic differences between rows and columns on the 96-well shipment 

plates, and drift over time within each of the six spectrometers. The 81 composite biomarkers 

and biomarker ratios provided by UK Biobank were recomputed from their adjusted parts, 

and an additional 76 biomarker ratios of potential biological significance were computed, 

resulting in a total of 325 metabolites (Supplementary Table 1). 

Clinical and imaging endpoints 

In the full set of UK Biobank participants with metabolomics data at baseline (n=118,021), 

we examined clinical endpoints for all stroke, ischemic stroke, intracerebral hemorrhage, all-

cause dementia, Alzheimer’s disease, and vascular dementia. Incident stroke and stroke 

subtypes and all-cause dementia were defined based on the earliest recorded date that the 

outcome occurred after baseline assessment, either from self-report or linked hospital 
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admission electronic health records (EHR) in the primary or secondary position, or linked 

death register records in the underlying cause or any other position. Incident Alzheimer’s 

disease and vascular dementia were based on linked EHR or death register records only. 

Identification of linked hospital admission EHR and death register records for each endpoint 

was based on corresponding ICD-9 or ICD-10 codes (Supplementary Table 2). 

In participants with metabolomics data for whom MRI had been performed (n=10,024), we 

examined white matter hyperintensities (WMH) volume and several DTI metrics of white 

matter tracts. For WMH volume we used a UK Biobank-derived phenotype, the total volume 

of WMH from T1 and T2 FLAIR images (measured in cubic millimeters),17 which we log-

transformed for analysis. To obtain DTI metrics, we performed principal component analyses 

on UK Biobank-derived variables for 48 markers of both mean diffusivity (MD, the degree of 

diffusion) and fractional anisotropy (FA, the directionality of diffusion) on the FA skeleton of 

the diffusion brain MRI data, and selected the first principal component of each as summary 

measures of MD and FA.18 From the original DTI-MRI scans we also derived peak width of 

skeletonized mean diffusivity (PSMD, an automated measure based on skeletonization and 

histogram analysis.19 To obtain comparable effect sizes across outcomes, values for the four 

imaging markers were rescaled using mean-centering and dividing by the standard deviation 

across participants. 

Cross-sectional and longitudinal analyses 

We performed cross-sectional analyses examining the association of clinical and MRI 

endpoints per 1-SD higher metabolite levels. We constructed linear regression models for 

continuous outcomes and logistic regression models for binary outcomes with adjustment for 

age at recruitment and sex. We also constructed regression models with adjustment for a wide 

range of possible confounders and vascular risk factors. These analyses were adjusted for age 

at recruitment, sex, UK Biobank recruitment center, NMR spectrometer, Townsend 

deprivation index at recruitment, taking blood pressure medications or statins at recruitment, 

body mass index at recruitment, smoking status at recruitment, and type 2 diabetes mellitus 

status (based on verbal interview, touchscreen self-report, or linked EHR or death register 

records). 

We also performed longitudinal analyses to determine whether metabolites measured at 

baseline predicted long-term progression to stroke and dementia, for which we constructed 
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Cox proportional-hazards regression models adjusted for age at recruitment and sex to assess 

the association of progression to stroke and dementia per 1-SD higher metabolite levels. 

Again, we also conducted these analyses with adjustment for the possible confounders and 

vascular risk factors listed above. 

Mendelian randomization analyses 

To assess whether the association of metabolites with stroke and dementia were causal, we 

performed two-sample Mendelian randomization, which uses genetic variants as instrumental 

variables in an approach analogous to a randomized controlled trial.20 We obtained summary 

statistics from genome-wide association studies of each metabolite measured in 115,078 

participants from UK Biobank, conducted by the MRC Integrative Epidemiology Unit at 

Bristol.21 Summary statistics for late-onset Alzheimer’s disease were obtained from the 

International Genomics of Alzheimer's Project (IGAP).22 We obtained summary statistics for 

lacunar stroke from a previously published genome-wide association study involving 7,338 

cases and 254,798 controls.23 Summary statistics for stroke and ischemic stroke subtypes 

were obtained from the MEGASTROKE Consortium,24 consisting of 67,162 cases and 

454,450 controls, which we restricted to Europeans. There were 60,341 cases of ischemic 

stroke, 9,006 cases of cardioembolic stroke, and 6,688 cases of large artery stroke. Summary 

statistics for WMH (n=42,310), MD (n=17,467), and FA (n=17,663) were obtained from a 

genome-wide association study of participants from UK Biobank and the CHARGE 

Consortium.25 Summary statistics for PSMD were obtained from a currently unpublished 

genome-wide association study. Our primary Mendelian randomization analyses used 

inverse-variance weighted meta-analysis under a random effects model (to account for 

heterogeneity) to combine the ratio estimates from each genetic variant into a single estimate 

of the causal effect of each metabolite on each outcome.20 We conducted sensitivity analyses 

using a variety of robust Mendelian randomization methods, which employ different 

assumptions to make reliable causal inferences. These included MR-Egger regression, 

weighted median estimator, and simple and weighted mode-based estimators. For each 

metabolite, we harmonized all SNPs associated with that metabolite with the outcome data to 

ensure that effect estimates of each SNP on the metabolite and outcome corresponded to the 

same effect allele. We then performed Mendelian randomization using the IVW method and 

additional methods as sensitivity analyses. 
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All statistical analyses were conducted using R version 4.1.1 (R Core Team, 2021). To 

account for multiple testing comparisons, we used a false discovery rate (FDR) threshold of q 

< 0.05 to identify significant associations for each outcome measure. Two-sided P-values and 

95% confidence intervals are presented. Mendelian randomization analyses were conducted 

using the TwoSampleMR package version 0.5.4. 
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Results 

Participant characteristics 

We analyzed data from 118,021 participants from UK Biobank with metabolomics 

measurements, of whom 54% were female and 95% were white, with a mean age of 56.5 

(SD: 8.1) years (Table 1). The median follow-up time was 13.1 years (5th-95th percentile, 

11.8-14.4 years). 

Associations with baseline imaging parameters 

We analyzed the association of 325 metabolic measures with clinical endpoints and MRI 

markers in cross-sectional analyses adjusted for age at recruitment and sex (Supplementary 

Figure 1, Supplementary Table 3). We found that lower levels of apolipoproteins, 

cholesterol, free cholesterol, cholesteryl esters, fatty acids, lipoprotein particle concentrations, 

phospholipids, triglycerides, and total lipids, and higher levels of amino acids, glucose, and 

glycoprotein acetyls (an inflammatory marker) were associated with increased white matter 

microstructural damage on DTI, as indicated by higher WMH, MD, and PSMD, and lower 

FA. These metabolites were also associated with increased risk of all stroke, ischemic stroke, 

all-cause dementia, and vascular dementia. 

In cross-sectional analyses adjusted for possible confounders and additional vascular risk 

factors (age at recruitment, sex, UK Biobank recruitment center, spectrometer, Townsend 

deprivation index, blood pressure medication, statins, body mass index, smoking status, and 

diabetes status), we found many of the associations with stroke and dementia attenuated and 

were no longer significant. However, most of the metabolites remained significantly 

associated with FA, MD, and PSMD (Figure 1, Supplementary Table 4). Lower levels of 

apolipoproteins, cholesterol, free cholesterol, cholesteryl esters, fatty acids, lipoprotein 

particle concentrations, phospholipids, triglycerides, and total lipids were associated with 

higher MD and PSMD and lower FA. Additionally, lower levels of albumin and higher levels 

of creatinine and glucose were associated with increased risk of all stroke and ischemic 

stroke, while lower levels of amino acids and higher levels of ketone bodies were associated 

with increased risk of all-cause dementia. 
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Longitudinal analyses of stroke and dementia 

When accounting for long-term follow-up in time-to-event analyses adjusted for age and sex 

(Supplementary Figure 1, Supplementary Table 5), higher levels of the ratio of free 

cholesterol to cholesteryl esters in very small VLDL and higher levels of glycoprotein acetyls 

were associated with increased risk of all stroke. Conversely, higher levels of 

docosahexaenoic acid (DHA) and several lipoprotein subclasses containing cholesterol, free 

cholesterol, and cholesteryl esters were associated with decreased risk of all stroke. Higher 

levels of glucose and the percentage of phospholipids to total lipids in very small VLDL were 

associated with increased risk of all-cause dementia, while a wide range of cholesterol, 

cholesteryl esters, free cholesterol, apolipoprotein B, and lipoprotein subclasses were 

associated with decreased risk of all-cause dementia. 

In longitudinal analyses adjusted for potential confounders and vascular risk factors (Figure 

2, Supplementary Table 6), total lipids in very large HDL were most strongly associated 

with all stroke. For all-cause dementia, acetate, 3-hydroxybutyrate, and the ratio of free 

cholesterol to cholesteryl esters in small LDL were associated with increased risk of 

dementia. Meanwhile, omega-3 fatty acids, DHA, leucine, isoleucine, valine, the total 

concentration of branched-chain amino acids, and several lipoprotein subclasses were 

associated with decreased risk of dementia. 

Mendelian randomization analyses 

Using Mendelian randomization, we found genetically elevated levels of cholesteryl esters in 

very large VLDL and total lipids in small VLDL were associated with increased risk of 

ischemic stroke, and genetically lowered levels of the concentration of HDL particles were 

associated with increased risk of lacunar stroke (Figure 3, Supplementary Table 7). 

Furthermore, genetically elevated levels of LDL within cholesterol, cholesteryl esters, free 

cholesterol, and phospholipids, and lipoprotein subclasses of LDL, VLDL, and IDL, and 

genetically lower levels of total lipids in medium HDL, were associated with increased risk 

of late-onset AD. 
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Discussion  

In this large-scale metabolomics study of 118,021 individuals, we identified 289 metabolic 

markers that are significantly associated with stroke, dementia, and MRI markers of SVD. 

We found that lower levels of apolipoproteins, cholesterol, free cholesterol, cholesteryl 

esters, fatty acids, lipoprotein particle concentrations, phospholipids, triglycerides, and total 

lipids were associated with increased white matter microstructural damage. Additionally, 

lower levels of amino acids and fatty acids and higher levels of ketone bodies were associated 

with increased risk of all-cause dementia. Increased levels of lipoprotein subclasses of large 

HDL, very large HDL, and very small VLDL were associated with increased risk of stroke 

and dementia, whereas lipoprotein subclasses of small and medium HDL were associated 

with decreased risk of stroke and dementia. 

Although there is a well-established inverse association of plasma HDL cholesterol levels 

with coronary heart disease, stroke, and vascular brain damage, whether these relationships 

are causal has remained uncertain.26–33 This study provides new insights on these 

relationships by demonstrating that the direction and magnitude of the association of HDL 

with stroke and dementia and their subtypes depends on the size of the lipoprotein subclasses 

within HDL. 

The metabolite associations that we observed for all-cause dementia, AD, and vascular 

dementia confirm the findings reported in a recent preprint.34 However, we analyzed an 

expanded set of metabolites by including 76 additionally derived biomarkers of potential 

biological significance, and evaluated associations with a wider range of endpoints including 

stroke, ischemic stroke, intracerebral hemorrhage, and DTI markers. 

Our findings have several important clinical implications. First, they may provide novel 

insights into the metabolic pathways underlying stroke and dementia. It is possible that 

modifying levels of specific metabolites could help reduce the risk of vascular-related 

conditions, so this research could help inform dietary interventions or the development of 

novel therapies. Second, a metabolomics panel based on these associations could be 

developed for clinicians to predict which patients are most likely to develop stroke and 

dementia and offer personalized treatment plans. 

Our study has several strengths. First, it is one of the largest metabolomics studies conducted 

to date. Having metabolomics data available in nearly 120,000 individuals greatly increases 
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the power to detect statistically significant associations. Second, the metabolites were 

measured using a fully automated, comprehensive spectrum analysis under strict quality 

control, which increases the accuracy and validity of the findings. Third, the prospective 

study design and long follow-up period, with metabolites that were measured prior to disease 

onset, was particularly useful for evaluating their associations with risk of stroke and 

dementia. Fourth, we conducted sensitivity analyses to assess the impact of potential 

confounders and vascular risk factors on the identified associations. 

Our study also has limitations. First, we conducted a large number of statistical tests, so we 

applied an FDR threshold to reduce the likelihood of identifying false positives. However, 

some associations may have been biologically and clinically meaningful but did not reach the 

statistical significance threshold after correction for multiple testing. Second, the study 

sample was large but is not representative of the wider UK population. Third, in UK Biobank 

we only had endpoints of ischemic and hemorrhagic stroke but not subtypes of ischemic 

stroke (e.g. large artery stroke, cardioembolic stroke, and lacunar stroke). This meant that we 

were unable to examine associations of metabolites directly with lacunar stroke, which one 

might expect if metabolites were associated with MRI markers of SVD. Nevertheless, our 

Mendelian randomization analyses identified evidence that genetically elevated levels of 

metabolites are associated with increased risk of lacunar stroke. Fourth, we obtained 

summary statistics of genetic associations with late-onset AD but not with all-cause dementia 

and vascular dementia, which limited the scope of our assessment of causal relationships of 

metabolites with dementia. 

Conclusions 

We found evidence supporting the association of a wide range of metabolites with stroke, 

dementia, and MRI markers of SVD. Although further research is needed, these findings 

could be used to help develop personalized prediction models and novel treatment 

approaches.  
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Tables 

Table 1. Characteristics of UK Biobank participants with metabolomics data at baseline 

Trait Mean (SD) or n (%) N 

Risk factors  
 

Female sex 63,890 (54.2%) 117,938 
Age at recruitment (years) 56.5 (8.1) 118,021 
Ethnicity (White) 111,323 (94.8%) 117,491 
Townsend deprivation index at recruitment -1.31 (3.10) 117,864 

Body mass index (BMI) (kg/m2) 27.43 (4.78) 117,609 

Systolic blood pressure (mm Hg) 137.8 (18.6) 117,902 
Diastolic blood pressure (mm Hg) 82.2 (10.2) 117,903 
Current smoker 12,474 (10.6%) 117,449 
Has Type 2 diabetes mellitus 11,277 (9.6%) 118,020 
Has hypertension 53,999 (45.8%) 117,902 
Taking blood pressure medication 24,305 (20.8%) 117,079 
Taking statins 21,199 (24.1%) 88,067 
APOE ε4 carrier 29,628 (25.1%) 118,021 

  
 

Outcomes  
 

Log white matter hyperintensities (WMH) volume 8.02 (1.01) 9,998 
Fractional anisotropy (FA) 0.0085 (4.35) 9,779 
Mean diffusivity (MD) 0.0379 (4.44) 9,779 

Peak width of skeletonized mean diffusivity (PSMD) 2.28 x 10-4 (3.97 x 10-5) 9,710 

Incident all stroke case 2,477 (2.1%) 118,021 
Incident ischemic stroke case 2,053 (1.7%) 118,021 
Incident intracerebral hemorrhage case 464 (0.4%) 118,021 
Incident all-cause dementia case 1,785 (1.5%) 118,021 
Incident Alzheimer’s disease case 765 (0.6%) 118,021 
Incident vascular dementia case 418 (0.3%) 118,021 

 

  

 

  

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 25, 2022. ; https://doi.org/10.1101/2022.03.24.22272911doi: medRxiv preprint 

https://doi.org/10.1101/2022.03.24.22272911
http://creativecommons.org/licenses/by/4.0/


20 
 

Figures 

Figure 1. Association of stroke, dementia, and MRI markers at baseline per 1-SD higher 

metabolite levels with adjustment for possible confounders and vascular risk factors. 

(A) Lipids and other metabolites. (B) Lipoprotein subclasses. (C) Relative lipid, lipoprotein, 

and cholesterol concentrations. Beta estimates and P-values were obtained from linear or 

logistic regression models adjusted for age at recruitment, sex, UK Biobank recruitment 

center, Townsend deprivation index at recruitment, whether the person was taking blood 

pressure medication or statins, body mass index, smoking status, and Type 2 diabetes mellitus 

status. Colors show magnitude and direction of P-value for association of metabolite with 

each outcome (red indicates positive association and blue indicates inverse association). 

Asterisks indicate significance: *P < 0.05; **FDR q < 0.05. 
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Figure 2. Adjusted hazard ratios for all stroke and all-cause dementia per 1-SD higher 

metabolite levels with adjustment for possible confounders and vascular risk factors. 

(A) All stroke. (B) All-cause dementia. Analyses were adjusted for age at recruitment and 

sex. Filled squares indicate associations significant at FDR q < 0.05. 

(A) 
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Figure 3. Mendelian randomization results showing causal estimates for association of 

metabolite levels with stroke, dementia, and MRI markers. Colors show magnitude and 

direction of P-value of association for estimate of causal effect using inverse-variance 

weighted Mendelian randomization approach (red indicates positive association and blue 

indicates inverse association). Asterisks indicate significance: *P < 0.05; **FDR q < 0.05. 
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