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Abstract  

Background: The occurrences of acute complications arising from 
hypoglycaemia and hyperglycaemia peak as young adults with type 1 diabetes 
(T1D) take control of their own care. Continuous glucose monitoring (CGM) 
devices provide real-time blood glucose readings enabling users to manage 
their control pro-actively. Machine learning algorithms can use CGM data to 
make ahead-of-time risk predictions and provide insight into an individual’s 
longer-term control.  

Methods: We introduce explainable machine learning to make predictions of 
hypoglycaemia (<70mg/dL) and hyperglycaemia (>270mg/dL) 60 minutes 
ahead-of-time. We train our models using CGM data from 153 people living 
with T1D in the CITY survey totalling over 28000 days of usage, which we 
summarise into (short-term, medium-term, and long-term) blood glucose 
features along with demographic information. We use machine learning 
explanations (SHAP) to identify which features have been most important in 
predicting risk per user.  

Results: Machine learning models (XGBoost) show excellent performance at 
predicting hypoglycaemia (AUROC: 0.998) and hyperglycaemia (AUROC: 
0.989) in comparison to a baseline heuristic and logistic regression model.  

Conclusions: Maximising model performance for blood glucose risk prediction 
and management is crucial to reduce the burden of alarm-fatigue on CGM 
users. Machine learning enables more precise and timely predictions in 
comparison to baseline models. SHAP helps identify what about a CGM user’s 
blood glucose control has led to predictions of risk which can be used to reduce 
their long-term risk of complications. 

 

Introduction 

People with type-1 diabetes (T1D) face a daily balance to keep their blood 
glucose levels within safe levels (i.e. ‘in-range’). Severe complications are 
prevalent and arise from glycaemic variability, low blood sugars 
(hypoglycaemia) and high blood sugars (hyperglycaemia)[1]. For 
hypoglycaemic incidents alone, the requirement for emergency assistance may 
be as high as 7.1% per year [2] and could account for 6-10% of deaths for those 
with T1D [3, 4]. Long-term impacts of hypoglycaemia include impacts on 
cognition and potential links with dementia[5]. In addition, frequent 
hyperglycaemia can lead to short-term risk such as diabetic ketoacidosis and 
long-term complications such as retinopathy, neuropathy, nephropathy, and 
cardiovascular disease[6-8]. Effective glucose management for adolescents 
and young adults living with T1D is challenging[9, 10], due to the multiple 
transitions taking place in their lives, including puberty, relationships, the move 
to more independent living and diabetes self-care, and also the transfer from 
paediatric to adult clinical care teams. Parental fear of severe complications is 
prevalent throughout these transitional years[11-13]. 

Continuous glucose monitoring (CGM) enables regular automated readings of 
estimated blood glucose levels, providing immediate insight into blood glucose 
control. CGM has been demonstrated to reduce the risk of both hypoglycaemia 
and hyperglycaemia, along with reducing daily glycaemic variability for users 
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with type-1 diabetes[14-16]. In addition to mitigating short-term risk of severe 
hypoglycaemia and hyperglycaemia, compliance of wearing CGM devices has 
been shown to improve glycosylated haemoglobin HbA1c levels, which, if 
sustained, reduce long-term complication risks[17, 18]. The magnitude of 
reduction in HbA1c from CGM usage is dependent on the user’s original HbA1c 
value; i.e. those at highest risk of complications from poorer control are likely 
to benefit the most [16]. Specific to young adults, Laffel et al. [19] demonstrate 
a clear improvement in HbA1c for those utilising CGM.  

Real-time CGM devices provide alerts for users when their blood glucose falls 
above or below a desired range. T1D management can be aided further by 
having ahead-of-time predictions so individuals can identify risk early and 
better plan self-care activities, such as insulin dosages. Simple threshold-
based algorithms have been able to successfully predict hypoglycaemia 30 
minutes in advance (e.g. Medtronic-640 ‘SmartGuard’[20]). More complex 
statistical models and machine learning algorithms enable more accurate 
prediction and are able to extend this prediction horizon[21-28]. Dave et al. [23] 
emphasize the importance of feature extraction when generating predictions of 
hypoglycaemia in CGM data. Generating features that are both predictive in 
models and insightful for understanding a user’s blood glucose control is a 
difficult balance.   

In this work, we make two novel contributions: algorithms tailored to young 
adults and explanations. First, we introduce machine learning models to predict 
hypoglycaemia (<70mg/dL) and hyperglycaemia (>270mg/dL)[29] with a 
trustworthy 60-minute prediction horizon for young adult users of CGM. While 
CGM risk prediction is a well explored topic, more must be done to understand 
what led to increased risk for an individual so they can be proactive. We 
introduce using explainable machine learning, to not only predict risk, but to 
automatically identify the most important factors in an individual’s CGM data 
that led to increased risk. Explanations have no detrimental impact on model 
performance. We provide a framework in which machine learning can be used 
to: 

1) Provide real-time predictions of hypoglycaemia and hyperglycaemia 
(Results - Model Evaluation) using intuitive features (Methods – 
Features) generated from CGM data (Methods – Data). 

2) Automatically identify the most important features that have led to 
predictions of risk for each CGM user over a given time-period (Results 
– Model Explanation). 

3) Provide personalised control recommendations for each CGM user to 
help with their T1D management (Results – User Interface). 

 

Methods 

Data 

We make use of publicly available data from “A Randomized Clinical Trial to 
Assess the Efficacy and Safety of Continuous Glucose Monitoring in Young 
Adults 14-<25 with Type 1 Diabetes” (CITY)[19]. By design, the study recruited 
adolescents and young adults with T1D (duration > 12 months) exhibiting 
poorer glycaemic control (HbA1c 7.5-<11.0%), most likely to benefit from CGM 
usage [16]. Study participants were randomly assigned to either CGM (Dexcom 
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G5) or regular blood glucose meter (finger-prick) monitoring. The CGM users 
were compared to the control group using HbA1c levels after six months of 
usage. After six months, all study participants were provided with CGM devices 
and HbA1c tracked for a further six months.  

We make use of CGM data from 153 people living with T1D in the CITY study, 
where users were provided CGM devices for 6-12 months; totalling over 28,000 
days of usage data.  In addition to CGM data, basic screening information and 
the most recently recorded HbA1c test result were used to generate 
predictions.  

Features 

To utilise CGM data for hypoglycaemic and hyperglycaemic prediction, we 
generate a total of 30 features which summarise a young adult’s CGM data on 
different timescales. Blood glucose control is summarised on short-term (one 
hour), medium-term (one day) and long-term (one week) baselines prior to the 
current CGM reading. This is combined with six features that characterise basic 
patient information. A complete description of all generated features are given 
in Table 1. Features are generated at the point of each unique CGM reading. 
Features are only used in modelling if the CGM device has been used for 
>=80% for the prior week.  

Feature Description Time-
period(s) 

Current 
reading 

Most recent CGM blood glucose reading N/A 

Time of day Hour (0-24) at which reading was reported N/A 
Day of 
week 

Day on which reading was reported N/A 

Gender  N/A 
Diagnosis 
Age 

Age at initial diagnosis of type-1 diabetes N/A 

Prior use of 
CGM 

Whether person with T1D had previous 
experience of using CGM before the study 

N/A 

Age  Age at study commencement N/A 
Years since 
original 
diagnosis 

Year since initial diagnosis of type-1 diabetes N/A 

Most recent 
HbA1c 

Most recent recorded test result of HbA1c N/A 

Device 
usage 
fraction 

Fraction of time (as specified by the time-period) 
of which the CGM device was used 

(1 hour,  
1 day,  
1 week) 

Fraction of 
time high 

Fraction of time (as specified by the time-period) 
of which CGM readings were above 270 mg/dL 

(1 hour,  
1 day,  
1 week) 

Fraction of 
time low  

Fraction of time (as specified by the time-period) 
of which CGM readings were below 70 mg/dL 

(1 hour,  
1 day,  
1 week) 

Average  Mean of blood glucose readings over specified 
time-period 

(1 hour,  
1 day,  
1 week) 

Standard 
deviation 

Standard deviation of blood glucose readings 
over specified time-period 

(1 hour,  
1 day,  

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted March 23, 2022. ; https://doi.org/10.1101/2022.03.23.22272701doi: medRxiv preprint 

https://doi.org/10.1101/2022.03.23.22272701


Page 4 of 15 
 

1 week) 
Largest 
increase 
between 
readings 

Largest increase in blood glucose level between 
consecutive readings within specified time-
period 

(1 hour,  
1 day,  
1 week) 

Largest 
decrease 
between 
readings 

Largest decrease in blood glucose level 
between consecutive readings within specified 
time-period 

(1 hour,  
1 day,  
1 week) 

Maximum 
number of 
consecutive 
increases   

Most consecutive readings where blood glucose 
levels increase over defined time-period 

(1 hour,  
1 day,  
1 week) 

Maximum 
number of 
consecutive 
decreases 

Most consecutive readings where blood glucose 
levels decrease over defined time-period 

(1 hour,  
1 day,  
1 week) 

Table 1: Summary of input features used by the models to make predictions. A sub-set of 
features are computed for various time-ranges (i.e. 1 hour, 1 day, 1 week) and considered as 
independent features. 

Targets 

To generate targets for our model predictions, we generate two binary variables 
referring to hypoglycaemic (< 70 mg/dL) and hyperglycaemic (> 270 mg/dL) 
events. A feature set is generated for each unique CGM reading, at which point 
we check if the CGM user’s blood glucose level falls within these regions in the 
following 60-minutes (i.e. positive prediction). Blood glucose readings already 
within the hypoglycaemic or hyperglycaemic regions are removed from the 
modelling dataset to avoid artificially boosting model performance metrics. 
Figure 1 shows a schematic of blood glucose levels through a given day, 
regions of hypoglycaemia and hyperglycaemia and timestamps of model 
predictions prior (i.e. target).  

 
Figure 1: Schematic of blood glucose levels (black line) for a young adult with T1D tracked by 
CGM. The grey shaded region shows the desired range to keep blood glucose levels between 
(70mg/dL < BG < 270mg/dL). Our algorithm aims to predict (ahead-of-time) when a person with 
T1D will go below (hypoglycaemia) and above (hyperglycaemia) this range. Regions of low and 
high blood glucose are shaded blue and red respectively, with the corresponding first prediction 
event horizon (i.e. when our model first made a positive prediction of hypo/hyper) shown by the 
dashed line.  

Modelling 
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To determine the added value of machine learning we evaluate a baseline 
heuristic model, a logistic regression model and a gradient boosted tree-based 
model for both hypoglycaemia and hyperglycaemia prediction. Our baseline 
heuristic model is equivalent to a blood glucose threshold alert (i.e. predicting 
hypoglycaemia and hyperglycaemia within 60-minutes if blood glucose levels 
fall below 110mg/dL or go above 240mg/dL respectively). Our logistic 
regression model is aimed to emulate basic CGM alerts which extrapolate 
linear trends along with thresholds to make hypoglycaemia or hyperglycaemia 
predictions.  

Finally, we make use of the XGBoost framework to implement a tree-based 
machine learning algorithm [30]. XGBoost makes use of an ensemble of weak 
learners (i.e. small trees) that are trained stage-wise through gradient boosting. 
This reduces overfitting while preserving or lowering variance in the prediction 
error [31], which frequently leads to gradient boosted trees outperforming other 
tree-based methods. Additionally, XGBoost naturally deals with continuous, 
binary/discrete, and missing data consistently; all of which are represented in 
our dataset. Model hyperparameters for our XGBoost models were selected 
using five-fold cross-validation of the complete training set using a sampler 
(Tree-structured Parzen Estimator) implemented with the Optuna library[32].  

We randomly separate our CGM data into a hold-out test set (25%) and a 
training set (75%). Our supervised models (i.e. logistic regression and 
XGBoost) learn from the training set, and all models are evaluated using the 
same test sample. Overall, model performance was evaluated using the Area 
Under the Receiver Operating Curve (AUROC) and average precision, along 
with fixed measures of specificity and sensitivity. 

Model explanability 

Historically, machine learning algorithms are considered `black-boxes’ with 
little understanding of how predictions have been made. However, recent 
advances in explanability have led to individual predictions of tree-based 
algorithms being readily explainable[33].  

To attribute the relative importance of each feature in predicting both 
hypoglycaemia and hyperglycaemia risk for our XGBoost model, we make use 
of the TreeExplainer algorithm as implemented in the SHAP (SHapley Additive 
exPlanations) library[33-35]. TreeExplainer efficiently calculates Shapley 
(SHAP) values[36], which aim to attribute payout (i.e. the prize) between 
coalitional players of a game. In the context of machine learning, SHAP values 
amount to the marginal contribution (i.e. change to the model prediction) of a 
feature amongst all possible coalitions (i.e. combinations of features). 
Practically, this means that for every individual prediction (negative or positive), 
the relative importance of every feature can be evaluated.  

There is a rich history of global interpretation for machine learning models 
which summarise the average overall importance of features on predictions as 
a whole[37]. In a medical setting, however, tailored explanations for individuals 
are paramount, maximising the ability to understand their own data and ensure 
every person is evaluated fairly[38]. Shapley values are locally accurate, 
meaning that they can explain which features were relatively most important 
for an individual prediction (i.e. a hypoglycaemic or hyperglycaemic event). In 
addition, Shapley values are consistent (the values add up to the actual 
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prediction of the model) meaning they can also be used to check the global 
importance of a feature. Feature importance can therefore be checked 
periodically by averaging over a fixed time-period. Practically, this means that 
for a CGM user over a given time-period, the most important features leading 
to a prediction of hypoglycaemia or hyperglycaemia can be automatically 
evaluated. This gives immediate insight about an individual’s blood glucose 
control, and intuition about what may be increasing their risk. Presenting 
reliable predictions with intuitive explanations, would enable users to be 
proactive in their control. Insightful control recommendations could empower 
users to feel closer to being on ‘auto-pilot’ (i.e. minimising the cognitive load 
burden). 

We choose to implement SHAP over other local explainer algorithms (e.g. 
Lime[39]) since SHAP offers mathematical guarantees of trustworthiness (local 
accuracy, missingness, and consistency) which adhere to strict medical 
governance guidelines[33], and offers consistency between local explanations 
meaning global importance can be computed as well.  

Results 

Model evaluation 

In Figure 2, we compare the performance of our baseline heuristic model 
against the machine learning classifiers (i.e. logistic regression and XGBoost). 
Performance is evaluated by the AUROC characteristic by comparing the 
model predictions of hypoglycaemia (left) or hyperglycaemia (right) 60-minutes 
ahead-of-time to the actual future readings. For hypoglycaemia, the baseline 
model achieved an AUROC of 0.811, the logistic regression 0.930 (95% 
CI:0.929-0.931) and XGBoost 0.998 (95% CI:0.998-0.998) evaluated on our 
hold-out test set. All confidence intervals (CI) are estimated from bootstrapping 
(sampling with replacement) for 500 resamples per model. 

Both machine learning models demonstrated excellent predictive power for 
hypoglycaemia, with a clear advantage in using XGBoost. We note that despite 
its crudeness, our baseline heuristic model also performs well; demonstrating 
the use of threshold-based alerts on CGM devices in forward planning. 
Regardless, a more powerful predictive model means a lower false-alarm rate 
can be achieved, while maintaining the safety of the predictions. Reducing 
alarm-fatigue for CGM users is an important goal, and more skilful models help 
enable this. In Table 2, additional measures of model skill are given, including 
average precision, sensitivity, and specificity. Sensitivity and specificity are 
evaluated from dichotomising model predictions at probability P=0.5. Again, we 
find a clear performance increase for our XGBoost model, in-keeping with the 
high performance of decision tree based methods[40] and commercial hybrid 
loop systems[41]. 

High performance is also seen for hyperglycaemia, with the baseline model 
achieving an AUROC of 0.734 , the logistic regression 0.862 (95% CI:0.861-
0.862) and XGBoost 0.989 (95% CI:0.989-0.990). Average precision, 
sensitivity, and specificity demonstrate similar trends with XGBoost being the 
most skilful. For each modelling approach we note that the model skill is lower 
for hyperglycaemia prediction in comparison to hypoglycaemia, suggesting 
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prediction of lower blood glucose events is better suited to our modelling 
choices.  

 
Figure 2: Receiving operator characteristic (ROC) for our models of hypoglycaemia (left) and 
hyperglycaemia (right) prediction. In each panel, a XGBoost model (solid line) and a logistic 
regression model (dashed line) are compared to a baseline heuristic (dotted line). A zero skill 
model is represented by the solid grey line. The total area under each curve (i.e. AUROC score) 
is given in the brackets. 

 
 
MODEL 

AUROC AVERAGE 
PRECISION 

SPECIFICITY 
(PTHRES = 0.5) 

SENSITIVITY 
(PTHRES = 0.5) 

Hypoglycaemia 
 
Heuristic 
Logistic Reg. 
XGBoost 
 

 
 
0.811 
0.930 [0.929-0.931] 
0.998 [0.998-0.998] 
 

 
 
0.121 
0.244 [0.240-0.247] 
0.953 [0.951-0.954] 
 

 
 
0.906 
0.827 
0.994 

 
 
0.716 
0.905 
0.945 

Hyperglycaemia 
 
Heuristic 
Logistic Reg. 
XGBoost 
 

 
 
0.733 
0.862 [0.861-0.862] 
0.989 [0.989-0.990] 

 
 
0.258 
0.453 [0.450-0.456] 
0.931 [0.930-0.932] 

 
 
0.872 
0.752 
0.931 

 
 
0.595 
0.817 
0.970 

Table 2: Summary of model performance metrics for both hypoglycaemia and hyperglycaemia 
prediction. A baseline heuristic, logistic regression and an XGBoost model are evaluated for each 
target. Summary statistics (AUROC and average precision) are shown with 95% CI in square 
brackets Sensitivity and specificity are evaluated from dichotomising model predictions at 
probability P= 0.5.   

Model explanation 

In addition to increased predictive power, the added value of machine learning 
models can be demonstrated through explanations. Using SHAP we can 
evaluate the relative importance of features for a given positive prediction of 
hypoglycaemia or hyperglycaemia. SHAP is applied post model construction 
and therefore has no negative implications for performance. Figure 3 shows 
the overall relative importance of every input feature for predicting 
hypoglycaemic (left-panel) and hyperglycaemic (right-panel) events. The 
relative importance of a feature is quantified by the absolute average SHAP 
value. Since SHAP values are consistent across predictions, they can be 
averaged for individual CGM users, across any time-range, to provide 
immediate insight.  

Here we provide the average relative importance for all CGM users in the study, 
but this diagram is trivially made for individual users. Unsurprisingly, the user’s 
current blood glucose reading is most important for the model to make 
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predictions of both hypoglycaemia and hyperglycaemia. Time of day is also 
important, providing insight into the sleep and eating, physical activity and 
stress level habits of the CGM user and their relationship with blood glucose. 
Sudden drops (or increases) in blood glucose are important for predicting 
hypoglycaemia (hyperglycaemia) as shown by the short-term largest decrease 
(increase) between readings. Interestingly the long-term fraction of time low is 
found to be reasonably predictive of hypoglycaemic events, providing 
immediate insight into certain user’s control habits.  

 
Figure 3: Overall importance ranking of input features for predicting hypo (left panel) and hyper 
(right panel) risk. Average (absolute) SHAP value for predictive features over all study 
participants. A higher value corresponds to a more important feature in decision making. 
Features are grouped into categories (Device information, Demographics, Short term (1 hour), 
Medium Term (1 day), Long term (1 week)). The fractional contribution (i.e. sum over all features 
in that category) of a given category is given in the square brackets.  

User interface 

Despite CGM providing a wealth of information to both users and clinicians, the 
sheer volume of data makes it hard to quickly draw conclusions about blood 
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glucose control. Quick summary metrics such as the fraction of time-in-range 
(e.g. 70mg/dL<BG<270mg/dL) are the baseline for assessing control. By 
considering the most predictive model features that led to predictions of 
hypoglycaemic or hyperglycaemic events, we can draw further personalised 
insights into an individual’s blood glucose control. In Figure 4, we present a 
prototype dashboard which summarises a randomly selected user’s CGM data 
over a given month, along with potential insights derived from explainable 
machine learning. In addition to metrics such as time above or below range, we 
provide the user’s average blood glucose through the day, along with the most 
likely times for our model to predict hypoglycaemia (red, above green line) or 
hyperglycaemia (blue, below green line) for the individual. We select the top 
features for predicting both hypoglycaemia and hyperglycaemia for the user 
and summarise this information as control recommendations in the grey box. 
This provides a quick glance into the specifics of the user’s blood glucose 
control; enabling the user to be better informed to avoid potential events in the 
future. One AI insight (grey box) for this user is that they tend to go high at 
specific times of day. Looking at the fraction of time spent high on the 
dashboard through the day (red box and histogram), this peaks around 
21:00pm, hence the user should consider insulin dosages around their evening 
meal. 

Discussion 

The key contributions of our work are as follows: 
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1) Machine learning models with state-of-the-art performance for 
predicting hypoglycaemia (AUROC:0.998) and hyperglycaemia 
(AUROC: 0.989) 60-minutes in advance. This performance is high 
relative to simple algorithms[42-44] and comparable machine learning 
approaches[23, 45]. 

2) With careful feature engineering, we have demonstrated how machine 
learning explanations (SHAP) can be utilised to understand specifics 
about an individual’s control. SHAP also adds transparency to model 
predictions, aiding assurance that all individuals are evaluated fairly.  

3) Provided a prototype dashboard to help young adults with T1D and 
clinicians make use of CGM data and the insight from machine learning 
explanations.  

Technological advances represent a significant opportunity to help reduce self-
care burden on an individual with T1D, and reduce the risk of health 
complications arising from poor glycaemic control. In particular, for young 
adults, automated feedback from CGM may be an important tool for reducing 
risk, at times of transition (from paediatric to adult care units) and where 
glycaemic control can be at a minimum. 

Ahead-of-time machine learning predictions are of personal and clinical value 
as they give the CGM user more time to adjust self-care and reduce risk. Our 
tree-based model demonstrated a significant performance increase relative to 
threshold based and linear models. This performance increase is vital for 
reducing alert burden on the user, since more certain predictions require less 
total alerts while maintaining safety of the device. 

Despite the wealth of information provided by CGM devices, part of the problem 
is deriving quick insight that is useful for people with T1D, their family carers, 
and clinicians[46, 47]. Machine learning explanations can help summarise what 
specifics in an individual’s glycaemic control led to increased risk of either 
hypoglycaemia or hyperglycaemia. Used in combination with directly derived 
metrics (e.g. time-in-range), their utility can be in providing quick-glance 
specific recommendations about how to reduce risk.  

Limitations 

Limitations of this work include the reliance on the user to comply in using the 
CGM device. For our results, we only generate predictions when the user has 
used the device for 80% of the prior week. While predictions can still be 
generated with a lower usage compliance, this will inevitably decrease 
prediction performance, and care must be taken about when machine learning 
enhancement can be implemented safely. Furthermore, while current CGM 
devices are generally accurate, they are not infallible and considerations must 
be made for the safety of systems reliant on their accuracy[48]. 

Another limitation of this study is the lack of insulin and carbohydrate data. 
Including this information could enable specific recommendations about insulin 
and carbohydrate dosages through the day. Including information tracked by 
smart watches, such as physical activity and stress levels, would not only 
improve predictions, but provide far more powerful intuitive recommendations. 
Having contextual information (e.g. high stress levels or even self-reported 
event markers such as drinking, sickness or exercise) would be critical for 
empathetic recommendations and reducing burden for the user.  
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In this work we chose to train hypoglycaemia and hyperglycaemia models using 
data from all CGM users in our cohort. In practice it may be more suitable to 
train individual models per CGM user, which may be better tailored to the 
individual. However, it would be more complex to make direct comparisons 
between relative feature importance for different CGM users, and hence left 
outside the scope of this paper. 

Conclusion 

We introduced a framework for high-performance prediction and explanation of 
hypoglycaemia and hyperglycaemia for young adults. Careful feature selection 
enables both accurate short-term risk prediction, and intuitive feedback about 
an individual’s blood glucose control. The key benefit of adopting a machine 
learning framework lies in the ability to provide more accurate ahead-of-time 
predictions (in comparison to more simplistic derived alerts), potentially 
reducing burden on the young adult potentially going through transition with 
their care practices. Combining these models with explanations enables both 
users and clinicians to gain immediate insight into an individual’s blood glucose 
control, automatically highlighting what specific trends lead to increased risk.  
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