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Abstract 

 

Neurometry (a.k.a. quantitative EEG or qEEG) is a popular method to assess clinically relevant 

abnormalities in the electroencephalogram. Neurometry is based on norm values for the 

distribution of specific EEG parameters and believed to show good psychometric properties such 

as test-retest reliability. Many psychometric properties only hold under the Gaussian distribution 

and become problematic when distributions are fat-tailed. EEG signals are typically fat-tailed and 

do not show fast convergence to a Gaussian distribution. To circumvent this property of EEG, log-

transformations have frequently, but not always been employed. In Monte Carlo simulations, we 

investigated the impact of fat-tails (i.e. deviations from Gaussian) on the cut-off criteria and 

changeability of what in neurometry is termed “abnormal EEG”. Even slight deviations from the 

Gaussian distribution as measured by skewness and kurtosis lead to large inflation in the number 

of false positive qEEG findings. The more stringent the cutoff value adopted, the larger the 

inflation. For these reasons, we argue that distribution properties of qEEG databases should be 

disclosed in much more detail to avoid questionable research practices and promote diagnostic 

transparency. Moreover, “abnormal EEG” seems to recover spontaneously at rates not 

compatible with the alleged test-retest reliability of qEEG. Alternative methods should be 

employed to determine cut-off values for diagnostics purposes, since a large number of false 

positive results emerge even when slight deviations from the Gaussian distribution are present. 

We provide recommendations for the improvement of psychometric properties of existing qEEG 

databases. 
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Introduction 

 

Neurometry (a.k.a. quantitative EEG or qEEG) is the popular name given to the adaptation 

of classic psychometric measurement models to the evaluation of EEG data (Johnstone & 

Gunkelman, 2003). Typically, EEG parameters are measured in a “large” sample and norm values 

are calculated and employed as a reference to classify EEG signals as normal or abnormal and 

suggest specific forms of “cure” to “normalize” EEG classified as deviant. More or less extreme 

cut-off values are used to classify the EEG of individuals as “normal” and “abnormal” (Thatcher & 

Lubar, 2009) and in case of abnormality, an intervention such as neurofeedback (Gruzelier, 2014) 

can be applied to “normalize” the EEG. Several parameters of EEG have been treated in this way: 

absolute and relative frequency power, coherence, phase, and event-related potentials (Kropotov, 

2010). A PubMed search for the term “qEEG” alone yields to the present time point over 1000 

entries.  

 

The rationale behind the construction of normative databases is strongly dependent on 

assumptions regarding the distribution of EEG population parameters. Ideally, these parameters 

converge quickly to a Gaussian distribution and the true population values for mean and variance 

of the EEG can be estimated with reasonable effort. Results acceptable for diagnostic purposes 

can be achieved for the mean with sample sizes of n = 30 and the variance with n = 7501. An 

estimate of the variance is paramount for the development of norms, since the standard deviation 

serves as the unity to describe how far an observation is from the mean. The proportion of 

observations more extreme than a z-score of +/- 2 or 3 is given by the density function of the 

Gaussian distribution (i.e. ≅ 5% and 0.1%, respectively) and serves well as a cut-off value for 

diagnostics. An inaccurate estimate of the variance leads to imprecise z-scores and cut-off values 

that are useless for individual diagnostics because the proportions of values exceeding the cut-

off values may be much higher or lower than expected. Test-retest reliability measures provide 

the basis for measurement of intervention effects, since they estimate the expected changes in 

test scores which are due to measurement error alone. One important caveat for the usefulness 

of test-retest reliability is the homoscedasticity of measurement error. When skewness and 

 
1 This is the n when considering a reasonably useful estimate that will not deviate more than d = 5% from 

the correct value with a confidence of 95% (Thompson & Endriss, 1961). Taking a less stringent accuracy 
criterion may not be problematic when evaluating estimates close to the mean, but problematic for more 
extreme observations. While an error of 10% is still fine when observations are 1σ away from the mean, 
an error of 10% when estimating an observation 2σ away from the mean is much more pronounced. 
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kurtosis deviate from a Gaussian distribution, measurement error becomes more heteroscedastic 

because of one or both of the distribution’s tails, and test-retest reliability estimates become 

invalid for observations far from the mean. In the present study, we will investigate the impact of 

deviations from a Gaussian distribution to the practice of comparing EEG with EEG norms using 

cut-off values. 

 

Authors active in the development of neurometric tools tend to underscore that EEG 

parameters such as absolute power, relative power, phase, and coherence follow a Gaussian 

distribution. As reported for instance by Thatcher (1998; Table 2, p. 16) and Thatcher et al. (2003, 

Table 1, p. 101), skewness and kurtosis deviate from normality to a certain degree in qEEG 

databases, but for decades this has been treated as negligible, but a psychometric proof of this 

claim was never presented. To the contrary, publications on qEEG databases rarely present 

information on the higher moments of the distribution of EEG parameters. This is highly 

problematic, since EEG data can show fat-tailed distributions such as a lognormal distribution 

(Gasser et al, 1982) and require the use of mathematical transformations to achieve a Gaussian 

distribution.  

 

The lognormal distribution can behave differently according to its standard deviation 

(Taleb, 2020). The lognormal distribution with a small standard deviation is almost symmetric 

around the mean and behaves indeed very similarly to the Gaussian, but starts very quickly to 

behave as a fat-tailed distribution, when its variance increases. When the distributions are truly 

lognormal, the logarithm of raw values behaves as a Gaussian and the assumptions for 

diagnostics are met. Obviously, transformations have to be chosen taking into consideration the 

properties of data at hand and only wrong transformations can damage data properties. Crucially, 

there is evidence from Box-Cox investigations, that EEG parameters can be distributed in a more 

extreme way than lognormal (van Albada et al. 2007, Table 2, p. 210). In such cases, a log-

transformation is unable to bend the data distribution to a Gaussian and many of the properties 

of fat-tailed distributions will remain in the data even after a log-transformation and several of the 

measurement assumptions cannot be met for any practical purpose.  

 

One characteristic of fat-tailed distributions is the higher probability density of observations 

far from the mean in comparison to the Gaussian distribution. The more fat-tailed a distribution is, 

the more observations are farther than 2, 3, 4 standard deviations from the mean, rendering these 

values useless as cut-offs (Figure 1). For instance, under a fat-tailed log-normal distribution with 
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mean 0 and standard deviation 1, many more observations will be more extreme than 2 or 3 

standard deviations than in a Gaussian distribution (i.e. 25% and 14%, respectively, and not only 

5% and 0.1%, as under a Gaussian). These values illustrate how large the inflation in the number 

of false positives is when taking 2σ (0.25/0.05 = 500%) or 3σ (0.14/0.001 = 14000%) as cut-off 

values for neurometrics. When considering cut-off values based on the standard deviation, fat-

tailed distributions lead to the inflation of occurrence of observations more extreme than the cutoff.  

 

 

Figure 1: Comparison of the densities of the Gaussian distribution (black line) and 

lognormal distributions, the latter with increasing variances. Note that at very small variance 

values the lognormal is indistinguishable from the Gaussian, but small increases in variance lead 

to large deviations at the tails. 

  

 Moreover, estimating the moments of fat-tailed distributions (mean, standard deviation, 

skewness and kurtosis) is not an easy task because of slow convergence. Even after collecting 

many thousands of observations, sample estimates can be far away from the true population 

value. While one can rely on n = 30 to provide a not too bad estimation of the population mean of 

a Gaussian distribution, some common fat-tailed distributions would need no less than 109 

observations for estimation of the mean (Taleb, 2020). Even if many fat-tailed distributions 

converge to a Gaussian distribution when n approaches infinity, slow convergence implies sample 

sizes prohibitively large by many orders of magnitude in comparison to the Gaussian. For fat-

tailed distributions, the empirical distribution does not reflect the true statistical properties of the 

population, since typical sample sizes of hundreds or even some thousands of participants are 

too small to allow useful estimation. This is problematic especially at the extremes of the 

distribution, which are central for diagnostics of “abnormal” EEG.  

 

Fat-tailedness also interferes with the computation of score differences, which are essential when 

comparing qEEG scores obtained before and after an intervention. Due to an intervention, 

neurometrics specialists aim at a “normalization” of the EEG, which is expressed by a correction 
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of extreme scores obtained prior to a treatment to levels typically observed in the population. 

Database providers use to report good or even excellent test-reliability scores for qEEG 

parameters (Roberts et al., 2016; Salinsky et al., 1991; Thatcher, 2010). Thanks to the test-retest 

reliability of qEEG databases, one can compute the critical difference of qEEG scores, which is 

the smallest non-trivial score difference, i.e. a score too large to be attributed to chance alone. In 

this sense, the critical difference helps accounting for the effects of regression to the mean and 

can therefore be taken as genuine evidence of the effectivity of a therapeutic intervention and is 

a great tool to evaluate the effects of heteroscedasticity on diagnostics and evaluation practices 

typical in neurometry. Under the Gaussian distribution, individual measurement error (i.e. SE = 

𝑧𝛼  √1 − 𝜌 for z-transformed variables with σ = 1) is homoscedastic, so that the probability of test 

scores to surpass the critical difference by chance is the same for any test score regardless of 

how far it is from the mean. This is not true, however, when distributions are fat-tailed. In case of 

variables with excess skewness and kurtosis, heteroscedasticity generates larger critical 

differences far away from the mean than closer to it and give rise to the artificial impression of 

large improvements where there is none.  

 

In the following, we will employ descriptions of qEEG distributions from the literature and 

test their susceptibility for inflation of positives and tail heteroscedasticity using Monte Carlo 

simulations.  
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Methods 

The degree of deviation from a Gaussian distribution observed in popular qEEG databases can 

be estimated using the empirical values of variances, skewness, and kurtosis reported in the 

literature (e.g. Thatcher, 1999, Table 2.2, p. 39 and Thatcher et al. 2003, Table 1, p. 1012). These 

authors published skewness and kurtosis of their database as percentage value in relation to the 

moments of a Gaussian. Inspection of some of these values reveal deviations from Gaussian in 

the order of 0% to 50%. Although it is not explicitly reported in these publications, we assume that 

the sample moments are higher than the Gaussian because of the well-known fat-tail properties 

of EEG signals (Gasser et al, 1982, von Albada et al., 2007). This means that simulations with 

kurtosis values covering the interval between 3 and 4.5 are required to understand the diagnostic 

properties of qEEG data, considering that the Gaussian distribution has a kurtosis of 3. 

 

Monte Carlo simulation of cut-off values: We investigated the proportion of observations more 

extreme than typical cut-off values used to classify qEEG as normal or abnormal. Typical cut-off 

values of 2σ and 3σ as well as cut-off values of 1.5σ and 2.5σ were included in the simulations 

to improve the visualization of results. Nine different values ranging from 0.001 to 0.5 were used 

as the standard deviation to generate data with a lognormal distribution. Data drawn from a 

lognormal distribution with a very small value of sigma yields moments very close to the normal 

distribution (skewnesslognormal σ = 0.001, kurtosislognormal σ ≅ 3) while those of a lognormal distribution 

with a larger standard deviation = 1 are much higher (skewness = 5.75, kurtosis = 80.5) than 

those of a Gaussian. Simulated data were z-standardized to have a mean value of 0 and a 

standard deviation of 1 to allow the calculation of the cut-off values of 1.5, 2, 2.5 and 3σ and the 

comparison with the Gaussian distribution. Comparisons consisted of counting the number of 

values more extreme than the cut-off value in the lognormal and in the Gaussian distribution and 

dividing the first by the second number. When both values are comparable, this index is 

approximately one. When the lognormal distribution generates more positives, the value gets 

bigger than one and indicates an inflation of positives in comparison to the Gaussian. Finally, 

when the lognormal distribution generates less positives, the value gets smaller than one and 

indicates a deflation of positives in comparison to the Gaussian. In total, 36 conditions (4 cut-off 

values * 9 variance levels) were simulated with k = 10000 repetitions in each cell. In each 

repetition, one comparison of lognormal and Gaussian data was performed. Sample size was set 

at n = 1000 observations to reproduce the size of a large qEEG database. 

 
2 Thatcher (2010, Table IV, p 31) presents even higher skewness and kurtosis values for a LORETA 
normative database. 
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Monte Carlo simulation of score changes and test-retest estimates: Aim of this simulation is to 

understand the effect of non-normality on the interpretability of test score differences. Usually, 

clinically relevant improvements in test-scores are attributed to the effectiveness of the 

intervention, but this must not be the case. For each test score difference there is a probability p 

of a false positive, i.e. test-scores show an improvement, which is due merely to random numeric 

fluctuation. One way to evaluate improvements in performance due to an intervention is the 

computation of the so-called critical difference in test scores (Salkind, 2010). The critical 

difference describes the minimal size of test score difference that is associated with a (low) 

probability p = α of being produced by measurement error alone. Formula (1) illustrates the 

calculation of the critical differences (Huber, 1973, adapted from formula 7.2.10, for z-transformed 

variables with σ = 1), where Y represents the qEEG scores typically obtained before and after an 

intervention. As can be seen in (1), the critical difference is inversely related to the test-retest 

reliability 𝜌𝑗𝑗 of test-scores. The larger the test-retest reliability of test scores, the smaller the 

smallest meaningful difference score.  

 

𝑐𝑟𝑖𝑡 (𝑌𝑝𝑟𝑒 −  𝑌𝑝𝑜𝑠𝑡) = 𝑧1−𝛼
2⁄ √2(1 − 𝜌𝑗𝑗)    (1) 

 

QEEG parameters typically are reported to show moderate to high test-retest reliabilities (Roberts 

et al., 2016; Salinsky et al., 1991; Thatcher, 2010). Under homoscedasticity, the size of observed 

differences between test scores is independent of the absolute value of the scores. For a 

Gaussian distribution, the size of test score differences observed for each test score is 

comparable and the test-retest reliability can be used to determine an upper bound for the size of 

test score differences that is caused by random fluctuation alone. This value is valid in the whole 

range of possible test score values. Under heteroscedasticity, this is not the case. We generated 

pairs of variables with mean = 0, variance = 1, and with test-retest correlation 𝜌𝑗𝑗. We then 

established the critical difference given the size of the α-level and the test-retest correlation 𝜌𝑗𝑗 .  

 

Correlations of the same size as the test-retest reliability estimates published in the literature were 

employed to calculate the critical difference. These variables were drawn either from a Gaussian 

distribution or from nine different log-normal distributions with the same degree of logarithmic 

compression as those employed in the simulation of cut-off values (see above). Four different 

test-retest correlation values were employed (𝜌𝑗𝑗 was set to 0.5 (poor reliability), 0.7 (acceptable 
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reliability), 0.8 (good reliability), and 0.95 (excellent reliability)) and 9 degrees of logarithmic 

compression (see Table 1). The number of repetitions for each experimental cell in the design 

was k = 10000. The first variable in each pair represented the pre-test score and the second the 

post-test score. The difference DYpre - Ypost was calculated. The presence of heteroscedasticity was 

evaluated applying the Breusch-Pagan test (1979) to a linear model relating Dpre-post to the pre-

test score. The rationale is that under the Gaussian distribution, the model should have no 

predictive power and yield a beta coefficient of 0; the residuals of this model will be strictly 

homoscedastic. Under logarithmic compression, the regression coefficient will be different from 0 

and the residuals will assume increasing levels of heteroscedasticity. Moreover, under an excess 

of skewness and kurtosis, the number of difference scores fulfilling the condition Dpre-post > 

𝑐𝑟𝑖𝑡 (𝑌𝑝𝑟𝑒 −  𝑌𝑝𝑜𝑠𝑡) should increase, particularly far from the distribution mean. 

 

Statistical analysis: 

Simulations were programmed in R (Core team, 2020) using the packages base, stats v4.1.0, 

moments v.014 and lmtest v. 0.9-39. The scripts employed to generate data are available in the 

Appendix. In simulation 1, probabilities of reaching a value higher than the cut-off were calculated 

using the cumulative density function of the normal distribution and were compared with the 

empirical probability values obtained for the different instances of the lognormal distribution.  

 

  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted March 23, 2022. ; https://doi.org/10.1101/2022.03.23.22272823doi: medRxiv preprint 

https://doi.org/10.1101/2022.03.23.22272823


 

 

Results 

 

Monte Carlo simulation of cut-off values: The proportion of values exceeding the cut-off were 

obtained by thresholding log-normally distributed data with different variances using cutoff values 

between 1.5 and 3 standard deviations (Table 1 and Figure 2). As can be seen in Figure 2, none 

of the cut-off values leads to a number of positives comparable to that of the Gaussian. Results 

of Simulation 1 show clearly how badly one can misinterpret the diagnostic value of EEG 

parameters, when these data deviate from a Gaussian distribution. A mismatch between the 

Gaussian and the lognormal distribution manifests itself in different directions and intensities 

depending on the cut-off value employed. On the one hand, liberal cut-off values (cut-off = 1.5) 

lead to an underestimation of the number of positive cases, which is worse when the kurtosis of 

the lognormal distribution is virtually the same as the Gaussian. Under these circumstances, the 

number of positives detected is only 36% of the expected. On the other hand, more conservative 

cut-offs produce a gross overestimation of positives, ranging between 400% and 3000%. Even in 

the case of a cut-off = 2σ, which generates the mildest misestimations, an inflation of 7 % in the 

number of cases can be observed, even when the kurtosis is as expected from a Gaussian 

distribution. The size of the inflation increases rapidly and reaches 50% even when the kurtosis 

of the lognormal distribution is only 20% higher than that of a Gaussian.  

 

Table 1. Skewness and kurtosis of artificial data reproducing the typical properties of qEEG data 

SD of  EEG 
distribution 

0.001  0.100  0.157  0.214  0.271  0.329  0.386  0.443  0.500 

Skewness 0 0.30  0.48 0.65 0.84 1.00 1.24 1.47 1.71 

Kurtosis* 1 1.04 1.11 1.22 1.37 1.57 1.82 2.15 2.55 

*Kurtosis is expressed as kurtosis(simulation)/kurtosis(Gaussian) 

 

Figure 3 depicts the deviations from a Gaussian distribution observed when increasing the 

logarithmic compression of the data. It is evident that the extremes of the distribution deviate the 

most and are therefore more affected by the properties of the distribution. 
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Figure 2: Inflation of the number of positive observations more extreme than cut-off values. The 

y-axis represents the proportion of values in EEG data exceeding the cut-off value divided by the 

expected frequency of a Gaussian distribution. In this simulation the cut-off values were set at 

1.5, 2, 2.5 and 3σ.  
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Figure 3: The curvature in the normal Q-Q plot highlights the disagreement between the simulated 

data and the Gaussian model. 
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Monte Carlo simulation of score changes and test-retest estimates: Table 2 depicts the average 

p-values obtained when testing for heteroscedasticity with the Breusch-Pagan test. An excess of 

kurtosis of 15% to 20% leads to systematic heteroscedasticity regardless of the level of test-retest 

reliability. Interestingly, the lowest levels of heteroscedasticity were observed when test-retest 

reliability is very high (𝜌𝑗𝑗 = 0.95). Still, even under these optimal test-retest reliability conditions 

significant heteroscedasticity is observed as an excess of kurtosis reaches 27%. Given these 

results, it is informative to compare the slope of the linear regression of Dpre-post on the pre-test 

score 𝑌𝑝𝑟𝑒. As expected, this slope is 0 under the Gaussian distribution. Table 2 presents the 

slope values as log10(1 + slope). When using this scaling, values larger than 0 in Table 2 reveal 

a positive correlation between the pre-test scores and the critical differences. The larger the pre-

test score, the larger are the (𝑌𝑝𝑟𝑒 −  𝑌𝑝𝑜𝑠𝑡) differences. Values in Table 2 increase for all test-

retest reliability levels depending on the kurtosis excess. Finally, we computed the number of 

cases in which Dpre-post > 𝑐𝑟𝑖𝑡 (𝑌𝑝𝑟𝑒 −  𝑌𝑝𝑜𝑠𝑡) and the pre-test scores were larger than 2σ. Table 2 

shows that the stronger the kurtosis excess, the larger the proportion of values Dpre-post > 

𝑐𝑟𝑖𝑡 (𝑌𝑝𝑟𝑒 −  𝑌𝑝𝑜𝑠𝑡). Numerical values depict the multiplicative factor related to each cell in the 

design. The value of 1 indicates that the number of cases is comparable to that obtained under 

Gaussian distribution. As can be observed, the proportion of values exceeding the critical 

difference is larger than under the Gaussian for each level of logarithmic compression. More 

importantly, the higher the test-retest reliability, the larger the number of observations with high 

levels at pre-test and a large pre-post difference (i.e. a case showing what neurometricians call 

“normalization of EEG”). The values presented in Table 2 show that an inflation of more than 30% 

is observed with very small kurtosis excess and this inflation increases up to 370% in case of 

larger kurtosis excess and excellent test-retest reliability.  
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Table 2: Heteroscedasticity, dependency on initial scores, and inflation of false positives as a 

function of the standard deviation of log-normal distribution used in the simulations 

 Breusch-Pagan test 

 

SD of  EEG 

distribution 

0.001  0.100  0.157  0.214  0.271  0.329  0.386  0.443  0.500 

𝜌𝑗𝑗 = 0.5 -0.43 -1.13 -1.97 -3.02 -4.26 -5.49 -6.82 -8.06 -9.23 

𝜌𝑗𝑗 = 0.7 -0.43 -1.26 -2.27 -3.63 -5.08 -6.72 -8.33 -9.96 -11.63 

𝜌𝑗𝑗 = 0.8 -0.43 -1.15 -1.99 -3.11 -4.34 -5.67 -7.02 -8.48 -9.60 

𝜌𝑗𝑗 = 0.95 -0.44 -0.63 -0.89 -1.23 -1.58 -1.94 -2.34 -2.69 -3.03 

 Slope of the difference Dpre-post on the pre-test scores Ypre 

 

 0.001  0.100  0.157  0.214  0.271  0.329  0.386  0.443  0.500 

𝜌𝑗𝑗 = 0.5 0 0.02 0.03 0.04 0.05 0.06 0.06 0.07 0.08 

𝜌𝑗𝑗 = 0.7 0 0.01 0.02 0.03 0.04 0.04 0.05 0.06 0.06 

𝜌𝑗𝑗 = 0.8 0 0.01 0.02 0.02 0.03 0.04 0.04 0.05 0.05 

𝜌𝑗𝑗 = 0.95 0 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.03 

 (Values exceeding the critical difference / Gaussian) -1 

 0.001  0.100  0.157  0.214  0.271  0.329  0.386  0.443  0.500 

𝜌𝑗𝑗 = 0.5 0 0.01 0.32 0.15 0.27 0.34 0.32 0.41 0.30 

𝜌𝑗𝑗 = 0.7 0 0.23 0.55 0.66 0.69 0.69 0.61 0.96 0.93 

𝜌𝑗𝑗 = 0.8 0 0.36 0.35 0.49 0.68 0.89 0.86 0.87 1.03 

𝜌𝑗𝑗 = 0.95 0 0.24 0.53 0.49 0.54 0.75 0.69 0.92 1.07 
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Discussion 

 

In the present study, we investigated how fat-tails of EEG data impact diagnostic criteria 

based on the assumption of a Gaussian distribution. Two main results emerged from our 

simulations. First, usual cut-off values based on standard deviations lead to a dramatic inflation 

in the number of false-positives even when deviations from the Gaussian distribution are quite 

modest. Second, the same modest deviations from the Gaussian distribution can lead to strong 

estimation bias in the extremes of the distribution, which leads to heavy misestimation of individual 

scores. In the following we will discuss these results in more detail. 

 

The outcomes of Simulation 1 provide clear evidence that the diagnostic value of qEEG 

parameters can be badly overestimated, when these data deviate from a Gaussian distribution. 

When the cut-off is 1.5σ, the lognormal produces considerably less positives than the Gaussian, 

while cut-off values of 2.5 σ and 3σ produce dramatic inflation in the number of positives. In case 

of 2σ, the number of positives is close to the expected when the lognormal distribution resembles 

the Gaussian the most (i.e. only 7 % excess of positives), but it starts to deviate from these 

estimates rapidly, when the standard deviation increases even only by a small amount. 

Interestingly, even when the kurtosis is very close to the Gaussian, there is a mismatch in the 

proportion of positives at each cut-off value. The more conservative the cut-off value (i.e. 2.5σ or 

higher), the larger the inflation in the number of positives observed when data are lognormal. 

Even when the shape of the lognormal distribution looks almost indistinguishable from the 

Gaussian, there is an increase of 1806% in the number of positives. 

 

These results show clearly that even apparently harmless small deviations from the 

skewness and kurtosis of a Gaussian can lead to systematic misinterpretation of test results and 

a dramatic increase in the number of false positives. Apparently, no deviation from the Gaussian 

distribution is too small to have no severe consequences for diagnostics. Since the distribution 

parameters we employed in the present study come from published qEEG databases, one can 

be certain that the inflation of false positives occurs on a daily basis, as it is practiced world-wide 

and fulfills the prerequisites to be considered at least as Questionable Research Practice (John, 

Loewenstein & Prelec, 2012). The only way to circumvent this problem is to ascertain that the 

qEEG data basis has exactly the desired properties and can be trusted to produce an acceptable 

number of false-positives. For too long, the necessity to enforce higher standards for the 
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commercially availability of qEEG databases has been neglected and the relevance of deviant 

results downplayed.   

 

Skewness and kurtosis alone are not sufficient to characterize data distributions in 

general. The reason for that is straightforward: Skewness and kurtosis offer only a global 

description of distribution parameters and do not reveal all the measurement properties necessary 

to define cut-off values for diagnostic purposes. Moreover, as shown by our Simulations 1 and 2, 

popular cut-off values for the interpretation of skewness and kurtosis values (George & Mallery, 

2010; Tabachnick & Fidell, 2013) are not appropriate for the construction of test norms. As shown 

in the present study, skewness and kurtosis only deviated modestly from the expected values of 

a Gaussian distribution. Nonetheless, these deviations were sufficient to engender severe 

discrepancies between the density functions and inflation in the number of positives. Accordingly, 

even slight deviations from the Gaussian distribution led to a dramatic increase in the number of 

observations with values more extreme than the usual cut-off values. Inflation of the number of 

individuals with the diagnosis label of “abnormal” EEG increases dramatically with the distance 

between the cut-off value and the mean. While a cut-off value of 2 standard deviations leads to 

an inflation of 7% to 81%, a cut-off value of 3 standard deviations leads to an inflation of over 

1800% in the number of individuals with an EEG classified as “abnormal”. The results of the 

numerical simulation are in line with empirical findings of a large number of false positive qEEG 

results (see Nuwer et al., 2005 for a review). If our simulations are accurate, in the clinical setting, 

such cut-off values misguide the majority of all diagnostic recommendations. Depending on the 

EEG parameter, the number of false positives is much larger than the number of correct positives, 

meaning that interventions such as neurofeedback may have been futile in the majority of the 

studies using qEEG hitherto. Therefore, it is crucial for companies offering qEEG services to 

provide sufficient evidence that the data they employ to calculate norms do follow a Gaussian 

distribution, if cut-off values of 2 or even 3 standard deviations are going to be employed in the 

future. Since evidence of normality of these data has barely been presented in the past, the 

general validity of research and clinical diagnostics based on qEEG is more than questionable. 

 

Not only the initial diagnostics by means of neurometry seems to be problematic, but also 

the evaluation of intervention outcomes. As revealed by Simulation 2, heteroscedasticity leads to 

a considerable inflation of the number of cases showing “spontaneous” improvement in qEEG 

parameters. Not only the probability of having the EEG classified as “abnormal” is highly inflated, 

but also the probability that by a second evaluation the EEG will be classified as “normalized”, in 
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both cases by force of randomness alone. Here, test-retest reliability estimates lead to false 

confidence in the usefulness of non-Gaussian qEEG for individual diagnostics. As revealed by 

Simulation 2, the probability of observing large fluctuations in qEEG scores, when the first 

measurement was far from the average, is highly inflated, particularly when test-retest reliability 

is excellent. These results seem to contradict common wisdom on the impact of test-retest 

reliability on the stability of test scores. The intuition of contradiction is correct in case of a 

homoscedastic Gaussian distribution, but not valid under heteroscedasticity, particularly when the 

measurement error is much larger at the tail. Exactly this was shown by Simulation 2. When 

considering the outcomes of both Simulation 1 and 2 together, a pattern of generation of false 

positives emerges, which implies for the client, first, an expectation of need for an intervention 

and then the conviction of benefit from that intervention.     

 

Our results are not completely new, since Hamilton-Bruce et al. (1991) already observed 

a high number of false positive results when analyzing EEG data from typical participants. Those 

early results fit the results of the present stimulation, but did not get any attention in the meantime. 

Up to now, the study by Hamilton-Bruce et al. (1991) was cited only 16 times according to google 

Scholar.  

 

The consequences of this for the clinical practice of neurometry are manifold: most of the 

diagnostic decisions based on the popular cut-off criteria as performed hitherto are probably 

wrong, with ethical and legal implications for the therapeutic use of qEEG. Comparisons of 

skewness and kurtosis as performed in the past are insufficient to guarantee that qEEG norms 

are useful for clinical and scientific applications. A much more detailed approach is necessary to 

ascertain the psychometric properties of data, particularly regarding the properties of the tails of 

data distributions, since these are particularly relevant for diagnostic purposes. Since lognormal 

distributions may converge slowly, authors are ethically obligated to present much more robust 

arguments that the sample estimates of their databases are stable and close enough to population 

values. In other words, qEEG based diagnostic decisions of “abnormal EEG” as performed 

hitherto based on cut-off values of 2 or 3 standard deviations has a good chance of being 

dramatically inflated -and therefore wrong- in a large proportion of the cases. To dismiss such 

concerns regarding the legitimacy of qEEG, a much better description of the properties of the 

distribution of normative data is necessary and a more adequate way to account for the 

instabilities observed at the tails of the distribution should be taken seriously. 
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Recommendations 

Describe extensively the distribution of qEEG parameters. Thoroughly describing the 

properties of higher moments of the distribution of normative EEG data is essential to guarantee 

that the diagnostic process is transparent and the number of false-positives is reduced to more 

reasonable levels. Conventional tests such as the Shapiro-Wilks test may not be sufficient to 

describe fat-tailedness (Shapiro & Wilks, 1965). In line with the recommendations by Sijtsma 

(2016) to discourage Questionable Research Practice, providers of qEEG databases should 

disclose in detail all the properties of the data they contain. This means reporting skewness, 

kurtosis as well as confidence intervals for every parameter listed in qEEG databases. QQ-Plots 

should always be presented when databases are published or services sold. 

 

Cut-off values based on the percentiles of the EEG distribution could be an alternative. 

Depending on the properties of qEEG data distributions, percentile values could be used instead 

of the standard deviations. On the one side, percentiles force the developers of databases to put 

more effort in data collection when creating databases stratified for age, schooling, and sex of 

participants, since only in large samples it is possible to uniquely determine the 95th and 99th 

percentiles that are so important for practical purposes. On the other hand, the percentile values 

are as intuitive as standard deviations and have a straightforward meaning even for members of 

the family of fat-tailed distributions. However, the usability of percentile values can be limited by 

heteroscedasticity. If the values in the tails show larger variability than those close to the center, 

the meaning of extreme percentile values may also be limited, since the true value of that 

observation is accompanied by a large interval of uncertainty.  

 

Log-transformations are not necessarily sufficient. Some distributions cannot be bent to 

the shape of a Gaussian by the logarithm (Taleb, 2020). As shown by Van Albada et al. (2007), 

the distribution of EEG parameters may deviate from Gaussian in ways more extreme than 

logarithmic compression. In these cases, the logarithm may reduce the degree of fat-tailedness, 

but as our results clearly show, the remaining fat-tailedness can still be sufficient to inflate 

considerably the number of (false) positives. Therefore, one should ideally always determine the 

transformation capable of adequately bending the shape of the distribution of qEEG data into the 

Gaussian. One practical way to do that is to use other families of transformations (Box & Cox, 

1964; Morozova et al., 2016; Van Albada & Robinson, 2007). However, this step of data 

processing is not trivial, since estimating distribution moments and properties when distributions 

are more pronouncedly fat-tailed requires much more data than the usual few hundreds or 
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thousands available in qEEG data bases. Since the transformations assume that available data 

are  representative of the population distribution parameters, large misestimation problems are 

still likely. 

 

Include qEEG norm construction in the CRED check-list for the quality of neurofeedback 

studies (Ros et al., 2020). One should take the matter of designing norms for EEG data much 

more seriously than hitherto. When disclosing the real sample properties of qEEG databases, it 

is possible that most studies of the past have employed too liberal criteria to define clinical 

samples. This can produce gross distortions in correlations between treatment outcomes and 

other outcome measures, distortions in the response to treatments, etc. All these factors decrease 

the quality of neurofeedback services, lead to useless and expensive treatments and jeopardize 

reproducibility of study results. For all these reasons, we believe that good quality qEEG norm 

parameters have to be checked during neurofeedback studies. The “Consensus on the reporting 

and experimental design of clinical and cognitive-behavioral neurofeedback studies” (CRED-nf 

checklist) contains a checklist for registering and publication of NF studies (Ros et al., 2020). Here 

we argue that in future versions of the CRED the use of safe neurometry instruments should be 

included as a positive point and the use of problematic databases a negative point to be included 

in the characterization of the quality of neurofeedback studies. 

 

A new business model and more training are necessary to improve qEEG guided 

practices. Since accuracy of qEEG based diagnostics depends on the higher moments of the 

distribution of qEEG parameters, these have to be thoroughly disclosed in much more detail than 

is usually the case to allow clients an informed choice. Users of qEEG databases have to receive 

better training on when and under which circumstances qEEG is relevant for diagnostic decisions 

and the evaluation of interventions. 

 

Limitations 

One important limitation of the present study is that the distribution values employed in the 

simulations are imprecise, because a more precise description of distribution parameters of qEEG 

is not available for research. Our literature research revealed only a few distribution parameters 

for specific EEG parameters. The accuracy of simulations would be much higher, if skewness and 

kurtosis were reported explicitly with each new qEEG dataset and if one could also determine the 

shape of parameter distributions. We hope to encourage developers of qEEG to be more accurate 
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in describing sample parameters and diagnosing fat-tailedness in their datasets and users to 

demand this information before employing qEEG in research and diagnostics in the future. 
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