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ABSTRACT

Intervention packages may result in a greater public health impact than single interventions. Un-

derstanding the separate impact of each component in the overall package effectiveness can improve

intervention delivery. We propose an approach to evaluate the effects of a time-varying intervention

package in a single study. In some network-randomized studies, only a subset of participants in ex-

posed networks receive the intervention themselves. The spillover effect contrasts potential outcomes

of persons not exposed themselves under intervention in the network versus no intervention in a

control network. We estimated effects of components of the intervention package in HIV Prevention

Trials Network 037, a Phase III network-randomized HIV prevention trial among people who inject

drugs and their risk networks using Marginal Structural Models to adjust for time-varying confound-

ing. The index participant in an intervention network received a peer education intervention initially

at baseline, then boosters at 6 and 12 months. All participants were followed to ascertain HIV risk

behaviors. There were 560 participants with at least one follow-up visit, 48% of whom randomized

to the intervention, and 1,598 participant-visits were observed. The spillover effect of the boosters

in the presence of initial peer education training was a 39% rate reduction (95% confidence interval

(CI) = -57%, -13%). These methods will be useful for evaluation of intervention packages in studies

with network features.

ABBREVIATIONS: Confidence interval (CI), Generalized estimating equations (GEEs), HIV Pre-

vention Trials Network (HPTN), Human Immunodeficiency Virus (HIV), People who inject drugs

(PWID), Risk/Rate ratio (RR)

KEY WORDS: Causal inference; Cluster-randomized trials; Spillover/Indirect effects; HIV/AIDS;

Implementation Science; Interference; Package Interventions; Substance use
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Introduction

Design and scale-up of intervention packages that effectively meet the needs of a target population

offers a means for control of disease epidemics, such as HIV/AIDS [1–3]. Intervention packages are

defined herein as a set of individual interventions (i.e., components) to prevent or treat a disease

or condition through multiple pathways simultaneously. There are many interventions that confer

partial protection against HIV transmission [1, 4] and offering these interventions in combination

(e.g., HIV testing, treatment as prevention (TasP)) is an important strategy for curtailing the HIV

epidemic. Several cluster-randomized trials of packages of HIV treatment and prevention interven-

tions were conducted in Sub-Saharan Africa and demonstrated a range of effectiveness for TasP in

combination with other known HIV prevention measures [5–12]. Further analysis of these studies is

needed to better understand the effectiveness of each package component. Intervention packages are

not exclusive to community-level HIV epidemic control. In substance use treatment and prevention,

intervention packages are often tailored to specific subpopulations, such as people who inject drugs

(PWID), in an effort to achieve a larger and more sustainable intervention impact in hard-to-reach

populations [13–15].

In studies of intervention packages, treatment assignment may be randomly assigned to indi-

viduals and/or networks (i.e., social groupings, communities), or treatments can be self-selected by

individuals within a network or other clustering feature. In a cluster, we assume that each individ-

ual’s exposure could influence any other cluster member’s outcome but no one’s outside the cluster,

known as partial interference [16, 17]. In a network, information may be collected on each of the

unique connections between individuals and assumptions about spillover (dissemination or interfer-

ence) are based on the presence or absence of connections, known as neighbor interference [18, 19].

Previous work related to intervention packages illustrated causal inference approaches to account

for implementation factors that were not randomized, such as enrollment in a program [20, 21], but

did not consider possible spillover of the package components. Howe et al. [22] and Hernán et al.

[23] developed and applied methodology to evaluate the joint causal effects of two non-randomized

exposures; that is, their interaction in the presence of time-varying confounding in an observational

study, employing joint Marginal Structural Models, but also did not consider spillover effects. He et

al. [24] developed Marginal Structural Models for studies of a single intervention with spillover and

fit the models using cluster-level propensity scores. Marginal Structural Models are a class of causal

models that typically model the marginal mean of the counterfactual outcome and the parameters
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in the model correspond to average causal effects [25].

We developed methods for disentangling the effects of time-varying components of intervention

packages in studies where spillover may be present using a Marginal Structural Model. We consider

the setting of an HIV prevention network-randomized trial in which only one member of each network

was exposed to the intervention package by the study investigators. The exposed members are here-

after denoted as “index participants”. First, these individuals came forward to be the index member,

then centered around each index, investigators ascertained their immediate HIV risk contacts, defined

as all individuals sharing HIV risk behavior with this index (e.g., injection or sexual risk behavior).

This is called an egocentric network. Then, the networks were randomized to intervention or control

condition. For example, the indexes were randomly assigned to be a peer educators or not. After

the initial training (and prior to the first outcome ascertainment), the index participants in inter-

vention networks then educate their network members about HIV risk reduction behavior, further

disseminating to their network members. This study design is frequently utilized in HIV prevention

research among people who use drugs, as these populations can be challenging to reach [26–29].

The effects of both the complete intervention package and its individual components can be

evaluated in a single study through application of appropriate statistical methods [2]. In network-

randomized studies, there is randomization only at the network level. This does not preclude es-

timation of causal effects of self-selected exposures to individual package components among index

participants and their network members due to non-adherence or ineligibility. Furthermore, an eval-

uation of the spillover of the intervention to other unexposed participants (i.e., network members)

in intervention networks is also possible. Causal inference methods for observational studies can be

employed to analyze data arising from a network-randomized trial setting lacking randomization at

the individual level [30], mimicking a two-stage randomized trial. In this design, the intervention is

delivered, the networks are randomized to an intervention allocation strategy, then individuals are

randomized to the intervention according to the strategy assigned to their network [17, 31]. For ex-

ample, in a vaccine trial, clusters (e.g., villages) are assigned first to an allocation strategy for vaccine

assignment (e.g., 70% versus 30% randomized to vaccine), then based on the allocation strategy in

the cluster, individuals are randomly assigned to vaccine or not [32].

Each component of the intervention package is considered a time-varying non-randomized expo-

sure possibly subject to time-varying confounding. Effects can be estimated using inverse probability

weights to fit Marginal Structural Models [30, 33]. This model can also be used to estimate spillover

effects when an intervention package is implemented in HIV risk networks in which only one network
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member is exposed [34]. For example, immediate ART initiation may benefit the health outcomes

of the index person in a household who is treated, for example, by improving that person’s immune

system and preventing tuberculosis, and it may also benefit the health outcomes of their untreated

family members by preventing HIV acquisition and tuberculosis, via contact with the exposed index

person, known as a spillover (indirect or disseminated) effect [18, 32]. We propose estimators of

direct and spillover package component effects. The direct effect compares the risk of the outcome

when a participant is an index versus a network member under network exposure to a package com-

ponent and evaluates the effect of being an index beyond being in a network with exposure to the

package component. Illustrating with data from a network-randomized trial in the HIV Prevention

Trials Network (HPTN), we employ inverse probability weighted (IPW) linear mixed effects models

to estimate these effects adjusting for time-varying confounding.

Methods

Notation and Assumptions

To guide our causal inference approach, the ideal experiment in this setting is conceptualized as a

two-stage randomized design, where first networks are randomized to intervention or control, then

individuals in each intervention network are randomized to be an index or not [35]. In egocentric

networks, a single index would need to be randomly selected in each network. Typically, in the

egocentric network-randomized designs, index assignment is not randomized, but rather self-selected

by those individuals. Furthermore, exposure to the package component in a network was determined

by both the randomization scheme and visit attendance by index participants. A network was

exposed if its index member attended a visit when a package component was administered. Therefore,

estimation of the effects of an intervention package component does not benefit from randomization

and adjustment for confounding is necessary to identify causal effects.

Let uppercase letters denote random variables and lowercase letters denote realizations of those

random variables. Let K be the total number of networks (k = 1, . . . , K) and i = 1, . . . , nk denote

participants in network k. Let
∑

k nk = N be the total number of participants in the study, j =

0, . . . ,mki denote the study visit for participant i in network k, where visit 0 corresponds to the

baseline visit, Jk =
∑

imki denote the total number of visits across all participants in each network

k, Mk = maximki. Define Ykij as the observed outcome for participant i in network k at visit j.

Assume there is correlation between outcomes in a network and spillover can occur only within a
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network, but not between networks. Let Xk be the random intervention package assignment for

network k and define an indicator Rki for whether or not participant i in network k was an index

participant. Let Ahkj denote exposure to the hth intervention component for network k at visit j,

with H intervention components, h = 1, . . . , H. Let Āhkj = (Ahk0, Ahk1, . . . , Ahkj)
T be a vector of size

j × 1 denoting the exposure histories for component h up to and including visit j for network k. Let

Akj = (A1kj, . . . , AHkj)
T denote the vector of size H×1 denoting all package component exposures in

network k at time j and let the history of the intervention package component exposures be denoted

by the matrix

Ākj =


A1k0 A1k1 · · · A1kj

A2k0 A2k1 · · · A2kj

...
...

. . .
...

AHk0 AHk1 · · · AHkj

 =
(
Ak0 Ak1 . . . Akj

)
=
(
ĀT

0kj ĀT
1kj . . . ĀT

Hkj

)T
.

Let Zki denote a p × 1 vector of baseline covariates for participant i in network k and Zkij denote

a q × 1 vector of time-varying covariates for participant i in network k at time j. Let Z̄kij denote

an individual’s covariate history up to and including visit j. We assume that there is only one

index per network in this study design and let ik denote the unique index member in each network

k. Let Zk = (ZT
k0,Z

T
k1, . . . ,Z

T
knk

)T be a vector of size pnk × 1 baseline covariates in network k and

Z̄kj = (ZT
k10,Z

T
k11, . . . ,Z

T
k1j . . . ,Z

T
knk1

, . . . ,ZT
knkj

)T be a vector of size qnkj × 1 denoting covariate

histories of all participants in network k up to and including time j. For ease of notation, let

Yk = (Yk10, Yk11, . . . , Yk1m11 , . . . , Yknk0, . . . , Yknkmknk
)T be the vector of size Jk × 1 denoting outcomes

across all participant-visits within network k. Assume Yk ⊥ Yk′ are independent for k 6= k
′
. Let

Rk = (Rk1, . . . , Rknk
)T be a vector of size nk × 1 denoting the index membership in network k. Let

Uki be a vector of size s×1 of unmeasured baseline covariates for participant i in network k. Let Uk

denote a vector of the unmeasured baseline covariates of all participants in network k. Furthermore,

at the network level, let Z̃kj be a network-level aggregate function of the covariates, such as the mean

of the history for each covariate, in network k up to and including time j. Let Zkik0 denote the index

member covariates at baseline and Z̄kikj denote the index member covariates in network k up to and

including time j.

There are nk possible configurations of index status in an egocentric network. In this setting,

each participant has potential outcomes Yki,j+1(r, āj), which correspond to the 2H×j × nk vector of

potential outcomes for participant i in network k at time j under the index status indicator vector

Rk = r and package component history Ākj = āj. Without further refinement of the research
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questions of interest, it is not clear which potential outcomes to compare; therefore, additional

identification assumptions are required.

The sufficient conditions for valid estimation of causal effects have previously been described [36],

including exchangeability, consistency and positivity. We assume partial interference, which allows for

spillover between any members of an egocentric network, but not between networks. We also assume

no contamination across study intervention arms [18]. For the time-varying package components

Akj, exchangeability may not hold because the network-level exposure is determined by both the

randomization scheme and index visit attendance. However, we assume that exchangeability holds

conditional on network-level time-varying covariates. At the individual level conditional on Zki and

Uki, we assume conditional index member exchangeability; that is, Yki,j+1(r, āj) ⊥ Rki|Zki,Uki [34].

For the time-varying package components in network k, we assume Yki,j+1(r, āj) ⊥ Akj|{Āk,j−1 =

āk,j−1, Z̃kj, Z̄kikj} for j = 0, . . . ,mki. That is, we assume that exchangeability of potential outcomes

corresponding to the package component exposures holds conditional on each network’s package

component history and a network-level aggregate of covariate history, as well as its index member’s

covariate history up to the prior visit j. The covariates required for exchangeability are ascertained

from previous visits because the exposure is defined by index visit attendance, which can only be

modeled across all indexes using information from previous visits. In this longitudinal analysis, we

also assume that data from missed visits and drop out due to loss to follow-up are missing at random

assuming the likelihood was correctly specified [37].

Estimands

Let āj denote a possible history of package components from baseline up to and including visit j.

For example, the strategy “intended study intervention” is represented by āj = (1, 1, 1, 0, . . . , 0) and

the strategy “never exposed” is represented by āj = (0, 0, . . . , 0) = 0̄. Due to the assumptions above

and only one index per network, the potential outcomes of interest are Yki,j+1(r, āj). Assuming that

the effects of interest do not depend on study visit, we define effects averaged over study visits after

baseline. The direct (or individual) package effect is defined as the contrast in average potential

outcomes when a participant is an index compared to when a participant is a network member under

network exposure to the component history āj; that is, on the ratio scale, RRD(āj) = E[Yki,j+1(r =

1, āj)]/E[Yki,j+1(r = 0, āj)]. The spillover package effect compares average the potential outcomes

of network members under network component history āj versus no exposure to the component

history 0̄; that is, RRS(āj) = E[Yki,j+1(r = 0, āj)]/E[Yki,j+1(r = 0, 0̄)]. The composite package
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effect is RRComp(āj) = E[Yki,j+1(r = 1, āj)]/E[Yki,j+1(r = 0, 0̄)]; that is, a comparison of the average

potential outcomes of index members under network component history exposure āj versus network

members under no exposure to the component history 0̄. The overall package effect compares average

potential outcomes under network exposure to the component history āj versus no network exposure,

denoted as RROverall(āj) = E[Yki,j+1(āj)]/E[Yki,j+1(0̄)][34]. Analogous effects can be defined on the

risk difference scale and we note that other definitions of these effects are possible (e.g., spillover

effect under initial exposure and boosters versus initial exposure only).

Estimation and Inference

We estimate the effect of each package component in a single model, while considering the presence

of the remaining package components [34]. This outcome model is a generalized linear mixed effects

model adjusted for individual-level confounding at baseline and inverse probability weighted to adjust

for network level time-varying confounding. In Appendix A, we describe the models for the weights

used to control for time-varying confounding in the Marginal Structural Model. Assuming that the

effects of the covariates are not modified by index status (i.e., there are no āj by Zki interactions)

and the generalized linear model with the log link fits the data, the Marginal Structural Model is

log{E[Yki,j+1(r, āj)|Zki]} = β0 + β1rki + β2ākj + β3rkiākj + β4Zki . (1)

Recall that Uki is a vector of unmeasured baseline covariates that may affect Rki within levels of

the baseline covariates Zki. Thus, even after conditioning on Zki, our estimators that involve Rki

may require further adjustment for unmeasured confounding Uki. To adjust for differences between

index and non-index members by accounting for unmeasured covariates Uki, we consider the term

β1 = log{E[Yki,j+1(r = 1, 0̄)|Zki]}−log{E[Yki,j+1(r = 0, 0̄)|Zki]} for the definition of these estimators,

assuming (1) holds. If conditional exchangeability does not hold, β̂1 may be different from the null.

Extending results in Buchanan et. al [34], suppressing the notation for the covariates for ease of

notation, estimators for each of the parameters are

R̂R
D

(ā) =
(
Ê[Yki,j+1(r = 1, āj)]/Ê[Yki,j+1(r = 0, āj)]

)
exp(β̂1)

−1 = exp(β̂3āj)

R̂R
S
(ā) = Ê[Yki,j+1(r = 0, āj)]/Ê[Yki,j+1(r = 0, 0̄)] = exp(β̂2āj)

R̂R
Comp

(ā) =
(
Ê[Yki,j+1(r = 1, āj)]/Ê[Yki,j+1(r = 0, 0̄)]

)
exp(β̂1)

−1 = exp
(
(β̂2 + β̂3)āj

)
.

On the relative risk scale, exp(β2āj) can be interpreted as the causal spillover effect of exposure to

intervention package component history exposure āj versus exposure to the history 0̄ representing

7
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no intervention package component from baseline up to and including visit j. In Appendix B, we

consider a model for quantifying the effects of multiple package components that includes pairwise

interactions between components in a single model. We used a robust empirical sandwich estimator

of the variance from the generalized linear mixed model to construct 95% Wald-type confidence

intervals.

Illustrative Example

HIV Prevention Trials Network Protocol 037

The HPTN Protocol 037 was a Phase III, network-randomized controlled HIV prevention trial with

696 participants who were PWID and their HIV risk networks in Philadelphia, PA, US [13]. A site in

Chiang Mai, Thailand had too few PWID who HIV-seroconverted to be included in our analysis. This

study evaluated the efficacy of a network-oriented peer education intervention package to promote

HIV risk reduction among PWID and their HIV risk network. Index participants whose network

was randomized to the intervention received an intervention package that consisted of an educational

intervention at baseline and educational boosters at six and 12 months. Participants in both the

intervention and control conditions received HIV counseling and testing at each study visit [13].

Table 1 presents the intervention package evaluated in HPTN 037. We are interested in the effect

of the additional boosters among those who received the initial baseline intervention, as well as the

direct and spillover effects of the intervention package components. Exposure to the booster was

defined as a time-updated variable lagged by one visit accounting for the most recent exposure only.

In this study, the initial and booster components were only received by the intervention network.

Direct and spillover effects of the package components were evaluated through comparisons of the

incidence of any injection-related risk behavior and included report of any of the following: sharing

injection equipment (needles, cookers, cotton, and rinse water), front and back loading (i.e., injecting

drugs from one syringe to another), and injecting with people not well known or in shooting gallery

in the past month. Following the original analysis of this study, these outcomes were assessed among

participants who reported injection drug use in the six months prior to baseline. The longitudinal data

were used to assess the effects of the intervention on the inter-visit incidence rates of any injection-

related risk behavior using a multilevel generalized linear mixed effects model. These outcome models

were also adjusted for baseline individual-level covariates that were known or suspected risk factors

for the outcome, including race, ethnicity, report of any injection risk behavior, injected daily in the
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last month, alcohol use, and history of injection-related risk behavior.

Time-varying confounding was adjusted for using stabilized inverse probability weights (IPW)

(see Appendix A). The IPW generalized linear mixed effects model with a log link and binomial dis-

tribution was fit by weighting individual participants according to their estimated stabilized weights.

In intervention networks only, the weight models were estimated in the network-level data with one

record per network per visit, pooling across the visits where the network-level exposure status could

change (e.g., 12 to 18 month visits). Ideally, we would include all covariates that were known or

suspected risk factors; however, this resulted in overparameterization of the model given the size of

the study, so we employed a variable selection procedure (see Appendix C). The denominator weight

models included selected time-varying network-level aggregate covariates and index member covari-

ates that were known or suspected risk factors for the outcome, selected pairwise interactions, which

allowed for more flexibility in the model specification, and the package component exposure at the

previous visit. The numerator weight model included the the package component exposure at the

previous visit and selected baseline network-level covariates and index member covariates that were

known or suspected risk factors for the outcome, which were also included in the outcome model.

Both the models for numerator and denominator of the weights included a variable for time specified

as study visit month. For some of the models, the log Binomial models did not converge and log

Poisson models, which provide consistent but not fully efficient estimates of the relative risk, were

used [38, 39]. In examination of the distribution of the weights, there was no evidence of model

mis-specification or positivity violations because the mean of the stabilized weights distribution was

approximately one (Table A1). All statistical tests performed were two sided and conducted at the

0.05 significance level. The data analysis for this paper was generated using SAS software (Version

9.4) and we provide example SAS code in Appendix D.

Results

There were 696 participants, 651 reported injection drug use at baseline, and 560 participants had

at least one follow-up visit with a total of 1,598 person visits. The size of the networks ranged

from two to seven participants and network size was not associated with the outcome (P value =

0.30). Among the 560 participants, 270 (48%) were in intervention networks. Of the 232 indexes

who reported injection drug behavior at baseline, 112 (48%) index participants received the initial

peer education intervention. Table 2 displays the number of participants who received initial peer

education and each of the booster sessions; 70 (44%) index participants received the 6-month booster

9

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 28, 2022. ; https://doi.org/10.1101/2022.03.24.22272909doi: medRxiv preprint 

https://doi.org/10.1101/2022.03.24.22272909
http://creativecommons.org/licenses/by-nc-nd/4.0/


and 59 (47%) index participants received the 12-month booster.

Table 3 displays the estimated direct, spillover, overall and composite rate ratios from several

models with different approaches for covariate adjustment. Regardless of the adjustment approach,

the estimated spillover effect for the initial peer education intervention was comparable. In the IPW

models, there was an estimated 13% reduction in the spillover rate of report of any injection risk

behavior (95% confidence interval (CI) = -31%, 10%). After adjustment with the IP weights, the

estimated spillover rate reduction for the boosters was a 39% reduction (95% CI = -57%, -13%).

We expect a rate of reporting any injection risk behavior 39% lower in network members within the

intervention networks with exposure to at least one booster in addition to the initial training compared

to within the control networks. The estimated direct effect for the initial peer education intervention

was protective, but not significantly different from the null, regardless of the covariate adjustment

approach; however, the estimated direct effect of the booster in addition to the initial intervention

was null. In the IPW models, the estimated initial and booster composite effects were protective

with a 24% (95% CI = -44%, 2%) and 37% rate reduction (95% CI = -57%, -8%), respectively. The

estimated overall effect of the initial and booster were protective with a 17% (95% CI = -31%, 0%)

and 38% (95% CI = -53%, -18%) rate reduction, respectively. We expect a 17% reduction in the

overall rate of reporting injection risk behavior if the networks are exposed to the initial intervention

compared to if there is no initial exposure. Furthermore, we expect a 38% decrease in the overall rate

of reporting injection risk behavior if the intervention networks are exposed to at least one booster

in addition to the initial training compared to if the networks are under the control condition. Based

on the parameterization of the Marginal Structural Model, the rate ratios could be interpreted as the

estimates from a trial in which participants are randomized to the booster at 6 months, 12 months,

or no booster at either visit [40].

Discussion

We proposed an approach to quantify direct and spillover effects of intervention packages for network-

randomized trials. This setting could also arise in a network-randomized study with noncompliance

or treatment ineligibility for some network members. We developed causal inference methods to

evaluate time-varying components of intervention packages in studies where spillover may be present.

The estimation of these effects provides information about the impact of individual package compo-

nents and their influence on network member outcomes due to being in a network with an exposed
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index participant. These methods provide a more in-depth understanding of the effects of package

components for both exposed index participants and those sharing networks with exposed partici-

pants.

In HPTN 037, the estimated overall effect was stronger for the booster with initial intervention,

as compared to the initial intervention alone, highlighting the importance of continued training for

peer educators in this context. Interestingly, a protective effect was observed for network members

for both the initial and booster interventions, without a corresponding benefit for those trained to

be peer educators themselves. Because index members injected drugs more regularly at baseline

than their network members, the index members were riskier actors and may have been less likely to

respond to the intervention as compared to network members [13]. We found evidence that booster

sessions strengthen the spillover of the intervention, which can be utilized when developing peer-led

interventions [41].

This work is particularly timely as there are several HIV combination prevention cluster-randomized

trials where interest remains to evaluate the effects of intervention packages, as well as the spillover

effects within communities, to better understand the effects of TasP [3, 42]. Understanding the

components that may be driving the observed effects of the intervention package could inform mod-

ifications to the existing public health strategies in these settings, by strengthening highly effective

components and redeveloping those found to be partially effective or ineffective. Four large cluster-

randomized HIV prevention trials in Sub-Saharan Africa have recently published their study findings

[5–7, 9, 11, 12]. Evaluation of the universal “test and treat” interventions could include assessment

of the intervention’s impact on the health outcomes among those in the communities assigned to im-

mediate ART scale-up, but who did not receive immediate ART themselves. As in vaccine campaign

design, this could inform the level of ART coverage needed to benefit the community and consistently

achieve such targets as the UNAIDS 2025 [43].

The assumption of no unmeasured covariates associated with the network-level exposure and out-

come or with the index status and outcome is untestable. Future work could develop methods to

assess the sensitivity of these methods to unmeasured confounders [44]. The weight and outcome

models were assumed to be correct (e.g., correct functional forms of the covariate). This is not guar-

anteed in practice and sensitivity analyses could be performed to evaluate the robustness of results to

model specification. We also assumed that any data from missing visits were ignorable with respect

to valid estimation of intervention effects. These models could be extended to include censoring

weights to adjust for possibly informative loss to follow-up due to drop out [45]. In HPTN 037,
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the ascertainment of personal networks of index participants is likely only a partial ascertainment of

each person’s network, which limits evaluation of spillover within the networks of recruited individ-

uals. Our methods will be a useful tool to allow for evaluation of randomized and non-randomized

intervention packages in a single study with network features.
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Table 1: Interventions in HPTN 037 by study arm and network membership

Study Arm Behavioral Intervention

Index Participant Network Members

Experimental Arm Enhanced HIV counseling and

testing plus Six 2-hour network

orientated peer-educator sessions

during weeks 1 to 4 (initial inter-

vention) and Booster session at

months 6 and 12

Enhanced HIV Counseling and

Testing

Control Arm Enhanced HIV Counseling and

Testing

Enhanced HIV Counseling and

Testing
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Table 2: Package components received by index and network members during follow-up among HPTN

037 participants who reported injecting drugs at baseline and had at least one follow-up visit after

baseline (n = 560)

Network Member Role

Index Network

Member1

Initial Peer Education (n = 560)2 97/201 (48%) 173/359 (48%)

6-Month Booster (n = 447) 70/159 (44%) 128/288 (44%)

12-Month Booster (n = 344) 59/125 (47%) 106/219 (48%)

1Network member exposure determined by randomized package and their index’s visit attendance.

2 Reported n is the total number of participants who had at least some follow-up after baseline.
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Table 3: Rate ratios (RR) for the direct, spillover, composite and overall effects of the HPTN 037 peer

education package components on reducing report of any injection risk behavior (per person-visit)

during follow-up with 95% confidence intervals (CI) among participants with at least one follow-up

visit1

Direct Spillover

Initial Booster Initial Booster

Unadjusted 0.94 (0.65, 1.36) 1.03 (0.64, 1.66) 0.86 (0.66, 1.11) 0.58 (0.39, 0.87)

Adjusted for baseline covariates2 0.86 (0.59, 1.26) 1.04 (0.65, 1.67) 0.87 (0.69, 1.10) 0.62 (0.44, 0.88)

Adjusted for baseline and TV covariates2,3 0.89 (0.64, 1.24) 1.01 (0.67, 1.53) 0.82 (0.67, 0.99) 0.83 (0.58, 1.17)

IP-weighted 0.87 (0.60, 1.26) 1.02 (0.64, 1.65) 0.87 (0.69, 1.10) 0.61 (0.43, 0.87)

Overall Composite

Initial Booster Initial Booster

Unadjusted 0.84 (0.68, 1.04) 0.59 (0.43, 0.82) 0.80 (0.59, 1.10) 0.60 (0.41, 0.89)

Adjusted for baseline covariates2 0.82 (0.69, 0.99) 0.63 (0.48, 0.83) 0.75 (0.56, 1.01) 0.65 (0.44, 0.94)

Adjusted for baseline and TV covariates2,3 0.79 (0.67, 0.91) 0.83 (0.64, 1.08) 0.73 (0.57, 0.94) 0.84 (0.62, 1.13)

IP-weighted 0.83 (0.69, 1.00) 0.62 (0.47, 0.82) 0.76 (0.56, 1.02) 0.63 (0.43, 0.92)

1 Analysis included a total of 560 participants and 1,598 person-visits with 509 events total.

2 Baseline covariates included individual-level race (nonwhite vs. white), hispanic (yes vs. no), report of any injection risk behavior (yes vs. no), injected daily

in the last month (yes vs. no), and alcohol use (got drunk vs. no), index member race (nonwhite vs. white), report of any injection risk behavior (yes vs. no),

and injected heroin or heroin and cocaine (yes vs. no) and network-level average age and prevalence of nonwhite race, report of any injection risk behavior,

cocaine use, and injected heroin or heroin and cocaine.

3 Adjusted for the same individual-level covariates included in the baseline model and also the time-varying version of the index member and network-level

covariates included in the baseline model, except for time-varying index member report of injected heroin or heroin and cocaine, which was excluded because

most index participants in the intervention group reported this behavior.
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