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Abstract 

The height of the epidemic peaks varied ten-fold, but the duration was almost constant independent 

of the peak height in the six times COVID-19 epidemics in Japan over the past two years. The observed 

relation between the peak height and duration contradicts the inverse proportionality, which is the 

essential conclusion derived from mathematical models for infectious diseases. We found that the peak 

height was inversely proportional to the number of rhinovirus patients. The literature has revealed the 

mechanism behind our found power of rhinovirus suppressing COVID-19. We discuss that the critical 

flaw of current mathematical models originates in the absence of the 0th power term of the number of 

infected people in the Kermack and McKendrick equation. 

 

1.  Introduction 

Mathematical models are a powerful tool for understanding the epidemic situation of infectious 

diseases. When the population and microorganisms increase exponentially, the increase rate in the 

number of individuals decreases as the number approaches the environmental acceptance, and it 

converges to a steady value. This phenomenon follows the logistic equation (Ref. 1), 

d I(t)/dt = β S0 I(t) (1-I(t) / S0).  ------- (1) 

In the case of infectious disease, it is no longer the source of infection once the infected person is 

recovered or quarantined. In 1927, Kermack and McKendrick (Ref. 2) made the correction 

incorporating the recovery of the infected individuals, 

d I(t)/dt  = β S(t) I(t)- γ I(t) 

= (β S(t) - γ) I(t),  ------- (2) 

d ln I(t)/dt = β S(t) - γ  ------- (3) 

 Here, I(t) is the cumulative number of infected individuals, S(t) is the number of susceptible persons 

at time t, β is the infectivity, S0 is the number of members of the society, and γ is the recovery rate of 

the infected individuals. We call this historic model the K-M model and Eq (2) the K-M equation. 

Equation (3) tells that the infection does not start to spread if β S0 -γ <0. Contagious power β is 

proportional to the frequency and closeness of human contacts. Governments issue lockdown of cities 

to reduce β. The purpose of hand-washing and wearing a mask is to reduce the contagious power β. 

Vaccination prevents individuals from infection. But the principal purpose is to achieve herd immunity 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted March 25, 2022. ; https://doi.org/10.1101/2022.03.23.22272840doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2022.03.23.22272840
http://creativecommons.org/licenses/by-nc-nd/4.0/


p. 2 
 

by reducing the number of susceptible people S0 for β S0 -γ <0. All measures for controlling infectious 

disease originate in the model. 

We forecasted the end of the epidemic in Wuhan in 2020 February by Gaussian fitting of the change 

in the number of infected people, and the epidemic ended as forecasted (Ref. 3). Gaussian fitting 

originates in the fact that both the logistic function and the numerical solution of the K-M equation 

can be approximated by a Gaussian, I (t) = I0 exp (-((t-t0) / tau) ^ 2), near the peak of the epidemic. As 

is clear from Eq. (3), at the onset and end of the epidemic, the number of infected people increases 

and decreases exponentially, so the deviation from a Gaussian is large. The epidemic profile of 

influenza in the 2019/20 season in Japan is reproduced better by the numerical solution of the K-M 

equation than by a Gaussian (Ref. 4). 

However, we noticed some things that mathematical models do not reproduce (Ref. 4). One is that 

the number of patients in actual diseases is far smaller than the model calculation. The ratio of the 

final integrated number of infected people to the number of populations is called the final size, p (∞), 

which is given by (Ref. 4), 

p (∞) ≈ 1−exp (− (R0-1) /0.60).   ------- (4)  

Here, R0 = βS0 /γ is the basic reproduction number. For R0>1.5, p (∞)> 0.5.  

Influenza in the 2019/20 season in Japan was reproduced by τtrans= 0.52 weeks and τinf = 1 week, 

where τtrans=1/β S0 and τinf = 1/γ  (Ref. 4). Therefore, R0 =1.92, then, p (∞) = 0.78. However, the 

number of influenza patients in Japan is only about 10% of the national population each year. We 

cannot claim that the real number of influenza-infected people is eight times the number of people 

who consulted doctors. Many papers reported that the positive rate of PCR tests for influenza is about 

40 %. (Refs. 5~7). This rate is for people developing influenza-like illnesses. The rate should be lower 

for asymptotic people. The final size for influenza as large as 78% can never be possible. Definitely, 

there is a flaw in the model. 

The other is that influenza patients are constantly detected, which is not describable in current 

mathematical models. This problem is not trivial either. 

There is another and crucial problem with current mathematical models; the relationship between 

epidemic peak height and duration. With high infectivity, the number of infected people surges and 

peaks, infecting a significant proportion of the population, and the epidemic ends in a short period. If 

the infectivity is low, the number of infected people increases slowly, the peak height is low, and the 

epidemic extends over a long period before a considerable proportion of the population is infected. 

Hence, peak height and duration period are roughly inversely proportional. In actual infectious disease 

epidemics, however, the inverse proportionality between the height and width of the peak is not 

observed. This flaw is critical. 

This paper discusses in detail the inverse proportionality between height and duration of epidemic 

peaks derived from the K-M model. We examine the relationship between the height and width of the 
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COVID-19 epidemics in Japan. In six COVID-19 epidemics, peak height varied by one order of 

magnitude, but as with other infectious diseases, the epidemic duration was not inversely proportional 

and was independent of the peak height, which contradicts the essential conclusion from mathematical 

models. We found that the height of the six epidemic peaks of COVID-19 was inversely proportional 

to the number of rhinovirus patients, which agrees with the literature. We discuss that the critical flaw 

of mathematical models originates in the absence of the 0th power term of the number of infected 

people, I(t), in the Kermack and McKendrick equation.  

 

2. Analyzed data 

All clinical data analyzed in the present paper are publicly available. 

The data of positive people in Tokyo are from the Tokyo Metropolitan Government Corona Virus 

Infection Control Site. The positive rate is from the file in "Monitoring item (4) Positive rate of test" 

(Ref. 8). We calculated the age distribution using the data in "Attributes of positive people" (Ref.9). 

The data on rhinovirus is from the file in the “Archive of Other Viruses” (Ref. 10) at the site of 

Infectious Agents Surveillance Report (IASR) at the National Institute of Infectious Disease.  

 

3. Results 

3-1. inverse proportionality between height and duration of epidemic peaks  

Figure 1 shows the numerical integration of Eq. (2) for several values of βS0 in 1/days with the fixed 

γ of 1/ 3.1 days. For a high infectious power βS0, the number of infected people rises quickly and 

produces a high epidemic peak. The profile near the peak can be approximated by a Gaussian displayed 

by solid curves of parameters shown in the figure. The deviation of the fitting Gaussian from the 

detailed change calculated by the K-M model is not a problem in characterizing the epidemic because 

 
Fig.1: The numerical integration of Eq. (2) for several values of βS0 in 1/days with the fixed γ of 1/3.1 days. The 

profiles near the peak are fitted well by Gaussians of parameters shown in the figure. 
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statistic fluctuation due to the small number of 

patients can be larger than the deviation at the 

skirts of the epidemic. 

Figure 2 summarizes the peak height and 

time constant of the fitting Gaussians, shown 

in Fig.1, as a function of βS0 – γ. The peak 

height (black squares) increases by 1.5 power 

of βS0 – γ. The time constant (red circles) is 

about 20 days when βS0 – γ is 1/ (10 days) and 

shortens in inverse proportion to βS0 – γ. 

3-2. the COVID-19 epidemic in Japan  

We examine whether the essential result of 

mathematical models, the inverse 

proportionality of height and duration of epidemic peaks, is observed in the COVID-19. COVID-19 

has been prevalent six times in Japan since the first epidemic in the spring of 2020. Figure 3 shows 

changes in the positive rate and the number of positives in public PCR tests in Tokyo (Ref. 8). The 

number of positives (black points) for the first epidemic peaked at 100 per day, followed by over 300 

per day in the summer epidemic of 2020 and then followed by 1,000 for the winter, spring, and summer 

epidemic of 2021. Quite strangely, there were more than 200 positives in the valleys, exceeding the 

peak of the first epidemic. However, the positive rate (red dots) for the first epidemic was 30% higher 

than the valley values, about the same as the summer of 2021, and higher than the other three peaks. 

The low number of positives in the first epidemic was probably due to the low number of tests. As the 

number of tests increases, so does the number of positives. The positive rate is less affected by human 

factors such as the number of tests, and we better discuss the epidemic using the positive rate as 

claimed in Reference 11. In the present paper, 

we discuss epidemics by the positive rate, not 

by the number of positives. 

Peak values of the positive rate varied from 

epidemic to epidemic at 30%, 8%, 15%, 10%, 

30%, and 40%. In the epidemic valleys in June 

and October 2020 and March and June in 2021, 

the positive rates were 1%, 5%, 5%, and 5%. 

But in October and November 2021, the 

positive rate was as low as 0.3%. Because of 

the large variation of the peak size, the COVID-

19 epidemic in Japan is the optimal example for 

 
Fig.3; The changes of PCR test positives and the 

positive rate in Tokyo for the last two years. There have 

been six COVID-19 epidemics. 

Fig.2: Summary of parameters of Gaussians in Fig.1. The 

height increases by 1.5 power, and the time constant 

shortens in inverse proportion to βS0 – γ. 
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examining the validity of the present mathematical models.   

3-3. Gaussian fitting of the COVID-19 epidemic 

 We take a close look at the variation of the 

epidemic of COVID-19. Infectivity β depends 

on the activity of the virus and the immunity of 

the person, and it can be seasonal. Therefore, we 

compare the epidemics in 2020 and 2021 by 

season. 

Figure 4 shows the epidemics in spring (5th to 

25th week). The COVID-19 epidemic can be 

approximated by a Gaussian of 0.03 + 0.28 * exp 

(-((x-14.5) /2.4)^2) in 2020, and 0.045 + 0.040 * 

exp (-((x-18)) in 2020. ) /2.4) ^ 2) in 2021. The 

peak sizes were seven times different, but the 

time constants were the same of 2.4 weeks. 

The summer epidemics in Figure 5 can be 

approximated by 0.02 + 0.05 * exp (-((x-30.5) 

/4.5) ^ 2) in 2020 and 0.04 + 0.2 * exp (-((x-

32.3) /3.7) ^ 2) in 2021. The size of the 

epidemics is four times different, but the time 

constant of Gaussians was about the same again, 

about 1.5 times that of the spring epidemic.  

The winter epidemics shown in Figure 6 can 

be approximated by 0.065 + 0.085 * exp (-((x-

53.6) /1.7) ^ 2) in 2021 and 0.43 * exp (-((x-

58.5) /4.3) ̂  2) in 2022. The time constant of the 

smaller epidemic in 2021 was as small as 1.7 

weeks, and it was as large as 4.3 weeks for the 

larger epidemic in 2022.  

Figure 7 (a) summarizes the peak positive 

rate and the time constant of fitting Gaussians in 

Figs. 4 to 6. Time constant depended on the 

season and was independent of the peak height 

of the epidemics when the peak height varied by 

one order of magnitude. 

Figure 7 (b), which is redrawing of Fig.2, 

 
Fig.4; The spring epidemics in 2020 and 2021. The 
peak sizes were seven times different, but the time 
constants were the same. 

 
Fig.5; The summer epidemics in 2020 and 2021. The 
size of the epidemics is four times different, but the time 
constant of Gaussians was about the same. 

 
Fig.6; The winter epidemics in 2020 and 2021. The 
time constant of the weaker epidemic in 2021 was as 
small as 1.7 weeks, and it was as large as 4.3 weeks for 
the larger epidemic in 2022. 
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shows the time constant as a function of the peak daily patients calculated by the mathematical model.  

When the peak value is 15 or less, the time constant is shorter in inverse proportion to the square root 

of the epidemic peak, and when the peak value is 15 or larger, it shortens in inverse proportion to the 

0.8th power of the peak height. Figure 1 shows the results of calculations with γ=1/3.1 days. Then, βS0 

– γ=0.1 means R0-1 = 0. 31 and we get p (∞) ≈ 0.4 from eq. (4).  For R0-1> 0.2, the value of exp (− 

(R0-1) /0.60) begins to saturate and the final size saturates. These calculations explain the slope change 

seen in Figure 7 (b). Figure 7 (a) for COVID-19 contradicts Figure 7 (b) from the K-M model. 

3-4. seasonality of the COVID-19 epidemic 

The time constant is independent of the peak height but is seasonal. The legends of Su, Sp, and W 

in Fig. 7 (a) stand for summer, spring, and winter, respectively. The time constant was larger in warmer 

seasons except for the “W” point at the highest positive rate.  

The seasonality of the COVID-19 epidemic can be seen not only in the time constant but also in the 

age distribution of PCR test positives. Figure 8 shows the change in the age structure of positive people 

in Tokyo (Ref. 9), normalized by the number of positive people in their 40s. The age distribution is 

flat in spring, from February to May in 2020 in Fig.8 (a), and February and March in 2021 shown in 

Fig.8 (b). In summer, in July and August in 2020 and 2021 shown in Fig.8 (e), the majority of the 

positives were young people. In the early summer and autumn to winter shown in Figs.8 (c) and (d), 

the age distributions were between those in spring and summer. From Figure 7 (a) and Figure 8, we 

can say that the time constant is short when the age distribution is flat. Readers may doubt the 

seasonality from the data point “W” at the highest positive rate, January 2022. However, this point is 

another supporting data of the seasonality. We do not know the reason, but the age distribution of the 

epidemic in January 2022 is that of summer epidemic as seen in Figure 8 (e). 

 The conclusion of Figure 7 (a) and Figure 8 is that the time constant is independent of the peak 

 
Fig.7; (a) Summary of the time constants and peak heights of fitting Gaussians shown in Figures 4 to 6. The "Sp", 

"Su", and "W" stand for spring, summer, and winter, respectively. The time constant was independent of the peak 

height. (b) Redrawing of Fig.2; the calculation by the K-M model. The time constant is shorter for a higher peak. 
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height but dependent on the age distribution; the epidemic duration is long when most positives are 

young people. 

 

4. Discussions 

4-1. essential teachings of mathematical models 
The essential teachings of the mathematical models are that if bS0 –g <0, the spread of the infection 

does not begin and that the epidemic does not end unless most of the members gain immunity. If the 

infectivity is high, the number of patients surges, the peak of the epidemic rises, and most people are 

infected, gaining immunity in a short period. If the infectivity is weak, the epidemic peak is low, and 

the epidemic lasts for a long time until most people gain immunity. Therefore, the inverse 

proportionality of the peak height and duration of the epidemics is the essence of mathematical models. 

The contradiction of Figures 7 (a) and (b) tells that there is a fatal flaw in the current mathematical 

models. We need to build a new mathematical model for infectious diseases. To get a hint for a new 

mathematical model, we search for a cause of variation of the peak height of COVID-19. 

4-2. epidemiological correlation between COVID-19 and rhinovirus 
Greer et al. (Ref. 12) reported that the rhinovirus epidemic suppressed the development of other 

cold viruses. In 660 samples, 53% of collected 1247 samples from 0.5 to 4.3 years old, there were 

multiple viruses. The number of simultaneous detections with rhinovirus of many viruses such as 

adenovirus was smaller than expected from the number of single detections of each virus. Wu et al. 

(Ref. 13) also concluded that rhinovirus suppresses the growth of various viruses from the 

measurement of simultaneous detection of other viruses. The number of influenza viruses detected 

 
Fig.8; The age distributions of positives in Tokyo normalized by the number of positive people in their 

40s. In spring shown in (a) and (b), the distribution was flat. In summer shown in (e), the majority of 

positives is young people. In transient seasons shown in (c) and (d), the distribution is between those 

in spring and summer.  
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was less than one-fifth of the expectation when 

co-infected with rhinovirus. Linde et al. (Ref. 

13) claimed that the increase of rhinovirus 

prevalence suppressed the influenza pandemic 

in 2009. 

Suggested by these epidemiological studies, 

we study the correlation between the epidemics 

of COVID-19 and rhinovirus. 

Figure 9 compares the two-year epidemics of 

COVID-19 and rhinovirus (Ref. 10) in Japan. As 

indicated by the light blue upward arrows, 

COVID-19 was prevalent four times at the 

valleys of the rhinovirus epidemic. As indicated 

by the purple down-arrows, COVID-19 epidemics were low when a rhinovirus was prevalent. 

Figure 10 summarizes the correlation of the epidemics of COVID-19 and rhinovirus. The positive 

rate at the peak of the COVID-19 epidemics was inversely proportional to the size of the rhinovirus 

epidemic. The time constants, shown in Fig. 7 (a), are replotted. The COVID-19 epidemic has a good 

correlation with the prevalence of rhinovirus, although the inverse proportionality with the width of 

the epidemic, which is the crucial result of the K-M model, is not observed. This fact is a valuable hint 

for a new model. 

 The inverse proportionality between the epidemics of COVID-19 and rhinovirus explains the low 

positive rate in October and November in 2021 seen in Fig.3. Figure 11 shows the COVID-19 and 

rhinovirus epidemics from the 35th to 53rd weeks in 2020 and 2021. When the positive rate of COVID-

19 (filled blue squares) was very low in 2021, there was a high peak of the rhinovirus epidemic (filled 

 
Fig.9; The epidemics of rhinovirus (red squares) and COVID-19 (blue squares) in 2020 and 2021. The COVID-

19 and rhinovirus epidemics have reversed profiles. 

 
Fig.10; Summary of Fig.8. The positive rate at the peak 
of the COVID-19 epidemics was inversely proportional 
to the size of the rhinovirus epidemic. Open red circles 
are replotting from Fig.7 (a), showing time constants of 
fitting Gaussians. 
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red squares). The high prevalence of a 

rhinovirus suppressed COVID-19. In 2020, the 

rhinovirus prevalence (open red circles) was a 

little lower, and the positive rate (open blue 

circles) in the epidemic valley was not small. 

The mechanism behind the suppression of the 

growth of various viruses by the infection of 

rhinovirus has been clarified in experiments 

using airway epithelial cells. Wu et al. (Ref. 14) 

reported the following. When the airway 

epithelial cells were first infected with 

rhinovirus and then infected with influenza 

virus four to five days later, the number of 

influenza viruses reduced to one-tenth or less. Co-infection with rhinovirus produced much higher 

antibodies than for the single infection with influenza virus. When BX795, which inhibits the action 

of interferon, was used in culturing, co-infection with rhinovirus did not reduce the number of 

influenza viruses, and there was no antibody production. The viral load of rhinovirus did not change 

regardless of co-infection with influenza virus or the presence or absence of BX795, indicating that 

the number of antibodies produced by the influenza virus was small. Dee et al. (Ref. 15) showed that 

rhinovirus infection suppressed the growth of SARS-CoV-2 by generating interferon. The viral load 

of SARS-CoV-2 increased when infected alone in the epithelial cells of the airways. When rhinovirus 

was co-infected on the second day, the SARS-CoV-2 decreased rapidly two days later. The addition of 

SARS-CoV-2 on the second day did not change the number of rhinoviruses, but the viral load of 

SARS-CoV-2 diminished immediately. When BX795, which inhibits the action of interferon, co-

infection with rhinovirus did not block SARS-CoV-2 regeneration. Lei et al. (Ref. 16) showed that 

interferon suppresses SARS-CoV-2 regeneration. 

As described above, the literature has reported that the rhinovirus infection suppresses the growth 

of SARS-CoV-2 in airway epithelial cells. However, this does not necessarily imply that the 

prevalence of rhinovirus weakens the COVID-19 epidemic, because the final size, given by 1−exp 

(− (R0-1)/0.60), increases slowly with the increase of infectious power and interaction between 

viruses may have a small effect. Hence, our finding of the inverse proportionality between the 

epidemics of the number of rhinovirus patients will be the first epidemiological confirmation of 

interference between COVID-19 and rhinovirus. With reports of interferences of rhinovirus with 

other viruses such as adenovirus and influenza in the literature, we can conclude that rhinovirus has 

the power of suppressing other viruses. 

4-3. a novel mathematical model 

 
Fig.11; The COVID-19 and rhinovirus epidemics in 
2020 and 2021 during the 35th to 52nd weeks, during 
which the COVID-19 epidemics were in valleys. The 
positive rate in 2021 was significantly low when the 
rhinovirus epidemic was large. 
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The variation of the peak height of the COVID-19 epidemic is attributable to the interference with 

the rhinovirus epidemic. But, the K-M model cannot explain the independence of the duration of the 

epidemic peak with the height. Equation (3) is approximated as d ln I(t)/dt = (β S0 - γ) when S(t) ≈ S0. 

For a larger β, the increase rate of ln I(t) is higher, and the time constant, which is the inverse of the 

increase rate, is shorter. Thus, the inverse relationship between the peak height and the duration, not 

observed in actual epidemics, is the inevitable result, implying that the mathematical models have a 

fatal flaw. By examining Eq. (2), we realize that the fatal flaw originates in the absence of the 0th 

power term of I(t).  

In Eq.2, S(t)= S0 - I(t) - R(t), where R(t)=∫ ��(�) 	� . When the size, p(t) =R(t)/S0, is  

p(t) ≪ 1,     ------- (5) 

Eq. (2) is approximated as,  
d I(t)/dt ~ B(t) I(t) +C(t) I(t)2.  ------- (6) 

In most actual epidemics, as discussed in the Introduction, the final size p(∞) is so small that Eq. (6) 

is a good approximation for the whole epidemic not only in the early phase. 

A general form of a quadratic equation for I(t) is 

d I(t)/dt = A(t)+ B(t) I(t) +C(t) I(t)2.                ------- (7) 

There is no reason for neglecting it, and the term A(t) may dominate over other terms in most actual 

epidemics of infectious diseases. The origin of the critical flaw of the K-M model is the absence of 

the 0th power term of I(t), A(t), in Eq. (2). 

We expect that the inclusion of the term A(t) will also solve two problems mentioned in the 

Introduction; a far smaller integrated number of patients in actual epidemics than the calculation by 

mathematical models and constant detection of patients around the year not reproducible by current 

models. 

 

5. Summary 

All measures for controlling infectious diseases originate in mathematical models, but there are 

some problems. We discussed the inverse proportionality between the height and width of the 

epidemic peak, which is the essential conclusion of mathematical models. Inverse proportionality, 

however, is not observed in most actual epidemics of infectious diseases.  

We examined the inverse proportional relation in the COVID-19 epidemic in Japan. Since spring 

in 2020, COVID-19 has been prevalent six times in winter, spring, and summer with high 

seasonality, and the peak size varied by one order of magnitude. The time constants of the six 

Gaussians that fit the epidemics were independent of peak height, which contradicts the most 

important conclusion of the mathematical model. We found that the peak height was inversely 

proportional to the number of rhinovirus patients. The literature has revealed the mechanism behind 

the discovered force of rhinoviruses in lowering the COVID-19 epidemic. 
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We discussed that the origin of the flaw of the current models is neglecting the 0th term of 

infected people in the derivative equation of the K-M model. 
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Figure Captions 

Figure 1; The numerical integration of Eq. (3) for several values of βS0 in 1/days with the fixed γ of 

1/3.1 days. The profiles near the peak are fitted well by Gaussians of parameters shown in the figure. 

 

Figure 2; Summary of parameters of Gaussians in Fig.1. The height increases by 1.5 power, and the 

time constant shortens in inverse proportion to βS0 – γ. 

 

Figure 3; The changes of PCR test positives and the positive rate in Tokyo for the last two years. 

There have been six COVID-19 epidemics.  

 

Figure 4; The spring epidemics in 2020 and 2021. The peak sizes were seven times different, but 

the time constants were the same.  

 

Figure 5; The summer epidemics in 2020 and 2021. The size of the epidemics is four times different, 

but the time constant of Gaussians was about the same. 

 

Figure 6; The winter epidemics in 2020 and 2021. The time constant of the weaker epidemic in 

2021 was as small as 1.7 weeks, and it was as large as 4.3 weeks for the larger epidemic in 2022. 

 

Figure 7; (a) Summary of the time constants and peak heights of fitting Gaussians shown in Figures 

4 to 6. The "Sp", "Su", and "W" stand for spring, summer, and winter, respectively. The time constant 

was independent of the peak height. The time constant was independent of the peak height. (b) 

Redrawing of Fig.2; the calculation by the K-M model. The time constant is shorter for a higher peak.  

 

Figure 8; The age distributions of positives in Tokyo normalized by the number of positive people 

in their 40s. In spring shown in (a) and (b), the distribution was flat. In summer shown in (e), the 

majority of positives is young people. In transient seasons shown in (c) and (d), the distribution is 

between those in spring and summer. 
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Figure 9; The epidemics of rhinovirus (red squares) and COVID-19 (blue squares) in 2020 and 2021. 

The COVID-19 and rhinovirus epidemics have reversed profiles.  

 

Figure 10; Summary of Fig.9. The positive rate at the peak of the COVID-19 epidemics was 

inversely proportional to the size of the rhinovirus epidemic. Open red circles are replotting from Fig.7 

(a), showing time constants of fitting Gaussians. 

 

Figure 11; The COVID-19 and rhinovirus epidemics in 2020 and 2021 during the 35th to 52nd 

weeks, during which the COVID-19 epidemics were in valleys. The positive rate in 2021 was 

significantly low when the rhinovirus epidemic was large.   
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