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Abstract 
 
The dominant human genetics paradigm for converting association to mechanism (“variant-to-function”) 
involves iteratively mapping individual associations to specific SNPs and to the proximal genes through 
which they act. In contrast, here we demonstrate the feasibility of extracting biological insight from a very 
large (>10Mb) region of the genome, and leverage this approach to derive insight into autism spectrum 
disorder (ASD). Using a novel statistical framework applied in an unbiased scan of the genome, we 
identified the 33Mb p-arm of chromosome 16 (16p) as harboring the greatest excess of common polygenic 
risk for ASD. This region includes the recurrent 16p11.2 copy number variant (CNV) – one of the largest 
single genetic risk factors for ASD, and whose pathogenic mechanisms are undefined. Analysis of bulk and 
single-cell RNA-sequencing data from post-mortem human brain samples revealed that common polygenic 
risk for ASD within 16p associated with decreased average expression of genes throughout this 33-Mb 
region. Similarly, analysis of isogenic neuronal cell lines with CRISPR/Cas9-mediated deletion of 16p11.2 
revealed that the deletion also associated with depressed average gene expression across 16p. The effects 
of the rare deletion and diffuse common variation were correlated at the level of individual genes. Finally, 
analysis of chromatin contact patterns by Hi-C revealed patterns which may explain this transcriptional 
convergence, including elevated contact throughout 16p, and between 16p11.2 and a distal region on 16p 
(Mb 0-5.2) which showed the greatest gene expression changes in both the common and rare variant 
analyses. These results demonstrate that elevated 3D chromatin contact may coordinate genetic and 
transcriptional disease liability across large genomic regions, exemplifying a novel approach for extracting 
biological insight from genetic association data. As applied to ASD, our analyses highlight the 33Mb p-arm 
of chromosome 16 as a novel locus for ASD liability and provide insight into disease liability originating from 
the 16p11.2 CNV. 
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Introduction 
 
Genome-wide association studies have productively identified robust statistical associations between 
thousands of common genetic variants and traits.1 However, most associations are non-coding, 
complicating efforts to identify the genes that mediate these associations.2,3 A dominant approach is to fine-
map associations to individual variants and then to their nearby target genes.4,5 While there are numerous 
examples of success,5,6 functional interpretation of individual genetic variants remains a critical bottleneck. 
Moreover, most complex trait heritability often does not reside with these individually significant 
associations, but is rather scattered across thousands of individually non-significant loci across the 
genome.7  
 
Autism spectrum disorder (ASD) provides a compelling example of the need to jointly interpret many 
classes of genetic variation.8–14 While common polygenic variation is the largest genetic risk factor for ASD 
on a population level, extracting biological insight from this predominantly non-coding signal is 
challenging.11 Similarly, de novo recurrent copy number variants (CNVs), which are strongly associated with 
ASD, often encompass many genes with generally undefined downstream mechanisms.8,13,15–17 For 
example, while deletion of the 0.7Mb, 31-gene locus at chromosome 16p11.2 is among the most common 
and largest single genetic risk factors for ASD8,18, exactly how the deletion confers ASD liability has 
remained undetermined despite considerable inquiry.19–23 Thus, a critical open question is whether regional 
polygenic signals colocalize with recurrent large CNVs, and whether this colocalization can highlight 
uncommonly relevant areas of the genome for ASD risk. In particular, given that both regions of polygenic 
risk and recurrent large CNVs span many genes and influence chromatin structure and gene regulatory 
landscapes,24–27 large chromatin landscapes have the potential to unify analysis of regional polygenic and 
rare variation. 
 
In order to examine polygenic risk arising from regions of the genome, including regions harboring ASD-
associated CNVs, we developed the stratified polygenic transmission disequilibrium test (S-pTDT), which 
extends the trio-based polygenic transmission disequilibrium test (pTDT) to specific genomic annotations. 
Using S-pTDT and 9,383 European-ancestry ASD trios, we performed an unbiased genome-wide search for 
excess over-transmission of ASD polygenic risk. Unexpectedly, the greatest excess localized to the 33Mb 
p-arm of chromosome 16 (16p), the region which includes the recurrent, ASD-associated and mechanically 
cryptic 16p11.2 CNV. Further linking the 16p11.2 CNV with the broader p-arm of the chromosome, in vitro 
deletion of the 16p11.2 locus was associated with decreased average expression of 200 neuronally 
expressed genes on chromosome 16p. Similarly, an increased ASD polygenic risk score (PRS) constructed 
exclusively with 16p variants was associated with decreased 16p mean brain gene expression across 
multiple cohorts with paired genotype and brain gene expression measurements. These transcriptional 
effects of the 16p11.2 CNV and 16p ASD PRS were correlated at the level of individual gene expression on 
16p, suggesting mechanistic convergence of common and rare variant ASD liability in the region. We 
observed chromatin contact patterns which we hypothesize explain this transcriptional convergence: 
uncommonly high within-16p chromatin contact in two independent Hi-C datasets and b) increased contact 
between the 16p11.2 CNV and a distal region on 16p (Mb 0-5.2) with the greatest observed gene 
expression changes. Our results motivate a model of convergent common and rare genetic risk factors for 
ASD at 16p, and more broadly suggest that elevated 3D chromatin contact may facilitate coordinated 
genetic and transcriptional disease liability within very large regions of the genome. 
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Results 
 
Stratified-pTDT estimates polygenic overtransmission of ASD PRS at 16p 
 
Children with ASD inherit more polygenic risk for ASD from their unaffected parents than expected by 
chance (“overtransmission”).12 Using pTDT, we observe mean overtransmission of ASD PRS within 
European ancestry trios from three different ASD trio cohorts: the Psychiatric Genomics Consortium 
(PGC)11 (n = 4,335 trios, 0.20 SD overtransmission, P = 1.53e-37), the Simons Simplex Collection (SSC)28 
(n = 1,851 trios, 0.19 SD overtransmission, P = 1.29e-17), and Simons Foundation Powering Autism 
Research (SPARK)29 (n = 3,197 trios, 0.17 SD overtransmission, P = 6.38e-21), all using a PRS generated 
from an external GWAS from the Danish iPSYCH collection (19,870 cases, 39,078 controls) 
(Supplementary Figures 1-2). As biological insights from ASD’s common variant risk factors have been 
limited, we aimed to leverage the statistical power of pTDT to identify regions of the genome of excess 
common variant relevance in ASD. Thus, we introduce stratified-pTDT (S-pTDT), which estimates 
transmission in parent-child trios of PRS constructed from small sets of SNPs (Figure 1A). Like pTDT, S-
pTDT is a within family test, which prevents spurious association due to population stratification and many 
types of ascertainment bias.12  
  
We first asked whether S-pTDT could identify any regions of the genome with transmission of ASD 
polygenic risk significantly over or under genome-wide expectation for a region of that size. To do this, we 
constructed stratified PRS from adjacent blocks of SNPs, yielding 2,006 (often overlapping) partitions 
collectively covering the whole genome (median number of SNPs per block: 3,000, minimum length: 4.3Mb, 
maximum length: 52.9Mb, median length: 11.7Mb, Supplementary Figure 3, Methods). We then performed 
S-pTDT on each partition, first estimating transmission in the 5,048 trios from SSC+SPARK, then estimating 
transmission in the 4,335 trios from PGC. As expected given the robust genome-wide pTDT 
overtransmission, most of these stratified partitions have a point estimate of overtransmission, and the 
degree of overtransmission increases with number of SNPs in the partition and size of the partition 
(Supplementary Figure 4). In order to estimate the extent to which transmission of each region differed from 
genome-wide expectation, we constructed a linear model, regressing S-pTDT transmission on the number 
of SNPs in the partition and the length of the partition (Methods). This model yields a residual z-score for 
each partition, which estimates, in standard deviations, how much more or less transmission there is than 
there is expected relative to genome-wide patterns. 
  
Transmission of regional polygenic risk for ASD is correlated between SSC/SPARK and PGC trios (r = 0.21 
(P = 3.4e-21), Figure 1B, Supplementary Figure 5), which indicates stability in the S-pTDT rankings despite 
each partition including on average only 0.1% of SNPs, the vast majority of partitions containing no ASD 
GWAS loci, and phenotypic/genetic heterogeneity among the iPSYCH ASD GWAS and ASD trio cohorts. 
Partitions that include ASD GWAS loci11 are enriched among positive (z-score > 0) S-pTDT scores in both 
SSC/SPARK and PGC: 29/46 (63%) GWAS loci are top right quadrant, compared with expectation of 12 
partitions (chi-sq P-value = 1.68e-8) (Figure 1B, red points). This observation is consistent with the 
expectation that ASD cases on average over-inherit ASD risk alleles.  
 
Unexpectedly, partitions with large S-pTDT z-scores cluster on the p-arm of chromosome 16 (from here, 
16p, approximately 0-33Mb) (Figure 1B, blue points): of the 12 partitions with the largest average S-pTDT 
z-score across SSC/SPARK and PGC, 5 are on 16p, while the other 7 localize to ASD GWAS loci. The 
three partitions that are nominally enriched in both data sets (S-pTDT z-score > 1.96) collectively tile the 
entirety of 16p (Figure 1C). Given that the highly over-transmitted regions span the p-arm of chromosome 
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16, we constructed a new partition spanning the p-arm (33Mb), and compared it to the 73 other, non-
overlapping 33Mb regions found in the human genome (Figure 1D inset). The excess overtransmission at 
16p becomes even more apparent in this analysis, with an S-pTDT z-score in SSC+SPARK of 3.37 (Figure 
1D). In contrast, the same common variants at 16p are not over-transmitted to 1,509 unaffected siblings in 
SSC (S-pTDT z-score = -0.06 (P = 0.95), Supplementary Figure 6). 
  
While 16p does not contain a genome-wide significant locus for ASD (Supplementary Figure 7), we 
nevertheless sought to determine whether the S-pTDT signal at 16p could be explained by one or a small 
number of common variant associations. We partitioned the 16p region into 25 adjacent blocks with low 
between-block LD (median length: 1.31 Mb) and assessed S-pTDT signal for each.30 Consistent with 
absence of a single driving locus in the region, the association signal was diffuse (Supplementary Figure 8) 
and decayed gradually with successive removal of the most over-transmitted blocks (Figure 1E, Methods). 
Restated, the S-pTDT association at 16p does not appear to be driven by a single coding or regulatory 
locus in the region, but exists more diffusely across the 33Mb segment of genome. 
 
We performed a number of additional analyses to further interrogate the S-pTDT finding at 16p. First, ASD 
cases with a neurodevelopmental-disorder-associated CNV on 16p (1.0% of cases in SSC/SPARK) did not 
drive the signal (Methods, Supplementary Figure 9). Second, there was no association across the genome 
between S-pTDT ranking and either a) presence of an ASD-associated CNV (Supplementary Figure 10) or 
b) segmental duplication content of the region (Supplementary Figure 11). Third, we queried the specificity 
of the S-pTDT finding at 16p to ASD by performing an analogous analysis using a cohort of ADHD trios and 
an external ADHD GWAS; we did not replicate the finding in ADHD (Supplementary Figure 12). Finally, we 
do not see evidence that the ASD S-pTDT signal at 16p extends to the q-arm of chromosome 16 
(Supplementary Figure 13). In summary, overtransmission of ASD polygenic risk at 16p is not driven by 
CNV carriers in our data, genomic structural features genome-wide, or as a cross-trait finding.  
 
Finally, we analyzed the gene composition of 16p in relation to the 73 other 33Mb control regions and asked 
whether gene density could explain the S-pTDT signal (Methods). With 433 genes, 16p is the 3rd most 
gene dense region (Figure 1F). Furthermore, with 62 genes specifically expressed in the brain, 16p ranks 
2nd highest relative to the other 33Mb control regions and has 37% more than predicted by the number of 
total genes -- the greatest excess of any region (P = 0.001, Figure 1F). In contrast, 16p does not have a 
significant excess of genes implicated in ASD from exome associations studies (P = 0.44, Supplementary 
Figure 14).31 Given that 16p exhibits polygenic overtransmission and is gene dense, we tested the 
hypothesis that polygenic overtransmission reflects gene density. Across all 74 33Mb partitions, S-pTDT 
was not related to density of all genes (R = 0.025, P = 0.83), brain-specific genes (R = 0.084, P = 0.48), 
constrained genes (R = -0.023, P = 0.85), or genes associated with ASD via exome sequencing (R = 0.15, 
P = 0.21) (Supplementary Figure 15). Moreover, we do not observe a trend of gene dense regions having 
higher S-pTDT z-scores; for example, of the 13/74 partitions with more than 300 genes, the largest is 16p at 
z = 3.37 and the second largest is z = 1.32, much lower than 16p. Finally, we did not observe a relationship 
between the S-pTDT signal and density of fetal brain enhancers (R = 0.02, P = 0.88). This analysis 
suggests that while 16p is gene dense and enriched in brain-specific genes, these findings alone cannot 
explain a region’s degree of polygenic overtransmission. 
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Figure 1: Stratified polygenic transmission disequilibrium localizes regional ASD polygenic overtransmission 
at 16p. (A) S-pTDT estimates transmission of stratified polygenic scores from parents to their children. Stratified 
polygenic scores are constructed from a continuous block of SNPs, denoted in green (though in general, S-pTDT can 
handle stratified PRS constructed from the union of multiple SNP sets). The S-pTDT value for a parent-child trio is the 
difference between the stratified polygenic score in the child and the expectation formed by the average stratified 
polygenic score of their parents, normalized by the standard deviation of the mid-parent stratified polygenic score for 
the group of trios. (B) European ancestry ASD probands in the combined Simons Simplex Collection (SSC) and 
Simons Foundation Powering Autism Research (SPARK) cohorts (x-axis, n = 5,048 trios) and Psychiatric Genomics 
Consortium (y-axis, n = 4,335) over-inherit stratified polygenic scores constructed from partitions on the p-arm of 
chromosome 16 (16p, blue dots) and partitions with ASD GWAS loci (red dots) using a non-overlapping ASD GWAS 
from the Danish iPSYCH collection (n = 19,870 cases, 39,078 controls). The axes are in units of S-pTDT residual z-
scores from a model regressing out SNP number and partition size in base pairs from the partition S-pTDT estimate. 
Horizontal and vertical lines are positioned at z-scores +/- 1.96. (C) The three partitions that are nominally significant in 
both combined SSC + SPARK and PGC (blue bars) collectively span 16p. (D) Inset: The 16p partition (blue bar) is 
compared with 73 other 33Mb partitions (gray bars) spanning the genome. Main panel: ASD S-pTDT analysis of the 
combined SSC and SPARK cohorts with stratified polygenic scores constructed from the 33Mb partitions. Each dot 
shows the S-pTDT value for the partition in units of residual z-score; the blue dot is 16p. (E) SSC + SPARK ASD S-
pTDT decays gradually with successive removal of most associated remaining LD-independent block on 16p. The y-
axis is the S-pTDT estimate (+/- 95% CI) for transmission of a stratified polygenic scores constructed from the union of 
remaining blocks. The S-pTDT estimates for each of the LD-independent blocks are shown in Supplementary Figure 8. 
(F) 16p is gene dense and enriched in brain-specific genes. Each point is a 33Mb partition as defined in D, and 16p is 
shown in blue. Brain-specific genes are defined as genes in the top 10% of specific expression in cortex relative to 
non-brain tissues in GTEx (Finucane 2018). P-value is derived from the residual z-score in a linear model regressing 
the y on x variable, and the shaded region is a 95% CI. 
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In vitro deletion of 16p11.2 causes decreased mean expression of genes on 16p 
 
Whereas the 16p11.2 canonical CNV is only 0.7Mb in size, we observed S-pTDT signal across the entire p-
arm of chromosome 16p. We hypothesized that the 16p11.2 deletion might have distal effects on gene 
expression across 16p. A previous report with endogenous (non-engineered) 16p11.2 deletion lines noted 
differential expression effects extending up to 5Mb from the 16p11.2 CNV.19 We sought to extend the 
analysis to the entire p-arm using engineered 16p11.2 deletions on an isogenic cellular background.  
 
We used CRISPR/Cas9 to perform heterozygous deletion of the 16p11.2 CNV in iPSCs (n = 7 biological 
replicates), differentiated the cells into NGN2-induced neurons, and performed RNA-sequencing and 
differential expression analysis on the deletion lines relative to control neuronal lines without the 16p11.2 
deletion (n = 6 biological replicates) (Figure 2A, Methods).32 We then asked whether, on average, the 200 
neuronally expressed genes on 16p were differentially expressed in response to the 16p11.2 deletion 
(Methods). Genes on 16p had significantly lower expression in the deletion lines (n = 200 genes, mean 
log2(fold-change): -0.015, P = 0.02; mean fold-change t-statistic: -0.16, P = 0.01, Figure 2B); this 
observation remained significant after excluding the single gene (TVP23A) with decreased expression after 
Bonferroni correction. The deletion’s effect on 16p genes was different from the effect on all other 8,533 
neuronally expressed genes in the genome (P = 0.02), whose expression was not on average changed by 
the deletion (P = 0.43) (Figure 2C). This analysis suggests that one of the most common ASD-associated 
CNVs is associated with transcriptional perturbation of genes in the surrounding region. 
 
Recurrent deletions at 15q13.3 are also observed in ASD.13,33–35 To explore the specificity of our findings at 
16p11.2, we explored the consequences of deletion of 15q13.3 in the same isogenic neuronal model (n = 
11 heterozygous deletion replicates, n = 6 controls). In contrast to our 16p11.2 results, 15q13.3 was not 
associated with transcriptional perturbation of 100 neuronally expressed genes in the surrounding region (P 
= 0.42) and was not different than the effect on all other 8,087 neuronally expressed genes (P = 0.4) 
(Supplementary Figure 16, Methods). These results suggest that the transcriptional observations at 16p11.2 
are not an artifact of the CRISPR/Cas9 construct, since the 15q13.3 and 16p11.2 models share 
CRISPR/Cas9 experimental procedure. These results also suggest that the regional transcriptional effects 
observed at 16p11.2 are not shared across all ASD-associated CNVs.  
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Figure 2: in vitro deletion of 16p11.2 causes decreased expression of 16p genes. (A) Experimental design of 
16p11.2 in vitro deletion. Induced pluripotent stem cells undergo CRISPR-Cas9-mediated deletion of the 16p11.2 CNV 
region, differentiation into induced neurons and transcriptome profiling with RNA-seq (n = 7 biological replicates). 
Differential expression analysis compares these samples to controls (n = 6 biological replicates) without deletion of the 
CNV. (B) Differential expression of 16p brain genes after deletion of 16p11.2 CNV. Brain genes are defined based on 
above median normalized expression level of genes over all samples in analysis. Genes in the deletion region +/- 
0.1Mb are green, while all other genes on 16p are in blue. The y-axis is the log2 fold-change per gene. The trend line is 
for genes outside of the CNV (blue dots) with a 95% CI shaded in gray. (C) 16p11.2 CNV deletion causes decreased 
expression of brain genes on 16p but not of all other brain genes, where brain genes defined as in (B). Point estimates 
are of mean differential expression t-statistic for the group of genes +/- SE. P-value is from two-sample t-test 
comparing groups. 
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16p ASD PRS is associated with an average decrease in gene expression across 16p 
 
Our analysis of 16p11.2 deletion lines suggests that this ASD rare variant risk factor causes transcriptional 
perturbation across 16p. Given that our S-pTDT analysis identified excess polygenic risk for ASD across the 
p-arm of chromosome 16, we tested the hypothesis that this common variant risk factor would also 
associate with decreased mean expression across 16p. 
 
We analyzed paired genotype and expression data from three sources. First, we drew upon data from 
ongoing single-nucleus RNA-seq experiments on prefrontal cortex (BA46) from 122 European ancestry 
donors from the Harvard Brain Tissue Resource Center / NIH NeuroBioBank (HBTRC) (Supplementary 
Figure 17); we performed our primary analyses in the most abundant cell type (glutamatergic neurons) to 
maximize statistical power. Next, we analyzed paired genotype and bulk cortical RNA-sequencing from the 
CommonMind Consortium, split into two ancestry-specific subgroups (n = 194 individuals of African 
ancestry, n = 238 individuals of European ancestry) (Supplementary Figure 18).36 Both the HBTRC and 
CommonMind cohorts included donors with and without schizophrenia, and we controlled for case status in 
our analyses. Within each cohort, we constructed regional polygenic risk scores for ASD within the 33Mb 
partitions described above and regressed average regional gene expression on the regional polygenic risk 
score (Methods). To increase power, and to be consistent across data sets, we restricted each of the three 
analyses to the half of genes most strongly expressed in glutamatergic neurons in the HBTRC data (n = 
8,878 genes).  
 
Increased ASD PRS within 16p was associated with decreased expression in glutamatergic neurons of 
genes through the 16p region (Figure 3A; combined cohort per-gene permutation P-value: 0.048, 
Methods). Next, we compared the association between ASD PRS and mean gene expression observed at 
16p to the strength of the same association in other 33Mb regions of the genome. Relative to the 73 other 
control regions, 16p had the second most negative association between regional PRS and mean gene 
expression (Figure 3B; beta = -0.025). Furthermore, 16p had by far the most consistently negative 
association between PRS and gene expression across the three cohorts (Figure 3C). In summary, we 
observe across independent cohorts that increased 16p ASD PRS is associated with an average decrease 
in gene expression within the partition. 
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Figure 3: 16p PRS is associated with decreased average expression of brain expressed genes on 16p. (A) Per 
gene association to 16p ASD PRS in combined analysis of HBTRC and CommonMind resources (n = 554 samples). 
Each point is a gene expressed in glutamatergic neurons (n = 183, Methods), the x-position its midpoint and the y-
position its t-statistic from a linear model of normalized expression on 16p ASD PRS, controlling for donor 
schizophrenia case/control status, European ancestry, and single-cell/bulk expression measurement. The blue line is 
the mean trend across positions with a 95% confidence interval shaded in gray. (B) Association between average 
regional gene expression and regional PRS across 16p (blue point) and 73 other 33Mb control regions (gray points). 
Point estimates and error bars (SE) from regression of average regional gene expression on regional ASD PRS, 
controlling for donor schizophrenia case/control status, European ancestry, and single-cell/bulk expression 
measurement. (C) The 16p region exhibits the most consistent negative association between PRS and gene 
expression across the three cohorts compared to other 33Mb regions. Each point is a 33Mb region, with 16p marked in 
blue. The y-axis is the largest regression coefficient in the model described in (B), run individually for each of the three 
cohorts (HBTRC glutamatergic neurons n = 122 European ancestry samples; CommonMind (bulk cortical) n = 238 
European ancestry samples; CommonMind (bulk cortical) n = 194 African ancestry samples). Inset: Association 
between mean gene expression and ASD 16p at 16p across the three cohorts. 
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Chromatin contact at 16p associates with convergence of common and rare variant effects on gene 
expression 
  
Given that both the 16p11.2 deletion and 16p ASD PRS are associated with decreased average gene 
expression in 16p, we asked whether these effects converged at the level of individual genes. We found a 
positive association between the per gene expression effects of the 16p11.2 deletion and the 16p ASD PRS 
across 168 glutamatergically expressed genes shared across both datasets (R = 0.19, P = 0.02, Figure 4A, 
Supplementary Figure 19). This observation suggests that the common variant 16p ASD PRS and the rare 
variant 16p11.2 deletion share downstream functional impact on gene expression. We also note that genes 
whose expression is decreased in response to both the 16p ASD PRS and the 16p11.2 deletion are 
enriched at the end of 16p (Ch 16: 0-5.2Mb, from here “telomeric region”, chi-squared P = 0.003 for 
negative t-statistic in both cohorts and telomeric region location, Methods). This telomeric region of 
chromosome 16 is extremely gene dense – with 182 genes, the 2nd most gene dense of 526 5.2Mb regions 
in the genome. As with 16p more broadly, it is enriched in genes specifically expressed in adult cortex (n = 
33, 83% more than expected by chance, P = 2e-4).  
 
The correlation in transcriptional effects associated with the 16p PRS and the 16p11.2 deletion motivated us 
to explore genomic structural factors that could help to explain these coordinated effects across a large 
segment of the genome. We hypothesized that the 16p region may have increased within-region chromatin 
contact, which could explain the apparent non-independence of genetic and expression variation at 
megabase scale. To examine chromatin contact within 16p, we used two published Hi-C datasets: a dataset 
of lymphoblastoid cell lines (1Mb bin resolution)37 and a dataset from the primarily neuronal mid-gestational 
cortical plate (0.1 Mb bin resolution)38. Since our hypothesis pertained to average contact behavior over 
large regions of the genome – as opposed to more fine-grained analysis of topologically associated 
domains or gene-enhancer interactions – we analyzed the largest window available within each cohort to 
increase signal:noise ratio.39 
 
The i,jth entry of a Hi-C contact matrix estimates the degree of physical interaction between the ith and jth  
regions of genome. We estimated within 33Mb-partition contact as the mean of the off-diagonal values of 
the contact matrix. As segmental duplication content and gene density of the partition are associated with 
mean Hi-C estimates (Supplementary Figure 20), we regressed them out to yield a per-partition z-score 
which we interpret as the Hi-C regional contact corrected for these genomic features. We first noted that 
within region contact estimates are correlated across the two datasets (R = 0.31, P = 0.02, Figure 4B). The 
16p partition exhibits high levels of within-region contact in both cohorts: the 4/74 highest partition in LCL 
lines (z-score: 1.50, 1.0Mb Hi-C resolution) and the 2/74 highest in the cortical plate dataset (z-score: 2.05, 
0.1Mb Hi-C resolution). We hypothesize that this diffusely elevated within-region contact at 16p could 
facilitate the influence of regional polygenic effects on gene expression across 16p, via complex distal 
regulatory interactions. 
 
Our analysis of the in vitro 16p11.2 deletion neurons (Figure 2B) revealed an effect of decreased gene 
expression at the gene-dense telomeric region of chromosome 16. We hypothesized that this is because 
the 0.7Mb 16p11.2 CNV has increased physical interaction with this telomeric region. Indeed, in mid-
gestational cortical plate Hi-C data, the CNV-telomeric contacts (n = 291 100kb x 100kb contacts) are 2.9x 
more frequent than contacts between distance-matched control regions on 16p (n = 1,808 100kb x 100kb 
contacts, P < 1e-10, Figure 4C, Methods). In conclusion, these results suggest that the 3D conformation of 
16p may mediate convergent ASD-related genetic effects on gene expression via regulatory interactions 
across megabases of separation. 
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Figure 4: Integrative model of ASD liability at 16p. (A) The positive correlation of 16p genes in their association to 
16p PRS and to the 16p11.2 in vitro deletion. The x-axis shows the association t-statistics from the all sample meta-
analysis of 16p PRS and 16p gene expression. The y-axis shows the association t-statistics from the 16p11.2 in vitro 
deletion analysis. The shaded region is 95% CI. Genes are colored by their location on 16p; telomeric is defined as 
gene mid-point < 5.2Mb, while centromeric is all other genes on 16p. A single outlying point has been truncated from 
the plot for visualization; the untruncated plot is Supplementary Figure 19. (B) Hi-C analysis reveals elevated within-
region chromatin interaction at 16p. Each point represents a 33Mb partition, with 16p colored blue. Both axes are in 
units of residual z-score, where the residual is from a linear model regressing out segmental duplication content and 
gene density from the mean within-region Hi-C contact value (Methods). The x-axis is a dataset of lymphoblastoid cell 
lines, while the y-axis is a dataset of mid-gestational cortical plate. (C) Hi-C analysis reveals elevated contact between 
16p11.2 CNV and the 5.2Mb gene-dense telomeric region of 16p in mid-gestational cortical plate neurons. The triangle 
depicts the 16p contact matrix: the blue shaded region denotes contacts between the 16p11.2 CNV (29.5Mb-30.2Mb) 
and 0-5.2Mb telomeric region (n = 291 100kb x 100kb contacts), while the red shaded region are distance matched 
controls (n = 1,808 100kb x 100kb contacts). The inset shows the distribution of contact values for 16p11.2-telomeric 
vs. controls. The p-value is from a two-sample t-test comparing the distributions. (D) A model of ASD liability at 16p. 
Two independent genetic risk factors for ASD – the 16p11.2 deletion and polygenic variation at 16p – are located in a 
region of elevated 16p chromatin interaction and enriched in brain-specific expression, and are associated with 
coordinated decreased gene expression at 16p. 
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Discussion 
 
Our observations motivate us to hypothesize the following model for ASD liability at 16p (Figure 4D): 
genetic liability for ASD emerges from the well-established 16p11.2 deletion, as well as an excess of 
common polygenic risk that is diffusely distributed across the region. Both of these risk factors are 
associated with a mean decrease in brain gene expression across 16p; their expression effects are 
correlated at the per gene level. We hypothesize that these transcriptional changes create ASD risk 
subsequent to the enrichment of brain specific genes in the region. We also hypothesize that the region’s 
elevated internal chromatin contact may facilitate the transcriptional convergence of these two distinct risk 
factors: a 0.7 Mb CNV and a 33Mb partition of common polygenic risk. This hypothesis is consistent with 
work demonstrating both single nucleotide27 and structural24–26 variation can cause transcriptional and 
chromatin perturbation. The distributed effect is also consistent with the results of a recent large-scale 
exome-sequencing study of ASD, which found that no single gene within the 16p11.2 locus was strongly 
associated with ASD.8 Our model adds to a literature of multi-gene21 and genetic network effects19,22,23 
associated with the 16p11.2 CNV, and is the first to integrate common variation and chromatin architecture 
with 16p11.2 and the broader 33Mb 16p region.  
 
Our analysis of large (e.g., 33Mb) regions of genome is non-canonical in complex trait genetics, contrasting 
with a common approach focused on mapping disease-associated variants to the genes through which they 
act.4–6 Existing approaches such as TWAS aggregate individually modest genetic effects on expression to 
associate genes with phenotype.40 Here, we both aggregate genetic effects on expression and aggregate 
effects across many genes in a region, further increasing power to observe modest effects. Regional 
analysis also allows new perspectives into gene function, including the observation of a region enriched in 
genes specifically expressed in brain, or enriched in within-region Hi-C contact. Our results suggest that 
chromatin landscapes can facilitate convergent genetic and transcriptional effects within large regions of the 
genome. This insight supports the viability of a new approach for extracting biological insight from genetic 
association data across large genomic regions. 
 
Our observations raise many questions for future study. Why are the genetic and transcriptional 
associations at 16p related to ASD? On the one hand, we found that the region harbors an unusual 
concentration of genes specifically expressed in brain, but on the other, not an unusual number of genes 
implicated in ASD from exome association studies. We did not find a 16p signal in ADHD trios using the S-
pTDT analysis, arguing against viewing 16p as equally relevant across neurodevelopmental traits. It is also 
possible that the genic relevance of the region will only become apparent through analysis of the biological 
networks into which 16p proteins interact and integrate; growing resources of protein-protein interaction 
data will facilitate this line of inquiry.41 The mean expression effects are modest, especially compared to the 
decrease in gene expression associated with heterozygous gene deletion such as that seen with the 
16p11.2 CNV. Future studies will probe the biological consequence of modest expression change spread 
across many genes. This analysis also raises the question whether there are other regions of the genome 
where common and rare variation converge in a similar fashion with relevance either for ASD or for other 
traits. In conclusion, our analysis presents a novel statistical approach for partitioned polygenic association 
and uncovers surprising functional convergence of common and rare variant risk for ASD at 16p. 
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Methods 
 
Generation of polygenic scores 
 
For ASD PRS analysis in ASD trios, we used a GWAS from the iPSYCH collection in Denmark because 
there is no sample overlap with the ASD trio samples (19,870 cases, 39,078 controls) (Supplementary 
Table 1). For all other ASD PRS analysis (i.e. PRS - expression analyses), we used a meta-analysis of the 
same iPSYCH ASD samples, plus ASD samples from the Psychiatric Genomics Consortium (combined: 
26,067 cases, 46,455 controls). For analysis of ADHD from the PGC, we used a non-overlapping iPSYCH-
only ADHD GWAS (25,895 cases, 37,148 controls).  
 
To generate polygenic scores weights, we first applied LDpred v1.11 on the marginal effect sizes from 
GWAS of our traits.42 We used LDpred under the infinitesimal genetic architecture model with LD reference 
from Hapmap 3 SNPs and an LD radius of 384 SNPs. All polygenic scores were calculated using the linear 
--score function in PLINK.43 Since LDpred estimates posterior causal effect sizes from GWAS marginal 
effect sizes, we include all SNPs in PRS analysis, including when constructing stratified polygenic scores for 
S-pTDT. 
 
ASD family cohorts 
 
The collection and imputation of the Simons Simplex Collection (SSC) and Simons Foundation Powering 
Autism Research (SFARI) have been described previously (Supplementary Table 2).12,44 The ASD trios from 
the Psychiatric Genomics Consortium Autism group (PGC) are as described previously,12 with the 
modification of the inclusion of probands from multiplex families. We defined a European ancestry subset of 
PGC for analysis by generating principal components of ancestry using PLINK and by visual inspection 
relative to Hapmap reference populations (Supplementary Figure 1). We defined a family as European 
ancestry if both parents and proband were European ancestry by PC analysis (5,283 of 4,335 trios, 82%).  
 
Genome-wide pTDT 
 
We performed genome-wide pTDT to assess power for stratified pTDT analyses in SSC, SPARK and PGC. 
We estimated polygenic transmission as described previously,12 with the exception of an adapted approach 
for the case/pseudocontrol genotypes in the PGC (Supplementary Note 1). Results for each of the three 
cohorts are listed in Supplementary Figure 2. 
 
Stratified pTDT (S-pTDT) 
 
Stratified pTDT (S-pTDT) is identical to pTDT, except instead of testing for transmission of a polygenic 
score constructed from all SNPs, it tests for transmission of a polygenic score constructed from a subset of 
SNPs: 
 

S-pTDT = (PRSS,C - PRSS,MP)/SD(PRSS,MP) 
 
Where PRSS,C is the stratified PRS of child C and PRSS,MP is the mid-parent stratified PRS (average of the 2 
parents). S-pTDT is a 1-sample t-test for whether the S-pTDT distribution has a mean different from 0. S-
pTDT estimates for a given PRS for a given cohort is equal to the average S-pTDT value for all families in 
the cohort. 
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We created stratified polygenic scores by dividing SNPs into sets of equal sizes. We varied this partitioning 
in two ways to ensure an unbiased survey of regional transmission: first, we divided the SNPs into partitions 
of varying sizes (2,000 SNPs, 3,000 SNPs, 4,000 SNPs, 5,000 SNPs, 6,000 SNPs), and second, we started 
the partitioning either from the beginning or the end of the chromosome. This yielded 2,006 (often-
overlapping) partitions (1,003 from the start of chromosomes, 1,003 from the end of chromosomes). Before 
partitioning we subsetted the PRS SNPs to those present in all three ASD trios cohorts (SSC, SPARK and 
PGC) to avoid bias from SNP missingness across partitions. We then estimated stratified PRS for each 
partition in each of the three cohorts using linear scoring (--score) in PLINK 1.9, and performed S-pTDT on 
each partition as described above.  
 
Partition length and SNP count were predictive of overtransmission (Supplementary Figure 4). We 
regressed out expected overtransmission using a linear model: S-pTDT ~ number_snps + 
partition_bp_length, and normalized the model residuals by the standard deviation of the model residual 
distribution. This procedure yields for each partition a residual z-score, which estimates the number of 
standard deviations the partition is over- or under-transmitted relative to expectation. If partitions included a 
gap between adjacent SNPs of greater than 1Mb, we adjusted the contribution of that gap down to 1Mb, 
which accounts for decay in LD but avoids inappropriately correcting the S-pTDT signal in the 
overtransmission model noted above. For analysis of 33Mb partitions, the S-pTDT z-score regressed out 
only SNP number, since basepair length of all partitions was the same. 
 
Supplemental analyses for 16p S-pTDT association 
 
First, we confirmed that ASD-associated loci through GWAS were enriched in the S-pTDT distribution. We 
defined an ASD-associated locus as the five loci from the most recently published ASD GWAS reaching 
genome-wide significance from analysis of ASD alone.11 
 
Next, we analyzed the distribution of ASD-associated CNVs in the S-pTDT distribution. We identified ASD-
associated CNVs from the set on SFARI Gene (https://gene.sfari.org/database/cnv/) and then identified the 
S-pTDT partitions with one of these CNVs within the boundary (Supplementary Figure 10). We also 
estimated the association between segmental duplication content and S-pTDT for the 33Mb partitions: we 
annotated each partition for segmental duplication rate by calculating the fraction of nucleotides in each 
partition that overlapped at least one segmental duplication per the UCSC Genome Browser.45 Coverage 
calculations were performed using BEDTools v2.30.0 (Supplementary Figure 11).46  
 
To rule out the contribution of 16p CNV carriers to the S-pTDT signal, we repeated S-pTDT analysis in SSC 
+ SPARK after removing trios where the proband carried an inherited or de novo neurodevelopmental -
disorder associated CNV at 16p (we could not perform this analysis in PGC because we do not have exome 
sequencing for this cohort). We adopted a literature-based definition of neurodevelopmental -disorder 
associated from a recent ASD sequencing manuscript.8 Of the 5,048 trios in the SSC + SPARK analysis, we 
removed 51 (1.0%) with a qualifying CNV and repeated S-pTDT analysis (Supplementary Figure 9).  
 
To evaluate the specificity of the S-pTDT finding on 16p, we performed an analogous analysis in ADHD. We 
used 1,634 European ancestry ADHD trios from the PGC and an external ADHD GWAS from the Danish 
iPSYCH collection with 25,895 cases and 37,148 controls.47 We partitioned the genome into blocks of 
2,000, 3,000, 4,000, 5,000 and 6,000 SNPs as described above starting from the beginning of 
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chromosomes and estimated S-pTDT for each partition. We then estimated a residual z-score, regressing 
out the number of SNPs and partition size as in the ASD analysis (Supplementary Figure 12).  
 
We next evaluated whether the polygenic signal at 16p could be explained by a specific locus within the 
region. To perform this analysis, we partitioned 16p into approximately 1.5Mb LD-independent blocks as 
previously defined.30 We then estimated S-pTDT using the iPSYCH-only ASD summary statistics in SSC 
and SPARK for each of these 25 blocks (Supplementary Figure 8). To evaluate the contribution of individual 
loci, we estimated the decay in 16p S-pTDT signal as a function of removing the most over-transmitted 
remaining S-pTDT blocks. Specifically, we 1) estimated per block transmission 2) ranked the blocks from 
most to least overtransmission 3) estimated overtransmission using SNPs from all blocks 4) estimated 
overtransmission using SNPs from all blocks minus SNPs from the most associated remaining block 5) 
repeated Step 4 until only a single block remained (Figure 1E). For example, the first block (“Number of 16p 
Partitions Removed from PRS = 0”) includes all the 7,658 SNPs in the 16p PRS. The next block (“Number 
of 16p Partitions Removed from PRS = 1”) subtracts 287 SNPs from the most associated block in 16p, 
leaving this new block with 7,371 SNPs.  
 
We next evaluated the regional polygenic signal of 16p relative to equally-sized comparison partitions 
across the genome. Since 16p spans approximately 33Mb of the genome, we constructed control partitions 
of 33Mb by starting at the beginning of chromosomes and defining adjacent 33Mb blocks. We defined the 
start coordinate of a chromosome by the minimum of (a) first SNP in 1000 Genomes Phase 3 EUR and (b) 
start position of first gene in gnomAD.48,49 Similarly, we defined the end coordinate of a chromosome by the 
maximum of (a) the last SNP in 1000 Genomes Phase 3 EUR and (b) and end position of the last gene in 
gnomAD. This approach yielded 74 partitions, including 16p. We performed S-pTDT using these boundaries 
by constructing stratified PRS from all SNPs within a given partition. 
 
Gene density 
 
We first compiled a consensus gene list for gene density analyses. We defined this consensus list as the 
intersection of (a) autosomal genes with unique gene names and non-missing pLI constraint estimates from 
gnomAD and (b) genes with estimated specific expression in GTEx cortex (“Brain_Cortex”).50 This 
consensus list included 17,909 genes. We further annotated this list with the 102 genes implicated in ASD 
via exome-sequencing in a recent analysis.31 We then mapped genes to the above defined 33Mb 
boundaries if their gene body midpoint was located within the boundary. We built linear models predicting 
specific expression in cortex (top 10% of specific expression t-statistic) from density of all genes and 
calculated two-sided model p-values from the residual z-scores of the regression. 
 
CRISPR/Cas9 genome editing, cell model development, and differential expression analysis 
 
Guide RNA design, iPSC culture and DNA transfection 

16p11.2 CRISPR-engineered, isogenic 16p11.2 human induced pluripotent stem cell (hiPSC) lines with 
deletion of the 16p11.2 region were generated using the SCORE approach.32 CNV deletion boundaries 
were defined as Ch16 29,487,574-30,226,919 (GRCh37). Following single-cell isolation and screening, we 
retained CRISPR-treated lines harboring 16p11.2 copy number variants (CNVs) (n = 7) and two types of 
control lines including those were not exposed to CRISPR (n = 3) and those from CRISPR treatment without 
guide RNAs (n = 3). Briefly, for design of the optimal guide RNA, we first identified all possible 18–25mer 
guides with Jellyfish and performed a degenerate BLAST search to identify sequences that would uniquely 
target the 16p11.2 SDs, respectively, with no predicted off-target effects. The gRNA was cloned into 
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pSpCas9(BB)-2A-Puro plasmid with a puromycin resistance marker (pX459, Addgene plasmid 48139) using 
a BbsI restriction site. Validation of the guide sequence in the gRNA vector was confirmed by Sanger 
Sequencing. Before transfection, all plasmids were purified from EndoFree Plasmid Maxi Kit according to 
the manufacturer’s instruction (Qiagen). Lines selected for differentiation underwent magnetic activated cell 
sorting (MACS) for expression of the TRA-1-60 cell surface marker for selection of pluripotent cells. Cells 
were separated using a MiniMACS Separator (Miltenyi Biotec, 130-090-312) with Anti-TRA-1-60 
microbeads (Miltenyi Biotec, 130-100-832) following manufacturer instructions (~2x106 cells per line). TRA-
1-60 positive cells were plated with Y-27632 dihydrochloride (10 µM), expanded, and cryopreserved using 
mFreSR. Cells within three passages of TRA-1-60 selection were used for differentiation.  

Design of the 15q13.3 CNV deletion lines followed as above, with the deletion defined with boundaries 
Ch15 30,787,764-32,804,328 (GRCh37). N = 11 heterozygous deletion lines were created, with n = 6 
control exposed to CRISPR construct but not to gRNA 
 
Differentiation of induced Neurons (iNs) 
 
TRA-1-60 positive hiPSCs were plated as single cells at 80% confluence on a Matrigel-coated 6-well plate 
with Y-27632 dihydrochloride. Polybrene (hexadimethrine bromide; Sigma, 107689) was added at 8 mg/mL 
within three hours of re-plating. Cells were incubated with polybrene for 10-15 minutes prior to the addition 
of lentivirus. Lentiviral constructs for directed differentiation of hiPSCs into iNs were made as described 
previously and added to polybrene-treated hiPSCs.51 Cells were incubated with lentivirus for 24 hours, 
followed by a media change with regular E8. At least 48 hours following single-cell re-plating, transduced 
hiPSCs were cryopreserved and passaged for expansion. 
  
Transduced hiPSCs were expanded onto matrigel-coated T-25 flasks. Once all lines in a batch reached 70-
80% confluence, cells were re-plated as single cells onto a new T-25 flask with Neural Maintenance Media 
(NMM) supplemented with Y-27632 dihydrochloride and 2µg/mL Doxycycline (Clontech, NC0424034) to 
begin induction of TetO gene driving Ngn2 expression and Puromycin resistance (Day 0). The NMM we use 
in this study is adopted from reference52. Twenty-four hours after re-plating, media was changed to NMM 
supplemented with 2 mg/L Doxycycline (Millipore Sigma, D9891) and 1 µg/mL Puromycin (Sigma), to begin 
selection of Ngn2-expressing cells (Day 1). Fresh NMM with Doxycycline and Puromycin was added to cells 
to continue selection on Days 2 and 3. On Day 4, cells were detached using Accutase (ThermoFisher, 
A1110501) and re-plated onto Poly-L-Ornithine (10 µg/ml; Sigma-Aldrich, P4957) / Laminin (5 µg/ml; Sigma-
Aldrich, L2020)-coated plates with NMM supplemented with 2 mg/L Doxycycline, 10 mg/L human BDNF 
(Pro-Spec, CYT-207), and 10 mg/L human NT-3 (PeproTech, 450-03). Cells were counted prior to re-plating 
using a Countess II Automated Cell Counter (Invitrogen, AMQAF1000) with 2.5x105 cells plated per well of 
a 12-well plate.  
  
Following re-plating, iNs were not exposed to air and required half-media changes every other day. On Day 
6, fresh NMM with Doxycycline, human BDNF, human NT-3, and 2 g/L Cytosine β-D-arabinofuranoside 
(Sigma, C1768-100MG) to prevent glial growth. On Day 8, a half-media change with fresh NMM with 
Doxycycline, BDNF, and NT-3 was conducted. For subsequent media changes (Day 10+), NMM 
supplemented with only BDNF and NT-3 was added until cells reached Day 24 of differentiation, at which 
time cells were dissociated for RNA-seq. 
 
RNAseq library preparation and quality control 
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All RNA samples were extracted with Trizol reagent according to the manufacturer’s instruction (Invitrogen). 
RNA sample quality (based on RNA Integrity Number, RIN) and quantity were determined on an Agilent 
2200 TapeStation and between 500-100 ng of total RNA was used to prepare libraries. iNs RNASeq 
libraries were prepared with Illumina’s TruSeq Stranded mRNA Library Kit, which used polyA capture to 
enrich mRNA, followed by stranded reverse transcription and chemical shearing to make appropriate 
stranded cDNA inserts for the library. Libraries were finished by adding both sample-specific barcodes and 
adapters for Illumina sequencing followed by between 10-15 rounds of PCR amplification. Final 
concentration and size distribution of libraries were evaluated by 2200 TapeStation and/or qPCR, using 
Library Quantification Kit (KK4854, Kapa Biosystems), and multiplexed by pooling equimolar amounts of 
each library prior to sequencing. RNAseq libraries were sequenced on multiple lanes of an Illumina HiSeq 
2500 platform. 
 
Quality of sequence reads was assessed by fastQC (version 0.10.1).53 Gene-based counts were generated 
by aligning sequence reads to the human reference genome, GRCh37 (v75) and relying on the Ensembl 
gene annotations of these reference genomes using STAR (version 2.4.2a), with parameters “--
outSAMunmapped Within   --outFilterMultimapNmax 1   --outFilterMismatchNoverLmax 0.1   --
alignIntronMin 21   --alignIntronMax 0   --alignEndsType Local   --quantMode GeneCounts      --
twopassMode Basic”.54 Quality of alignments was assessed by custom scripts utilizing Picard Tools 
(https://broadinstitute.github.io/picard/), RNASeQC55 and SamTools56. Further exploratory analyses 
including clustering and principal component analyses (PCA) were implemented in R (version 3.4) using 
DESeq2 (version 1.18.1)57 and custom scripts. 
 
Differential gene expression analysis 
 
Differential expression (DE) analyses were performed on genes that passed the expression threshold in a 
given comparison using R/Bioconductor packages DESeq2 (v. 1.18.1).57 To determine genes that passed 
the expression threshold for a particular comparison, count-per-million (cpm) expression values of genes 
across the samples used in the comparison were calculated. Cpm of ith   gene in sample j was defined as 
106 x Ci / LSj, where Ci is raw counts of  ith  gene and  LSj is the library size of jth sample. Total number of 
uniquely mapped reads reported by STAR aligner for a given sample was taken as the library size of that 
sample. Next, cpm expression threshold for a given comparison was calculated for 10 counts, using the 
equation 106 x 10 / median(LS), where median(LS) is the median value of library sizes of samples used in 
the comparison. All the genes with expression values in cpm equal or greater than the cpm expression 
threshold in at least 50% of samples in either condition (e.g. deletion or wild-type) were further analyzed in 
the DE analysis by comparing CNV type deletion with the corresponding wild-type samples. To account for 
unknown sources of variation in the expression data, surrogate variables (SVs) were estimated for each 
comparison using R/Bioconductor package the Surrogate Variable Analysis (SVA version 3.26) by setting ~ 
genotype as the full model and ~ 1 as the reduced model.58,59 Differential expression t-statistics were 
defined as DE effect size / DE standard error. 
 
PRS - expression analyses 
 
Harvard Brain Tissue Resource Center / NIH NeuroBioBank (Single-nucleus RNA-seq) 
 
We generated paired genotype and single-nucleus expression profiles from dorsolateral prefrontal cortex 
from deceased donors from the Harvard Brain Tissue Resource Center / NIH NeuroBioBank. The 
generation of expression profiles will be described in detail in a forthcoming manuscript from Ling et al. In 
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brief, we developed and optimized a workflow for creating and analyzing “brain nuclei villages” – nuclei 
sampled from brain tissue (dorsolateral prefrontal cortex, DLPFC, BA46) from 20 different donors per 
village. In this workflow, we start by dissecting a defined amount of tissue from each donor, obtaining a 
similar mass of tissue from each specimen while being careful to represent all cortical layers. The frozen 
tissue samples are then immediately pooled for simultaneous isolation of their nuclei; all subsequent 
processing steps – including nuclear isolation, encapsulation in droplets, and preparation of snRNA-seq 
libraries – involve all of the donors together. This “Dropulation” workflow allows us to minimize experimental 
variability, including any technical effects on mRNA ascertainment and any effects of cell-free ambient RNA. 
Each nucleus in these experiments was then re-assigned to its donor-of-origin using combinations of 
hundreds of transcribed SNPs; though the individual SNP alleles are shared among many donors, the 
combinations of many SNPs are unique to each donor in the cohort. Nuclei were assigned to 7 major cell 
classes (astrocytes, endothelial cells, GABAergic neurons, glutamatergic neurons, microglia, 
oligodendrocytes, polydendrocytes) by global clustering and identification of marker genes expressed in 
each cluster. Median cell type proportions were: glutamatergic neurons 47.9%, GABAergic neurons 18.8%, 
astrocytes 13.5%, oligodendrocytes 8.0%, polydendrocytes 5.2%, microglia 1.5%, endothelia 1.0%; we 
performed subsequent analyses using the most abundant cell type (glutamatergic neurons) to maximize 
power. The cell-type specific gene-by-donor expression matrices were processed with VST normalization.60 
 
We performed a number of pre-association QC steps. The majority of genotyped samples were European 
ancestry (1707/1770, 96%), and we identified these samples for downstream analysis using PCA 
(Supplementary Figure 17). Next, we identified any samples as expression outliers with mean expression > 
3 SD from the cohort mean (3/125 samples). This yielded a final EUR subset of 122 samples.  
 
We then analyzed the relationship between mean gene expression and regional ASD PRS in these 
samples. Using the 33Mb partitions described above, we estimated a stratified ASD PRS in these samples 
using the largest ASD GWAS (iPSYCH + PGC, see Supplementary Table 1) using Plink --score and 
genotype QC (SNP missingness < 1%, MAF > 0.1%, imputation INFO > 95%). For gene expression profiles, 
we restricted analysis to the top 50% of genes by per sample normalized raw count expression, yielding 
8,878 genes. Within each 33Mb partition, we performed per gene regional PRS to gene expression 
association with the linear model: gene VST expression ~ regional PRS + schizophrenia case/control. Each 
regression produces a t-statistic for the regional PRS coefficient, which estimates the normalized 
association of the regional PRS with gene expression in cis. After performing the regression for each gene 
in the partition, we calculate the mean t-statistic for genes in the partition (Figure 3B, Supplementary Figure 
19). 
 
CommonMind (Bulk cortical RNA-seq) 
 
We next analyzed paired genotype and bulk dorsolateral prefrontal cortex expression data from donors in 
the CommonMind consortium. Generation of expression count matrices is described in the CommonMind 
publication.36 Within CommonMind, we restricted analysis to donors from the NIMH Human Brain Collection 
Core (HBCC) and the University of Pittsburgh (PITT) biobanks due to previous analysis demonstrating 
increased consortance with the Dropulation data (Ling et al, forthcoming). We performed variance 
stabilization on the count matrices separately in HBCC and PITT using the SCTransform package in Seurat 
with the goal of closely paralleling the primary analysis in Dropulation (parameters: do.scale=FALSE, 
do.center=FALSE, return.only.var.genes = FALSE, seed.use = NULL, n_genes = NULL).  
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The CommonMind collection is ancestrally heterogeneous; the two largest groups are African and European 
ancestry donors. Accordingly, we used PCA to identify donors of African ancestry (n = 194) and European 
ancestry (n = 238) and subsequently analyzed each separately (Supplementary Figure 18). For consistency 
with the Dropulation sample, we restricted analysis to donors diagnosed with schizophrenia or controls.  
 
As in the Harvard Brain Tissue Resource, we estimated the association between regional polygenic scores 
and average shifts in regional gene expression. For each ancestral cohort, we associated ASD regional 
PRS to the normalized expression of genes in the region: expression ~ regional PRS + schizophrenia 
case/control. For consistency, we restricted analysis to the same genes analyzed in the Harvard Brain 
Tissue Resource analysis described above. 
 
Per cohort association and meta-analysis 
 
We performed two classes of local PRS - gene expression association. The first class is per-gene 
association, as in Figure 3A. The second is average gene association, as in Figure 3B-C. To be consistent 
across data sets, we restricted all analyses to the half of genes most expressed in glutamatergic neurons in 
the HBTRC data (n = 8,878 genes). The association in Figure 3A is per-gene association meta-analyzed 
across the three cohorts. We combined individual level expression and genotype PRS across the three 
cohorts; before concatenating the polygenic scores and expression matrices used in the individual cohort 
analyses, we within-cohort scaled per gene gene expression and per partition PRS to mean = 0 and SD = 1. 
Per gene association followed the linear model: gene expression ~ regional PRS + schizophrenia 
case/control + ancestry (binary for yes/no African ancestry) + single_cell (binary yes/no). The association t-
statistic is from the regional PRS covariate. For maximum power to detect mean effects, we assessed 
significance of the mean PRS-expression association using permutation. Specifically, we calculated the 
mean(t-statistic) in 16p, then shuffled the PRS-donor IDs, performed association, then calculated the 
mean(t-statistic), repeated 5,000 times. The permutation p-value is the number of times the observed PRS 
was more negative than the permuted PRS. For the second class of association, we first averaged the gene 
expression per partition, then performed association. For per cohort association, the model is: mean 
expression of gene ~ regional PRS + schizophrenia case/control. For combined analysis, the model is mean 
gene expression ~ regional PRS + schizophrenia case/control + ancestry (binary for yes/no African 
ancestry) + single_cell (binary yes/no). 
 
Hi-C analysis 
 
LCL lines 
 
Per chromosome Hi-C count matrices were downloaded from http://hic.umassmed.edu/ at 1Mb resolution 
for GM06990 lymphoblastoid cell line.37 Since the count matrices were built in hg18, we converted the 33Mb 
partitions from hg19 to hg18 using the NCBI Genome Remapping Service 
(www.ncbi.nlm.nih.gov/genome/tools/remap). We matched the boundaries of the 33Mb partitions with their 
closest 1Mb cutoffs in the count matrix. For this analysis, we did not analyze partitions spanning 
centromeres, yielding 56 partitions for analysis. For each partition, we estimated raw within partition contact 
frequency as the mean of the off-diagonal elements of the Hi-C count matrix.  
 
Mid-gestational cortical plate 
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We download 0.1Mb resolution Hi-C contact matrices from NCBI GEO from a resource of mid-gestational 
cortical plate samples from 3 donors.38 As above, we mapped the boundaries of the 33Mb partitions to the 
0.1Mb boundaries of the Hi-C matrix. In contrast to the LCL lines, the diagonal elements were zeroed out; 
thus, the estimated raw within partition contact frequency was estimated as the mean of all elements of the 
matrix. We analyzed the same 56 partitions as in the LCL analysis. 
 
Contact model 
 
Raw within-partition contact frequency varies with gene density and segmental duplication contact 
(Supplementary Figure 21). In the LCL lines, this covariance is likely due to increased number of Hi-C reads 
mapping to regions with increased segmental duplication content. In cortical lines, there are large chunks of 
zeroed out elements of the contact matrix, rates of which correlate strongly with segmental duplication 
content, likely due to intentional zeroing of elements in regions that are difficult to map due to segmental 
duplication content. Gene density remains a significant predictor of contact frequency after conditioning on 
segmental duplication content, motivating us to condition on gene density as well and to extract normalized 
residuals from the following model: contact frequency ~ gene density + segmental duplication content. Our 
primary analysis in Figure 4B reports these normalized residuals for each partition. 
 
16p11.2 CNV - telomeric region analysis 
 
We next analyzed the chromatin contact between the 16p11.2 CNV and the distal gene-dense start of 
chromosome 16. We performed this analysis in the mid-gestational cortical plate data given its higher 
resolution of 100kb. We defined the telomeric region based on the gene dense segment at the start of 
chromosome 16, from 0Mb to the closest 100kb segment after the endpoint of the brain expressed gene in 
that window in the 16p11.2 deletion dataset (5.2 Mb). We defined the 16p11.2 CNV as Ch16: 29.5 - 
30.2Mb. To define control contact regions, we first calculated the minimum (24.3Mb) and maximum 
(30.2Mb) distances spanned by the contact matrix defined by 0-5.2Mb (telomeric region) and 29.5-30.2Mb 
(16p11.2 CNV). We then defined control contacts on 16p as all contacts of distance greater than 24.3 or 
less than 30.2 that were not located in the telomeric-CNV contact matrix described above. These control 
regions have an intuitive geometric interpretation in the contact matrix as all of the contacts within the 
equidistant diagonal lines (forming a trapezoid, see Figure 4C). These results are robust to inclusion of 
elements of the contact matrix with “0”, which likely reflect segmental duplication rich regions (telomeric-
CNV vs. control p-value < 1e-10 for both).  
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