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Abstract1

In this paper, we consider a mathematical model of COVID-19 transmission with vaccination where the2

total population was subdivided into nine disjoint compartments, namely, Susceptible(S), Vaccinated with3

the first dose(V1), Vaccinated with the second dose(V2), Exposed (E), Asymptomatic infectious (I),4

Symptomatic infectious (I), Quarantine (Q), Hospitalized (H) and Recovered (R). We computed a5

reproduction parameter, Rv, using the next generation matrix. Analytical and numerical approach is used6

to investigate the results. In the analytical study of the model: we showed the local and global stability of7

disease-free equilibrium, the existence of the endemic equilibrium and its local stability, positivity of the8

solution, invariant region of the solution, transcritical bifurcation of equilibrium and conducted sensitivity9

analysis of the model. From these analysis, we found that the disease-free equilibrium is globally10

asymptotically stable for Rv < 1 and unstable for Rv > 1. A locally stable endemic equilibrium exists for11

Rv > 1, which shows persistence of the disease if the reproduction parameter is greater than unity. The12

model is fitted to cumulative daily infected cases and vaccinated individuals data of Ethiopia from May13

01, 2021 to January 31, 2022. The unknown parameters are estimated using the least square method with14

built-in MATLAB function ’lsqcurvefit’. Finally, we performed different simulations using MATLAB and15

predicted the vaccine dose that will be administered at the end of two years. From the simulation results,16

we found that it is important to reduce the transmission rate, infectivity factor of asymptomatic cases and17

increase the vaccination rate, quarantine rate to control the disease transmission. Predictions show that18

the vaccination rate has to be increased from the current rate to achieve a reasonable vaccination coverage19

in the next two years.20

Keywords: COVID-19, Vaccination, Control reproduction number, Sensitivity analysis, Endemic21

equilibrium, Parameter estimation.22

1. Introduction23

Corona Virus (COVID-19) is an infectious disease caused by a novel corona virus which is a respiratory24

illness that can spread in a population in several different ways. A person can be infected when droplets25

containing the virus are inhaled or come directly into contact with the eyes, nose, or mouth. The novel26

corona virus has been spreading worldwide starting from the first identification in December 2019. The27

world health organization (WHO) declared COVID-19 as a pandemic on march 12, 2020. Starting from the28

first day of the outbreak to March 9, 2022, more than 446.5 million confirmed cases and more than 6 million29

confirmed deaths are registered worldwide [25]. The same report shows 469007 confirmed cases and 7, 47630

confirmed deaths in the same period of time in Ethiopia.31

32

The world is struggling to control the pandemic by imposing different restrictions based on country-specific33

strategies. Besides the restrictions, nowadays different countries are delivering vaccines for their people. As34

of day 7 March 2022 , 10 vaccines were granted for emergency use by WHO [24]. These are Novavax,35

COVOVAX, Moderna, Pfizer/BioNTech, Janssen (Johnson & Johnson), AstraZeneca, Covishield36

(Oxford/AstraZeneca formulation), Covaxin, Sinopharm and Sinovac. Country approvals of this vaccine37
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differ. For example, Pfizer/BioNTech and Oxford/AstraZeneca are approved by 138 countries, Janssen38

(Johnson & Johnson) is approved by 107, and Moderna is approved by 85 countries worldwide [24]. Until39

March 07, 2022, about 10.9 billion COVID-19 vaccine doses are administered globally. 63.4% of the world40

population has received at least one dose of a COVID-19 vaccine and this coverage represents developed41

counties due to the scarcity of the vaccine in low-income countries. Only 13.6% of people in low-income42

countries have received at least one dose [21]. Up to 5 March 2022, a total of 26, 178, 996 vaccine doses have43

been administered in Ethiopia [25].44

45

Studies involving mathematical models of infectious disease are helping the public health authorities by46

giving insight information through analysis of the dynamics of the disease to make information- based47

decisions and policy making. These studies are also powerful tools in predicting the future severity of a48

disease. As far as COVID-19 is concerned, currently there are several such researches which have been49

conducted and helping the struggle to contain the spread.50

51

Before vaccines are produced, mathematical models for COVID-19 are focused on assessing the impacts of52

nonpharmaceutical interventions(NPIs) like social distancing, wearing masks, personal hygiene, partial or53

full lockdown and the like as control strategies. Here we mention some of them: [20, 1, 23, 2, 18, 13, 3]. In54

[1], the authors studied the population level impact of implementation of behavioural change control55

measures , the time horizon necessary to reduce the effective contact rate, and the proportion of people56

under sanitary emergency measures in controlling COVID-19 in Mexico. One of the nonpharmaceutical57

measures is to wear a face mask, and the quality of the face mask is sometimes debatable, but the study in58

[13] suggested that broad adaption of even relatively ineffective face masks may significantly reduces the59

transmission and hospitalization peak and death. For combating COVID-19, the timing of relaxation or60

termination of nonpharmaceutical measures is essential. From this point of view, the authors in [18] showed61

the crucial importance of relaxation or termination of strict social distancing measures in determining the62

future burden of COVID-19 pandemic. In [3], they evaluate and compare the effectiveness of the four types63

of NPIs of COVID-19, namely: the implementation of mandatory mask, quarantine or isolation, distancing64

and traffic restriction in 190 countries between 23 January up to 13 April 2020. In their study, they65

indicated that NPIs can significantly hold the COVID-19 pandemic. Distancing and the implementation of66

two or more NPIs should be the priority strategies for holding COVID-19.67

68

Currently, vaccines are available as one of and main control strategies. Epidemiological modelers started to69

incorporate this additional intervention to see the dynamical properties of the disease and sort out some70

important policy directions to the public health authorities. In this aspect, there are a number of studies,71

from which [9, 17, 5] can be mentioned. A mathematical model with comorbidity and an optimal72

control-based framework to decrease COVID-19 was studied in [9]. In this study, the authors found that an73

optimal strategy with combined measures provide effective protection of the population from COVID-1974

with minimum social and economic costs. Even during vaccination nonpharmaceutical interventions are75

essential and it is shown that relaxing restrictions would cause benefits from vaccination to be lost by76

increasing case numbers in which vaccination alone is insufficient to contain the outbreak [17]. Another77

problem in attaining herd immunity in the population is vaccine hesitancy in case vaccination is not78

mandatory, in which people are the last to decide either to get vaccinated or not. A behavioural modelling79

approach was used to assess the impact of hesitancy and refusal of vaccine on the dynamics of the80

COVID-19 [5]. In this paper, the authors showed hesitancy and refusal of vaccination is better contained in81

case of large information coverage and small memory characteristics.82

83

Some Epidemiological modelling studies of COVID-19 are based on country-specific data. Here we mention84

few of the studies on COVID-19 modelling in the case of Ethiopia. In [16], the authors considered a85

mathematical model for the transmission dynamics of COVID-19 by incorporating self-protection behavior86

changes in the population. Based on the available data of Ethiopia and other countries, they estimated the87

unknown parameter values using a combination of least squares and Bayesian estimation methods. They88
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found that the sensitive parameters for the spread of the virus vary from country to country and control of89

the effective transmission rate (recommended human behavioral change towards self-protective measures) is90

essential to stop the spread of the virus. A mathematical model of COVID-19 in the case of Ethiopia is also91

considered in [15], and in the study they found that the spread of COVID-19 can be managed by minimizing92

the contact rate of infected and increasing the quarantine of exposed individuals. There are also other93

COVID-19 mathematical modelling for optimal control and assessing the impact of nonpharmaceutical94

interventions on the dynamics of COVID- 19 which are specific to Ethiopian data [10, 14]. We believe that95

scientific studies on COVID-19 transmission in the case of Ethiopia are limited and as far as we review there96

are no mathematical modelling studies considering the current situation (including vaccination). Therefore,97

in our study we consider a mathematical model of COVID-19 transmission dynamics with vaccination.98

The paper is organized as follows: In Section (2), we describe the model and formulation of the differential99

equation. In Section (3), we carry out the mathematical analysis of the model. Section (4) is devoted100

to numerical simulation and discussion. In Section (5), we present a prediction of the cumulative vaccine101

administered with respect to the first dose vaccination rate. Finally, in Section (6), the conclusion is presented.102

2. Model description and formulation103

In this study, we proposed a model where the total population is divided in to nine compartments. Namely104

Susceptible, Vaccinated with first dose, vaccinated with second dose, Exposed (Infected but not yet infectious),105

Asymptomatic infectious, Symptomatic infectious, Quarantine, Hospitalized and Recovered denoted by S, V1,106

V2, E, Ia, Is, Q, H and R respectively. We assumed that individuals in Q and H class are isolated from107

the population and therefore they will have a negligible role in transmitting the disease. Therefore, only108

individuals in Ia and Is are capable of transmitting the disease. Vaccines available for COVID-19 do not109

totally prevent infection, therefore individuals in S, V1 and V2 class can get infected with the force of infection110

h = β τIa+Is
N−(Q+H) . Such a force of infection is used in most COVID-19 models [15, 10, 4], where β is the111

transmission rate, τ is the infectivity factor of asymptomatic individuals and N is the total population. Due112

to the vaccine efficacy, individuals in V1 and V2 class are relatively less infected than the fully susceptible ones:113

they will get infected with reduced vulnerability of (1− η1) and (1− η2) respectively. η1 measures the efficacy114

of the first dose vaccine, where as η2 measures the efficacy after the second dose. Majority of the vaccines115

approved by WHO are given in two doses with an average recommended time interval between the two doses.116

We considered this scenario in our model. Susceptible individuals get vaccination (the first dose) at the rate117

of p1 and those who got the first dose will get the second dose after an average 1/α period of time with the118

rate p2. In this study we did not fix a particular vaccine type therefore the value of 1/α represents the average119

time needed to take the second dose. ρ proportion of exposed individuals will move to asymptomatic class120

and the rest, (1 − ρ) proportion will move to the symptomatic class after they finish the incubation period121

of 1
e day, where e is the infection rate. Mostly the symptoms of COVID-19 are similar to other respiratory122

diseases like common cold and flue, so all symptomatic individuals do not quarantined. Those only tested123

and confirmed can go to quarantine. Symptomatic individuals get tested and quarantine at the rate of δ.124

Those quarantined may develop serious illness, in this case they go to hospital at the rate of qh. Individuals125

in Ia, Is, Q and H will recover from the disease at the rate of ra, rs, rq and rh respectively. Asymptomatic126

are individuals with less pain and assumed will not die due to the disease. As a consequence, individuals in127

Is, Q and H classes die due to the disease at the rate of d (assumed to be equal). People in all compartments128

will die naturally at the rate of µ and π is the recruitment rate to the susceptible compartment. The total129

population size at time t is denoted by N(t) where,130

N(t) = S(t) + V1(t) + V2(t) + E(t) + Ia(t) + Is(t) +Q(t) +H(t) +R(t). (1)

The model flow diagram is shown in Figure 1.131
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Figure 1: Disease transmission diagram: green compartment indicates non-infected, the red compartment is infected
and infectious and the yellow compartment shows infected but assumed to be not infectious(Q and H), on incubation
period (H).

From the schematic diagram Figure(1) the following system of differential equation is obtained132 

dS
dt = π −

(
p1 + µ+ h

)
S

dV1
dt = p1S −

(
αp2 + µ+ (1− η1)h

)
V1

dV2
dt = αp2V1 −

(
µ+ (1− η2)h

)
V2

dE
dt =

(
S + (1− η1)V1 + (1− η2)V2

)
h− (µ+ e)E

dIa
dt = ρeE − (µ+ ra)Ia
dIs
dt = (1− ρ)eE − (rs + µ+ d+ δ)Is
dQ
dt = δIs − (µ+ d+ qh + rq)Q
dH
dt = qhQ− (µ+ d+ rh)H
dR
dt = raIa + rsIs + rqQ+ rhH − µR,

(2)

with initial conditions133

134

S(0) ≥ 0, V1(0) ≥ 0, V2(0) ≥ 0, E(0) ≥ 0, Ia(0) ≥ 0, Is(0) ≥ 0, Q(0) ≥ 0, H(0) ≥ 0 and R(0) ≥ 0.135

3. Model analysis136

In this section, positivity of solution, the invariant region, disease-free equilibrium, reproduction number,137

stability analysis , endemic equilibrium point, bifurcation and sensitivity analysis are discussed.138

3.1 Positivity and boundedness of the solutions139

Since each component of the given model system considers a human population, it is necessary to show that140

all variables S(t), V1(t), V2(t), E(t), Ia(t), Is(t), Q(t), H(t) and R(t) are positive for all t > 0.141
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Theorem 3.1.1. If S(0) ≥ 0, V1(0) ≥ 0, V2(0) ≥ 0, E(0) ≥ 0, Ia(0) ≥ 0, Is(0) ≥ 0, Q(0) ≥ 0, H(0) ≥ 0 and142

R(0) ≥ 0, then the solution set {S(t), V1(t), V2(t), E(t), Ia(t), Is(t), Q(t), H(t), R(t)} of the model (2) consists143

of positive members for all t > 0.144

Proof. From the first equation of system (2), we have

dS

dt
= π − (p1 + µ+ h)S.

This leads to,

dS

dt
≥ −(p1 + µ+ h)S.

And hence,

dS

S
≥ −(p1 + µ+ h)dt,

Upon integration, we obtain,

S(t) ≥ S(0) exp

(
−
∫ t

0
(p1 + µ+ h)du

)
≥ 0,

Thus, S(t) ≥ 0.145

146

Similarly, it can be shown that the other equations of system (2) are positive for all t > 0. Hence, the state147

variables of the system are all positive for all t > 0.148

Theorem 3.1.2. The feasible solution set {S, V1, V2, E, Ia, Is, Q,H,R} of the model (2) with the given initial149

condition remains bounded in the region Ω = {(S, V1, V2, E, Ia, Is, Q,H,R) ∈ R9
+ : 0 ≤ N ≤ π

µ}.150

Proof. Differentiating N in equation (1) with respect to t we obtain;151

dN

dt
=

dS

dt
+

dV1

dt
+

dV2

dt
+

dE

dt
+

dIa
dt

+
dIs
dt

+
dQ

dt
+

dH

dt
+

dR

dt
. (3)

Using system (2) and evaluating at (3) gives us;

dN

dt
= π − µN − d(Is +Q)−H(µ+ d).

Since the state variables of system Is, Q and H are positive for all t ≥ 0 we have152

dN

dt
≤ π − µN, (4)

in which N is asymptotically bounded

i.e. 0 ≤ N ≤ π

µ
.

This completes the proof.153
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3.2 Reproduction number, existence and stability analysis of equilibria154

3.2.1 Disease-free equilibrium point155

In this subsection, we determine the equilibrium point at which there is no disease in the population (i.e.156

Ia = Is = Q = H = E = R = 0) by letting the right hand side of system (2) to zero. We get:157

Edfe = (S∗, V ∗
1 , V

∗
2 , E

∗, I∗a , I
∗
s , Q

∗, H∗, R∗) ,

=

(
π

p1 + µ
,

p1π

(p1 + µ)(µ+ αp2)
,

παp1p2
µ(p1 + µ)(µ+ αp2)

, 0, 0, 0, 0, 0, 0

)
.

(5)

Remark 1. In (5), when there is no vaccination, i.e., p1 = 0, the disease-free equilibrium will be reduced to158

a fully susceptible disease-free state given by159

E0 = (S∗, V ∗
1 , V

∗
2 , E

∗, I∗a , I
∗
s , Q

∗, H∗, R∗) ,

=

(
π

µ
, 0, 0, 0, 0, 0, 0, 0, 0

)
.

(6)

If p1 = 1 we get a disease-free equilibrium in which every susceptible individual is vaccinated with the first160

dose, which can be expressed by161

E01 = (S∗, V ∗
1 , V

∗
2 , E

∗, I∗a , I
∗
s , Q

∗, H∗, R∗) ,

=

(
π

1 + µ
,

π

(1 + µ)(µ+ α)
,

πα

µ(1 + µ)(µ+ α)
, 0, 0, 0, 0, 0, 0

)
.

(7)

3.2.2 Reproduction number162

The basic reproduction number (R0) is the average number of secondary cases produced by one primary163

infection during the infectious period in a fully susceptible population and the control reproduction number164

(in our case denoted by Rv) is used to represent the same quantity for a system incorporating control (or165

intervention) strategies [12]. We will use the next generation matrix method [11] to find the basic and control166

reproduction number.167

Let the matrix for new infection appearance at the infected compartment be given by F ,168

F =


E
Ia
Is
Q
H



(
S + (1− η1)V1 + (1− η2)V2

)
h

0
0
0
0

 , (8)

and the matrix of other transactions at each of the infected compartments can be represented by V, and is169

given by170

V =


E
Ia
Is
Q
H

 =


(µ+ e)E

(µ+ ra)Ia − ρeE
(rs + µ+ d+ δ)Is − (1− ρ)eE

(µ+ d+ rh + ra)Q− δIs
(µ+ d+ rh)H − qhQ

 . (9)

Now finding the Jacobian of F and V, we get matrices F (only the first row, nonzero row) and V written as;171

F =
[
0 (S + (1− η1)V1 + (1− η2)V2)

∂h
∂Ia

(S + (1− η1)V1 + (1− η2)V2)
∂h
∂Is

0 0
]
, (10)
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where,

∂h

∂Ia
=

βτ(N − (Q+H))− β(τIa + Is)

(N − (Q+H))2
(11)

∂h

∂Is
=

β(N − (Q+H))− β(τIa + Is)

(N − (Q+H))2
(12)

and172

V =


(µ+ e) 0 0 0 0
−ρe (µ+ ra) 0 0 0

−(1− ρ)e 0 (rs + µ+ d+ δ) 0 0
0 0 −δ (µ+ d+ rh + ra) 0
0 0 0 −qh (µ+ d+ rh)

 . (13)

The control reproduction number is given by Rv = ν(F (Ev) × V −1). Where ν is the spectral radius of the
matrix F (Ev)× V −1. Thus Rv, can be written as:

Rv =
(µ(µ+ αp2) + (1− η1)p1µ+ (1− η2)αp1p2)

(µ+ e)(µ+ p1)(µ+ αp2)

(
ρeβτ

µ+ ra
+

(1− ρ)eβ

rs + µ+ d+ δ

)
. (14)

The basic reproduction number, R0 is obtained by setting p1 = p2 = 0 in (14) and is given by:173

R0 =
ρeβτ

(µ+ e)(µ+ ra)
+

(1− ρ)eβ

(µ+ e)(µ+ rs + d+ δ)
. (15)

We can rewrite equation (14) in terms of R0 as;174

Rv =

(
µ(µ+ αp2) + (1− η1)p1µ+ (1− η2)αp1p2

(p1 + µ)(µ+ αp2)

)
R0. (16)

Remark 2. If η1 = η2 = 0, then Rv = R0. Otherwise (0 < η1, η2 ≤ 1) Rv < R0.175

In system (2), the solution for the state variables Q,H and R can easily be solved from other variables in176

the system and they does not affect them, therefore in the following subsections we restrict our mathematical177

analysis to the following system of equations.178 

dS
dt = π −

(
p1 + µ+ h

)
S

dV1
dt = p1S −

(
αp2 + µ+ (1− η1)h

)
V1

dV2
dt = αp2V1 −

(
µ+ (1− η2)h

)
V2

dE
dt =

(
S + (1− η1)V1 + (1− η2)V2

)
h− (µ+ e)E

dIa
dt = ρeE − (µ+ ra)Ia
dIs
dt = (1− ρ)eE − (rs + µ+ d+ δ)Is

(17)

3.2.3 Local stability of disease-free equilibrium179

Theorem 3.2.1. The disease-free equilibrium, Edfe is locally asymptotically stable if Rv < 1 and unstable if180

Rv > 1.181
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Proof. The Jacobian matrix of the system (17) is given by:182

J =



−(p1 + µ+ h) 0 0 0 − ∂h
∂Ia

S − ∂h
∂Is

S

p1 −(µ+ αp2 + (1− η1)h) 0 0 −(1− η1)V1
∂h
∂Ia

−(1− η1)V1
∂h
∂Is

0 αp2 −(µ+ (1− η2)h) 0 −(1− η2)V2
∂h
∂Ia

−(1− η2)V2
∂h
∂Is

h (1− η1)h (1− η2)h −(µ+ e) H1 H2

0 0 0 ρe −(µ+ ra) 0

0 0 0 (1− ρ)e 0 −(rs + µ+ d+ δ)



, (18)

where
H1 =

∂h
∂Ia

× (S + (1− η1)V1 + (1− η2)V2)

H2 =
∂h
∂Is

× (S + (1− η1)V1 + (1− η2)V2),

and ∂h
∂Ia

and ∂h
∂Is

are as in equations (11) and (12).183

The Jacobian matrix (18) evaluated at the disease-free equilibrium Ev is given by:184

J(Ev) =



−(µ+ p1) 0 0 0 ∂h
∂Ia

(Ev)S
∗ ∂h

∂Is
(Ev)S

∗

p1 −(µ+ αp2) 0 0 −(1− η1)
∂h
∂Ia

(Ev)V
∗
1 −(1− η1)

∂h
∂Is

(Ev)V
∗
1

0 αp2 −µ 0 −(1− η2)
∂h
∂Ia

(Ev)V
∗
2 −(1− η2)

∂h
∂Is

(Ev)V
∗
2

0 0 0 −(µ+ e) H∗
1 H∗

2

0 0 0 ρe −(µ+ ra) 0
0 0 0 (1− ρ)e 0 −(rs + µ+ d+ δ)


, (19)

where
∂h
∂Ia

(Ev) =
βτµ(p1+µ)(µ+αp2)

µπ(µ+αp2)+p1πµ+παp1p2
∂h
∂Is

(Ev) =
βµ(p1+µ)(µ+αp2)

µπ(µ+αp2)+p1πµ+παp1p2

H∗
1 = βτ µ(µ+αp2)+µ(1−η1)p1+(1−η2)p1p2α

(p1+µ)(µ+αp2)

H∗
2 = β µ(µ+αp2)+µ(1−η1)p1+(1−η2)p1p2α

(p1+µ)(µ+αp2)
,

and its characteristic equation is:185

((µ+ λ)(µ+ p1 + λ)(µ+ αp2 + λ))
(
−λ3 −B1λ

2 +B2λ+B3

)
= 0, (20)

where

B1 =rs + 3µ+ d+ δ + ra + e,

B2 =(1− ρ)eH∗
2 − (rs + µ+ d+ δ)(2µ+ ra + e) + ρeH∗

1 − (µ+ e)(µ+ ra),

B3 =(1− ρ)e(µ+ ra)H
∗
2 − (rs + µ+ d+ δ)((µ+ e)(µ+ ra)− ρeH∗

1 ).

From (20) we have the roots given by λ1 = −µ, λ2 = −(µ + αp2), λ3 = −(µ + p1) and
−λ3 − B1λ

2 + B2λ + B3 = 0. By Descartes’ rule of sign, the roots of the later equation will be negative if
B2 < 0 and B3 < 0.

Let write the equation for Rv in (14) in terms of H∗
1 and H∗

2 as:

Rv =
ρe

(µ+ ra)(µ+ e)
H∗

1 +
(1− ρ)e

(µ+ rs + d+ δ)(µ+ e)
H∗

2 .

Suppose Rv < 1, which implies

ρe(µ+ rs + d+ δ)H∗
1 + (1− ρ)e(µ+ ra)H

∗
2 < (µ+ e)(µ+ ra)(µ+ rs + d+ δ).

8
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Therefore,
ρe(µ+ rs + d+ δ)H∗

1 < (µ+ e)(µ+ ra)(µ+ rs + d+ δ),

and

(1− ρ)e(µ+ ra)H
∗
2 < (µ+ e)(µ+ ra)(µ+ rs + d+ δ) < (µ+ rs + d+ δ)(µ+ ra)(2µ+ ra + e),

which are equivalently written as186

ρeH∗
1 − (µ+ e)(µ+ ra) < 0

(1− ρ)eH∗
2 − (µ+ e)(2µ+ ra + e) < 0.

(21)

From the inequalities in (21), we summarize that: B2 < 0 if Rv < 1. And it can also be shown that B3 < 0187

whenever Rv < 1. Therefore, the disease-free equilibrium Edfe is locally asymptotically stable if Rv < 1. For188

Rv > 1, B2 will be greater than zero, therefore we will have at least one positive eigenvalue, therefore Edfe189

will be unstable.190

3.2.4 Global stability of disease-free equilibrium point when Rv < 1191

To investigate the global stability of disease-free equilibrium, we use the technique implemented by Castillo-
Chavez et al. [7]. We write the model system (17) as

dU

dt
= F (U,Z)

dZ

dt
= G(U,Z)

G(U, 0) = 0

where U stands for the uninfected individual, that is, U = (S, V1, V2)
T ∈ R3

+ and Z for the infected individuals192

,that is, Z = (E, Ia, Is)
T ∈ R3

+. The disease free equilibrium point of the model is denoted by Ev = (U0, 0).193

For Rv < 1, for which the disease free equilibrium point is locally asymptotically stable the following two194

conditions are sufficient to guarantee the global stability of disease free equilibrium point (U0, 0).195

(H1) For
du

dt
= F (U, 0), U0 is globally asymptotically stable.196

(H2) G(U,Z) = AZ − G̃(U,Z), where G̃(U,Z) ≥ 0 for all (U,Z) ∈ Ω197

where A = DIG(U0, 0) is a M-matrix (the off diagonal elements of A are nonnegative) and Ω is the region198

where the model makes biological sense.199

Theorem 3.2.2. The point Ev = (U0, 0) is globally asymptotically stable provided that Rv < 1 and the200

conditions expressed in (H1) and (H2) are satisfied.201

Proof. For condition (H1) from the system (17) we can get F (U,Z)

F (U,Z) =

 π −
(
p1 + µ+ h

)
S

p1S −
(
αp2 + µ+ (1− η1)h

)
V1

αp2V1 −
(
µ+ (1− η2)h

)
V2


Hence,

F (U, 0) =

 π − (p1 + µ)S
p1S − (αp2 + µ)V1

αp2V1 − µV2


9
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It is obvious that U0 = ( π
p1+µ ,

p1π
(p1+µ)(µ+αp2)

, παp1p2
µ(p1+µ)(µ+αp2)

, 0) is globally asymptotically stable for F (U, 0) as202

U → U0 when t → ∞.203

For condition (H2) from the system (17) we can get G(U,Z)

G(U,Z) =

(S + (1− η1)V1 + (1− η2)V2

)
h− (µ+ e)E

ρeE − (µ+ ra)Ia
(1− ρ)eE − (rs + µ+ d+ δ)Is


and

A =

−(µ+ e)
(
S∗ + (1− η1)V

∗
1 + (1− η2)V

∗
2

) βτ
N∗

(
S∗ + (1− η1)V

∗
1 + (1− η2)V

∗
2

) β
N∗

eρ −(µ+ ra) 0
(1− ρ)e 0 −(rs + µ+ d+ δ)


where,

N∗ = S∗ + V ∗
1 + V ∗

2

We have

G̃(U,Z) = AZ −G(U,Z)

=

G̃1(U,Z)

G̃2(U,Z)

G̃3(U,Z)

 =

β(τIa + Is)
[
S∗+(1−η1)V ∗

1 +(1−η2)V ∗
2

N∗ −
(S+(1−η1)V1+(1−η2)V2

N−(Q+H)

)]
0
0


which leads to G̃(U,Z) ≥ 0 for all (U,Z) ∈ Ω. Hence both the conditions (H1) and (H2) are satisfied.204

Therefore, the disease-free equilibrium point is globally asymptotically stable for Rv < 1.205

3.2.5 Existence of endemic equilibrium206

By equating the system (2) to zero, we get the endemic equilibrium in terms of the force of infection h and207

we denote it by208

Eend =
(
Se, V e

1 , V
e
2 , E

e, Iea, I
e
s , Q

e, He, Re
)
,209

the components of Eend are given as follows:

Se =
π

p1 + µ+ he
,

V e
1 =

p1π

(p1 + µ+ he)(αp2 + µ+ (1− η1)he)
,

V e
2 =

p1p2απ

(p1 + µ+ he)(αp2 + µ+ (1− η1)he)(µ+ (1− η2)he)
,

Ee =
heπ

[
(µ+ (1− η2)h

e)(αp2 + µ+ (1− η1)h
e) + p1(1− η1)(µ+ (1− η2)h

e) + αp1p2(1− η2)
]

(µ+ e)(p1 + µ+ he)(αp2 + µ+ (1− η1)he)(µ+ (1− η2)he)
,

Iea =
ρeheπ

[
(µ+ (1− η2)h

e)(αp2 + µ+ (1− η1)h
e) + p1(1− η1)(µ+ (1− η2)h

e) + αp1p2(1− η2)
]

(µ+ ra)(µ+ e)(p1 + µ+ he)(αp2 + µ+ (1− η1)he)(µ+ (1− η2)he)
,

Ies =
(1− ρ)eheπ

[
(µ+ (1− η2)h

e)(αp2 + µ+ (1− η1)h
e) + p1(1− η1)(µ+ (1− η2)h

e) + αp1p2(1− η2)
]

(rs + µ+ d+ δ)(µ+ e)(p1 + µ+ he)(αp2 + µ+ (1− η1)he)(µ+ (1− η2)he)
,

Qe =
δ

µ+ d+ qh + rq
× Ies ,

He =
qh

µ+ d+ rh
×Qe,

Re =
raI

e
a + rsI

e
s + rqQ

e + rhH
e

µ
,

10
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where he is the positive root of the equation210

g(he) = A(he)3 +B(he)2 + Che +D = 0, (22)

obtained from

he =
β(τIea + Ies )

(Se + V e
1 + V e

2 + Ee + Iea + Ies +Re)
,

and the coefficients in equation (22) are given by

A = (1− η1)(1− η2)

B =
J1 +

(
µ(µ+ αp2)(p1 + µ)(1− η1)(1− η2)

)
(1−Rv)

µ(µ+ αp2) + (1− η1)p1µ+ (1− η2)αp1p2

C =
J2 +

(
(p1 + µ)

(
µ2(1− η1)(µ+ αp2) + µ(1− η2)(µ+ αp2)

2
)
+ p1µ(1− η1)(αp2 + µ)(p1 + µ)(1− η2)

)
(1−Rv)

µ(µ+ αp2) + (1− η1)p1µ+ (1− η2)αp1p2

D = µ(p1 + µ)(αp2 + µ)(1−Rv),

where,

J1 = µ(µ+ αp2)(µ(1− η1) + (µ+ αp2)(1− η2)) + p1µ(1− η1)
2(µ+ (p1 + µ)(1− η2) + (αp2 + µ))

+ αp1p2(1− η2)(µ(1− η1) + (p1 + µ)(1− η1)(1− η2) + (αp2 + µ)(1− η2))

J2 = µ2(αp2 + µ)2 + p1µ
2(1− η1)((p1 + µ)(1− η1) + (αp2 + µ))

+ µαp1p2(1− η2)((1− η1)(p1 + µ) + (αp2 + µ) + (αp2 + µ)(p1 + µ)(1− η1)).

It can easily be seen that A > 0. If Rv > 1 then D < 0 , therefore h(0) < 0. Additionally lim
he→∞

g(he) > 0.211

Therefore, from the continuity of g, there exists at least one positive he∗ such that g(he∗) = 0 and hence212

there will be at least one endemic equilibrium of the model system (2). On the other hand, if Rv < 1, then213

B > 0, C > 0 and D > 0 then by Descartes’ rule of sign, (22) has no positive real root, which proves that214

there is no endemic equilibrium point when Rv < 1. From the above discussion, we can state the following215

theorem.216

Theorem 3.2.3. If Rv > 1, there exists at least one endemic equilibrium point for the model system (2) and217

there is no endemic equilibrium point for the model system (2) when Rv < 1.218

3.3 Bifurcation analysis219

We determine the occurrence of a transcritical bifurcation at Rv = 1 by adopting the well–known approach
based on the general center manifold theory [6]. In short, it establishes that the normal form representing the
dynamics of the system on the central manifold is given by:

u̇ = au2 + bβu,

where220

a =

n∑
k,i,j=1

νkωiωj
∂2fk

∂xi∂xj
(Ev, β

∗), (23)

and221

b =
n∑

k,i=1

νkωi
∂2fk
∂xi∂β

(Ev, β
∗). (24)

Note that β has been chosen as a bifurcation parameter and β∗ is its critical value, f represents the right–hand222

side of the system (17), x represents the state variable vector, x = (x1, x2, x3, x4, x5, x6) = (S, V1, V2, E, Ia, Is),223
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ν and ω are the left and right eigenvectors corresponding to the zero eigenvalue of the Jacobian matrix at the224

disease-free equilibrium and the critical value, i.e., at Ev and β = β∗.225

Observe that Rv = 1 is equivalent to β = β∗, with

β∗ =
(µ+ e)(µ+ p1)(µ+ αp2)

µ(µ+ αp2) + (1− η1)p1µ+ (1− η2)αp1p2
× C,

where,

C =
(µ+ ra)(rs + µ+ d+ δ)

ρeτ(rs + µ+ d+ δ) + (1− ρ)e(µ+ ra)

Thus, according to Theorem 4.1[6], the disease-free equilibrium is locally asymptotically stable if β < β∗,
and it is unstable when β > β∗. The direction of the bifurcation occurring at β = β∗ can be derived from
the sign of the coefficients (23) and (24). More precisely, if a > 0 (resp. a < 0) and b > 0, then at β = β∗

there is a backward (resp. forward) bifurcation.

By evaluating the Jacobian matrix of system (17) at Ev and β = β∗, we get

J(Ev, β
∗) =



−(µ+ p1) 0 0 0 K1 K4

p1 −(µ+ αp2) 0 0 K2 K5

0 αp2 −µ 0 K3 K6

0 0 0 −(µ+ e) H∗
1 H∗

2

0 0 0 ρe −(µ+ ra) 0
0 0 0 (1− ρ)e 0 −(rs + µ+ d+ δ)

 ,

where
K1 = S∗ ∂h

∂Ia
(Ev, β∗)

K2 = −(1− η1)V
∗
1

∂h
∂Ia

(Ev, β∗)
K3 = −(1− η2)V

∗
2

∂h
∂Ia

(Ev, β∗)
K4 = S∗ ∂h

∂Is
(Ev, β∗)

K5 = −(1− η1)V
∗
1

∂h
∂Is

(Ev, β∗)
K6 = −(1− η2)V

∗
2

∂h
∂Is

(Ev, β∗)
H∗

1 = β∗τ µ(µ+αp2)+µ(1−η1)p1+(1−η2)p1p2α
(p1+µ)(µ+αp2)

H∗
2 = β∗ µ(µ+αp2)+µ(1−η1)p1+(1−η2)p1p2α

(p1+µ)(µ+αp2)

We observed that one of the eigenvalues of J(Ev, β
∗) is 0 and the remaining are negative. Hence, when

β = β∗ (equivalently, when Rv = 1), the disease-free equilibrium is nonhyperbolic.

After some calculations we get:

ν = (0, 0, 0, ν4,
ν4H

∗
1

µ+ ra
,

ν4H
∗
2

rs + µ+ d+ δ
) and ω = (ω1, ω2, ω3, 1,

eρ

µ+ ra
,

e(1− ρ)

rs + µ+ d+ δ
)T ,

where
ν4 =

(µ+ra)2(rs+µ+d+δ)2

(µ+ra)2(rs+µ+d+δ)2+H∗
1 eρ(rs+µ+d+δ)2+H∗

2 e(1−ρ)(µ+ra)2

ω1 =
K1eρ(rs+µ+d+δ)+K4e(1−ρ)(µ+ra)

(µ+p1)(µ+ra)(rs+µ+d+δ) < 0

ω2 =
p1ω1(µ+ra)(rs+µ+d+δ)+K2eρ(rs+µ+d+δ)+K5e(1−ρ)(µ+ra)

(µ+αp2)(µ+ra)(rs+µ+d+δ) < 0

ω3 =
p2αω2µ(µ+ra)(rs+µ+d+δ)+K3eρ(rs+µ+d+δ)+K6e(1−ρ)(µ+ra)

µ(µ+ra)(rs+µ+d+δ) < 0.
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are a left and right eigenvector associated with the zero eigenvalue, respectively, such that ν · ω = 1. Now we
can explicitly compute the coefficients a and b. Considering only the nonzero components of the eigenvectors
and computing the corresponding second derivative of f , it follows that:

a =

6∑
k,i,j=1

νkωiωj
∂2fk

∂xi∂xj
(Ev, β

∗)

= 2[ν4ω1(ω5
∂2f4
∂S∂Ia

(Ev, β
∗) + ω6

∂2f4
∂S∂Is

(Ev, β
∗)) + ν4ω2(ω5

∂2f4
∂V1∂Ia

(Ev, β
∗) + ω6

∂2f4
∂V1∂Is

(Ev, β
∗))

+ ν4ω3(ω5
∂2f4

∂V2∂Ia
(Ev, β

∗) + ω6
∂2f4

∂V2∂Ia
(Ev, β

∗))]

=
2β∗

(µ+ ra)(rs + µ+ d+ δ)

[
eω1(τρ(rs + µ+ d+ δ) + (1− ρ)(µ+ ra))

+ eω2(ρτ(1− η1)(rs + µ+ d+ δ) + (1− ρ)(1− η1)(µ+ ra))

+ eω3(ρτ(1− η2)(rs + µ+ d+ δ) + (1− ρ)(1− η2)(µ+ ra))
]

Since ω1, ω2 and ω3 are negative, a < 0.
And

b =
6∑

k,i=1

νkωi
∂2fk
∂xi∂β

(Ev, β
∗)

= ν4

[
ω2

∂2f4
∂V1∂β

(Ev, β
∗) + ω2

∂2f4
∂V2∂β

(Ev, β
∗) + ω2

∂2f4
∂Ia∂β

(Ev, β
∗) + ω2

∂2f4
∂Is∂β

(Ev, β
∗)
]

= ν4

[ eρτ

µ+ ra
(S∗ + (1− η1)V

∗
1 + (1− η2)V

∗
2 ) +

e(1− ρ)

rs + µ+ d+ δ
(S∗ + (1− η2)V

∗
1 + (1− η2)V

∗
2 )

]
= ν4(S

∗ + (1− η1)V
∗
1 + (1− η2)V

∗
2 )

[ eρτ

µ+ ra
+

e(1− ρ)

rs + µ+ d+ δ

]
> 0

Since a < 0 and b > 0, by the result of Castillo-Chavez and Song [6], model (17) exhibits a forward bifurcation226

at Rv = 1(see Figure 5). We summarize the above discussion with the following theorem.227

Theorem 3.3.1. The endemic equilibrium point, Edfe of the model system (17), is locally asymptotically228

stable for Rv > 1 and the system exhibits forward(or transcritical) bifurcation at Rv = 1.229

3.4 Sensitivity analysis230

In what follows, we investigate the sensitivity analysis for the control reproduction number Rv to identify the231

parameters that has high impact on disease expansion in the community. The sensitivity index with respect232

to a parameter Xi is given by a normalized forward sensitivity index [8],233

ΓRv
Xi

= ∂Rv
∂Xi

× Xi
Rv

,234
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where, Xi represent the basic parameters.
Hence,

ΓRv
e =

∂Rv

∂e
× e

Rv
=

µ

µ+ e
> 0,

ΓRv
η1 =

∂Rv

∂η1
× η

Rv
= − p1µ

(µ+ e)(µ+ p1)(µ+ αp2)

(
ρeβτ

µ+ ra
+

(1− ρ)eβ

rs + µ+ d+ δ

)
× η

Rv
< 0,

ΓRv
η2 =

∂Rv

∂η2
× η2

Rv
= − αp1p2

(µ+ e)(µ+ p1)(µ+ αp2)

(
ρeβτ

µ+ ra
+

(1− ρ)eβ

rs + µ+ d+ δ

)
× η2

Rv
< 0,

ΓRv
p1 =

∂Rv

∂p1
× p1

Rv
= − (µ2η1 + αηp2η2)

(µ+ e)(µ+ p1)2(µ+ αp2)

(
ρeβτ

µ+ ra
+

(1− ρ)eβ

rs + µ+ d+ δ

)
× p1

Rv
< 0,

ΓRv
p2 =

∂Rv

∂p2
× p2

Rv
= − α2p2(1− µ)

(µ+ e)(µ+ p1)(µ+ αp2)2

(
ρeβτ

µ+ ra
+

(1− ρ)eβ

rs + µ+ d+ δ

)
× p2

Rv
< 0,

ΓRv
α =

∂Rv

∂α
× α

Rv
=

µp1p2(η1 − η2)

(µ+ e)(µ+ p1)(µ+ αp2)2

(
ρeβτ

µ+ ra
+

(1− ρ)eβ

rs + µ+ d+ δ

)
× α

Rv
< 0,

ΓRv
β =

∂Rv

∂β
× β

Rv
= 1 > 0,

ΓRv
τ =

∂Rv

∂τ
× α

Rv
=

(µ(µ+ αp2) + µp1(1− η1) + αp1p2) (ρeβ)

(µ+ e)(µ+ p1)(µ+ αp2)(µ+ ra)
× τ

Rv
> 0,

ΓRv
ra =

∂Rv

∂ra
× ra

Rv
= −(µ(µ+ αp2) + µp1(1− η1) + αp1p2) (ρeβτ)

(µ+ e)(µ+ p1)(µ+ αp2)(µ+ ra)2
× ra

Rv
< 0,

ΓRv
rs =

∂Rv

∂rs
× rs

Rv
= −(µ(µ+ αp2) + µp1(1− η1) + αp1p2) ((1− ρ)eβ)

(µ+ e)(µ+ p1)(µ+ αp2)(rs + µ+ d+ δ)2
× rs

Rv
< 0,

ΓRv
δ =

∂Rv

∂δ
× δ

Rv
= −(µ(µ+ αp2) + µp1(1− η1) + αp1p2) ((1− ρ)eβ)

(µ+ e)(µ+ p1)(µ+ αp2)(rs + µ+ d+ δ)2
× δ

Rv
< 0,

ΓRv
d =

∂Rv

∂d
× d

Rv
= −(µ(µ+ αp2) + µp1(1− η1) + αp1p2) ((1− ρ)eβ)

(µ+ e)(µ+ p1)(µ+ αp2)(rs + µ+ d+ δ)2
× d

Rv
< 0.

We summarize the sensitivity analysis indices of the reproduction number with respect to some parameters235

in Table 1.236

parameter index

e +ve
β +ve
τ +ve
η1 -ve
η2 -ve
p1 -ve
p2 -ve
α -ve
ra -ve
rs -ve
δ -ve
d -ve

Table 1: Sensitivity index table

From Table1 the sensitivity indices with negative signs indicate that the value of Rv decreases when the237

parameter values are increased and the value of Rv increases when the parameter values are decreased, while238

sensitivity indices with positive signs indicate that the value of Rv increases when the parameter values are239

increased and the value of Rv decreases when the parameter values are decreased.240
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4. Numerical simulation and discussion241

To justify the analytical results and explore additional important properties of the model, we fitted the model242

to real COVID-19 data of Ethiopia to fix the unknown parameters of the model and carried out a numerical243

simulation. In this section, we used the full model (2).244

4.1 Parameter estimation245

In this subsection, we will find the best values of unknown parameters in our model, with the so-called246

model fitting process. We used the real data of COVID-19 daily new cases and vaccinated population of247

Ethiopia from May 01, 2021 to January 31, 2022. We took the data which is available online by Our World in248

Data [19]. To fit the model to this data, we used the nonlinear curve fitting method with the help of249

’lsqcurvefit’, builtin MATLAB function. Some of the parameter values are estimated from literature:250

according to the data by Worldometer, the Ethiopian average life expectancy at birth for the year 2021 and251

the approximate total population is 67.8 and 114963588 respectively [27]. Therefore, the natural death rate252

of individuals per day is calculated as the reciprocal of the life expectancy at birth time days in a year, given253

by µ = 1
67.8×365 . We approximated the recruitment rate from π

µ = N(0) (Initial population). Hence we found254

π = µ × N(0) = 4646 individuals per day. In the estimation process of the rest parameters the following255

initial conditions are used: from the data in Our World in Data we have256

Is(0) = 620, V1(0) = 20385, R(0) = 946 and D(0) = 21. Where t = 0 corresponds to May 01, 2021. According257

to WHO report 80% of COVID-19 infected individuals become asymptomatic. Therefore we estimated258

Ia(0) = 620/0.8 = 775. We assumed E(0) = 1400, which is approximately equal to the sum of the259

symptomatic and asymptomatic cases, and V1(0) = Q(0) = H(0) = 0. Hence, the initial susceptible260

population is taken as S(0) = N(0)− (V1(0) + V2(0) + E(0) + Ia(0) + Is(0) +Q(0) +H(0) +R(0)).261

262

The best fit to the daily cumulative COVID-19 confirmed cases and vaccination through our model is shown263

in Figure 2. The estimated and calculated parameter values are given in Table 2. Using these parameters,264

we found R0 = 1.17 and Rv = 1.15.265
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Figure 2: The fitted data to the reported cumulative cases (panel (a)) and cumulative vaccinated(panel (b)) using the
model (2) for Ethiopia from May 01, 2021 to January 31, 2022.
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Parameter Description Value Sources

π Recruitment rate 4646 days−1 Calculated
Sec.4.1

µ Natural death rate 1
67.8×365 Calculated

Sec.4.1

p1 First dose Vaccination rate 8.157× 10−7 days−1 Fitted

p2 Second dose Vaccination rate 0.974 days−1 Fitted

β Transmission rate 0.513 days−1 Fitted

τ Infectivity factor for asymptomatic individuals 0.116 Fitted

η1 Efficacy of first dose vaccine 0.8 Fitted

η2 Efficacy of second dose vaccine 0.95 Fitted

α Inverse of average time needed to take the
second dose

0.14 days−1 Fitted

ρ fraction of infections that become asymptomatic 0.112 Fitted

e Infection rate after incubation period 0.2071 Fitted

rs Recovery rate for individuals with symptom 1.89× 10−7 days−1 Fitted

ra Recovery rate for asymptomatic individuals 0.0148 days−1 Fitted

rq Recovery rate for quarantined individuals 0.0356 days−1 Fitted

rh Recovery rate for individuals in hospital 0.213 days−1 Fitted

δ Quarantine rate 0.453 days−1 Fitted

d Disease induced death rate 0.177 days−1 Fitted

qh Hospitalization rate from quarantine 0.999 days−1 Fitted

Table 2: Parameter description and their baseline values used in the model (2).

4.2 Local stability of disease-free and endemic equilibrium266

Figure 3, panels (a) and (b) (for time interval [9000, 30000]) shows the local stability of the endemic equilibrium267

Eend = [3.77 × 10−7, 225, 6.91 × 105, 1.49 × 104, 2.334 × 104, 4.36 × 103, 1.632 × 103, 4.181 × 103, 3.201 × 107]268

for Rv = 2.98 > 1. Panels (c) and (d) portrays the stability of the disease free equilibrium,Edfe = [1.127 ×269

108, 673.9, 2.2741 × 106, 0, 0, 0, 0, 0, 0], for Rv = 0.556 < 1. These results support our analytical results in270

section 3 of Theorem 3.2.2 and 3.3.1. For better use of spacing and view we didn’t include the plot for E271

compartment, but the dynamics of this state variable converges to its equilibrium point. The convergence272

to the endemic equilibrium is through damped oscillation, which may show the disease will be endemic in273

different times in the future. When Rv = 1 an exchange of stability ( transcritical bifurcation) arises, i.e.274

for Rv < 1 there is no endemic equilibrium and the disease-free equilibrium is globally asymptotically stable275

and for Rv > 1 a stable endemic equilibrium appears whereas the disease-free equilibrium is unstable. This276

property is shown in Figure 5. From an epidemiological point of view, this means the disease may persist in277

the population for Rv > 1 and dies out for Rv < 1.278

Remark 3. In Figure 3, panels (a) and (b) at the beginning of the interval (i.e., [0, 9000]) there is a relatively279

high peak, therefore in the plot with full interval the MATLAB suppresses the other peaks. Therefore, for280

better visualization of the long time interval behaviour of the model, we put the plot only for the interval281

[9000, 300000].282
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Figure 3: Local stability of the endemic equilibrium for Rv = 2.98 > 1( infected compartments, panels (a), and
non infected compartments, panel (b)) and local stability of the disease free equilibrium for Rv = 0.556 < 1 (infected
compartments, panel (c), and non infected compartments, panel (d).) τ1 = 0.6 and p1 = 5 × 10−5 is used for panels
(a)&(b) and (c)&(d) respectively and other parameter values are given in Table 2.

4.3 Variation of Rv with respect to some important parameters283

An important parameter in modeling infectious disease transmission is the reproduction parameter which284

measures the potential spread of an infectious disease in a community, in our case we have a control285

reproduction parameter, Rv. In particular, if Rv < 1 the disease dies out and if Rv > 1 the disease persists286

in the population. Therefore reducing such parameter below the critical value Rv = 1 is important. In our287

model, reducing the transmission rate β and infectivity factor of asymptomatic individuals, τ will help288

reduce Rv from unity, Figure 4 panels (a) and (b). On the contrary increasing the first dose vaccination rate,289

p1 will make Rv less than one, Figure 4 panel (c). Here it is worth to mention the influence of the second290

dose vaccination rate is low in varying the control reproduction number.291
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Figure 4: Variation of Rv with respect to : the transmission rate β ,panel (a), to infectivity factor of asymptomatic
individuals τ , panel (b) and first dose vaccination rate p1, panel (c). Other parameter values are given in Table 2.

Figure 5: Transcritical bifurcation of model (2) when Rv = 1.

4.4 The impact of transmission rate292

In this and subsequent subsections, we say infectious population to refer to the sum of the population in293

symptomatic and asymptomatic classes per time (Ia(t) + Is(t)). This is due to the fact that in our model294

we assumed people in these two compartments are potential transmitters of the disease. Unless explicitly295

mentioned, when we say vaccinated individuals, it refers to the total number of individuals vaccinated either296

with the first dose or the second dose per unit time (V1(t)+V2(t)). Figure 6 shows the role of the transmission297

rate β on the dynamics of the infectious, vaccinated, and hospitalized classes. A decrease in the transmission298

rate results in a prevalence decrease. When the transmission rate is equal to 0.55 days−1 the prevalence reaches299

a high peak of 1424101, but by decreasing it to β = 0.49 days−1 (below the fitted value) the infectious peak300

can be decreased to 410094 Figure 6 panel (a). This shows that if we can further decrease the transmission301

rate, it is possible to achieve an infectious number of insignificant value and eradication of the disease. When302

the transmission rate is small, a small number of people will be infected, which means the number of people303

in the susceptible class will be large, hence the number of vaccinated people will rise, Figure 6, panel(b). The304

burden of hospitalization can be decreased by decreasing the transmission rate. As it can be seen in Figure305

6, panel(c), when the infectious population is high, correspondingly we have a large number of individuals in306

the hospital and vice versa.307
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Figure 6: The effect of transmission rate β. Panel (a): infectious population Ia(t) + Is(t), panel (b): Vaccinated
population, V1(t) + V2(t), and panel (c) hospitalized individuals. Other parameter values are given in the Table 2.

4.5 The impact of first dose vaccination rate308

Figure 7 shows the role of the first dose vaccination rate on the dynamics of infectious, vaccinated and309

hospitalized population. Increasing this vaccination rate results in a decrease of infectious and hospitalized310

population Figure 7 panels (a)&(c). For example when p1 = 8.16 × 10−7 days−1 the infectious population311

reaches a high peak of value 759544 and hospitalized peak of 118624 individuals. If we are able to increase312

the rate to p1 = 8.16 × 10−5 days−1 the above peaks will decrease to 171226 and 26151 of infectious and313

hospitalized individuals respectively. Such a decrease in prevalence is achieved with high proportion of314

vaccinated individuals in the population Figure 7 panel (b). Simulation results shows that the role of the315

second dose vaccination rate, p2 and time delay between the two doses, α doesn’t have significant impact on316

the dynamics.317
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Figure 7: The impact of the first dose vaccination rate p1: on the dynamics of infectious population,panel (a),
vaccinated population, panel (b), and hospitalized population, panel (c). Other parameter values are given in the Table
2.

4.6 The impact of the infectivity factor of asymptomatic individuals318

According to the study [22], asymptomatic cases of COVID-19 are a potential source of substantial spread319

of the disease within the community and one of the results found was people with asymptomatic COVID-19320

are infectious but might be less infectious than symptomatic cases. Since the majority of COVID-19 infected321

individuals become asymptomatic, even if they are less infectious than the symptomatic individuals, their role322

in spreading the disease may be significant. Figure 8 proves this hypothesis. As the infectivity factor increases,323

we observed a rise of the infectious population to a relatively high pick (2799983 infectious for τ = 0.2) Figure324

8, panel (a), which is not observed in the impact of other parameters, like β. Decreasing the infectivity factor325
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decreases the infectious population significantly. As observed in other plots here also the increase of infectious326

population will result in increase in the number of hospitalized individuals and vice versa Figure 8 panel (c).327

The increase in the infectivity factor τ makes more people to be infected from vaccinated compartments which328

results in a decrease in the number of vaccinated individuals, Figure 8 panel (b). Therefore the number of329

vaccinated individuals is inversely proportional to the infectivity factor.330
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Figure 8: The impact of the infectivity coefficient of asymptomatic population, τ1 on the dynamics of infectious
population,panel (a), total vaccinated population, panel (b), and hospitalized population, panel (c). Other parameter
values are as in the Table (2).

5. Prediction of cumulative vaccine dose administered with respect to331

the first dose vaccination rate.332

Most of COVID-19 vaccines approved by WHO are being offered in two doses and a booster. In Ethiopia333

Sinopharm, AstraZeneca, Johnson and Johnson/Janssen, and Pfizer-BioNTech vaccines are being used. From334

these vaccines except Johnson&Johnson/Janssen all are being given in two doses. The total number of335

COVID-19 vaccine dose administered from May 01, 2021 to January 31, 222 (276 days) is 9517539. Using336

the fitted parameters, our model estimates this number by 9152542 vaccine doses (See, the highlighted row337

third column of Table 3). If the first dose vaccine administration rate remains the same for the next two338

years, (i.e after 1006 days) 66483093 number of vaccine doses will be administered. According to World339

Population Review projection, Ethiopian population in 2024 will be 126.8 million [26]. Since a person can340

get vaccinated with two doses, we can approximate the number of people vaccinated with at least one dose341

by 1
2 × number of vaccine dose administered. This means 33241546 number of people (Approximately 26%342

of the total population (in 2024)) will get at least one dose of COVID-19 vaccination. Increasing p1 to343

3.16 × 10−6 days−1 it can be achieved, after two years, 199688874 number of administered vaccine doses.344

Which is equivalent to 99844437 number of people (approximately 79% of the total population in the year345

2024 ) can get at least first dose (see fourth row of Table 3).346
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p1 Rv Vaccine dose administered
in [0, 276] days (Interval of
fitting time)

Predicted after two years
([0, 1006] days interval)

8.157× 10−7 days−1 1.15 9152542 66483093

9.16× 10−7 days−1 1.147 9588497 72169187

1.16× 10−6 days−1 1.141 10652193 86042042

3.16× 10−6 days−1 1.09 19369216 199688874

Table 3: Values of: Control reproduction number (second column), cumulative vaccine administered at the end of the
parameter fitting time (third column) and Predicted number of cumulative vaccine to be administered (fourth column).
For different values of p1. Other parameter values are given in Table 2. The light Cyan shaded row is for the base line
p1 value.

6. Conclusion347

In this study, we used a compartmental model for COVID-19 transmission with vaccination. We divided the348

vaccinated portion of the population into two: Vaccinated with the first dose and fully vaccinated (those349

who got the two doses). Using the next generation matrix we found a reproduction number which exists350

when vaccination is in place, we called this parameter as the control reproduction number and denoted it by351

Rv. We calculated the disease-free and endemic equilibrium of model (2) and showed that the disease-free352

equilibrium Edfe is globally asymptotically stable if the control reproduction number Rv < 1 and unstable if353

Rv > 1. We performed a center manifold analysis based on the method mentioned in Castillo-Chavez and354

Song[6] and found that the model exhibits a forward bifurcation at Rv = 1, which ensures the nonexistence355

of the endemic equilibrium below the critical value, Rv = 1 and the unique endemic equilibrium which exists356

for Rv > 1 is locally asymptotically stable. This implies the disease can be controlled if Rv < 1 and it357

persists in the population if Rv > 1. This directs public health policy makers to work on reducing the358

control reproduction number to less than unity. We performed a sensitivity analysis from which we obtained359

that the model is sensitive to p1, p2, δ with negative sign and β, τ with positive sign. This shows that360

increasing the vaccination and quarantine rate and decreasing the transmission rate and infectivity factor of361

asymptomatic individuals will reduce the disease burden.362

363

We performed model fitting to the Ethiopian real COVID-19 data for the period from May 1, 2021 to364

January 31, 2022 to estimate the unknown parameters in the model. In the numerical simulation section, we365

support our analytical analysis about the stability of the disease-free and endemic equilibrium using the366

parameter Rv. The result shows for Rv > 1 the endemic equilibrium(which exists only for Rv > 1) stabilizes367

through damped oscillation and the disease-free equilibrium is locally asymptotically stable Rv < 1, unstable368

for Rv > 1. From the epidemiological perspective, the disease persists in the population with multiple waves369

if the control reproduction number is greater than unity and it can be eliminated if Rv < 1. We also showed370

the role of some important parameters on the dynamics of the disease so that we got the following points:371

Reducing the transmission rate and the infectivity factor of asymptomatic individuals will greatly help in372

reducing the infection burden. Increasing the first dose vaccination rate has a high impact in reducing the373

infection. Simulation results shows that the second dose vaccination rate has no significant effect on the374

dynamics of the infectious population.375

376

Moreover, we also predicted the cumulative vaccine dose administered by changing the first dose vaccination377

rate. In this prediction, if we increase p1 to a value 3.16 × 10−7 days−1 after two years, the total vaccine378

dose administered will reach 1996888974, which will cover approximately 79% of the total population.379

Therefore, from the numerical simulation and analytical analysis, we summarize that it will be essential to380

reduce the transmission rate, infectivity factor of asymptomatic cases and increase the vaccination rate,381

quarantine rate to control the disease. As a future work, we will point out that this model can be extended382

by including additional interventions (for example nonpharmaceutical interventions), by considering the383
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behavioural aspect, and via an optimal control problems.384
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