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Abstract 50 

Background: The gut-lung axis is generally recognized, but there are few large studies of the 51 
gut microbiome and incident respiratory disease in adults.  52 

Objectives: To investigate the associations between gut microbiome and respiratory disease 53 
and to construct predictive models from baseline gut microbiome profiles for incident asthma 54 
or chronic obstructive pulmonary disease (COPD).  55 

Methods: Shallow metagenomic sequencing was performed for stool samples from a 56 
prospective, population-based cohort (FINRISK02; N=7,115 adults) with linked national 57 
administrative health register derived classifications for incident asthma and COPD up to 15 58 
years after baseline. Generalised linear models and Cox regressions were utilised to assess 59 
associations of microbial taxa and diversity with disease occurrence. Predictive models were 60 
constructed using machine learning with extreme gradient boosting. Models considered taxa 61 
abundances individually and in combination with other risk factors, including sex, age, body 62 
mass index and smoking status.  63 

Results: A total of 695 and 392 significant microbial associations at different taxonomic levels 64 
were found with incident asthma and COPD, respectively. Gradient boosting decision trees of 65 
baseline gut microbiome predicted incident asthma and COPD with mean area under the 66 
curves of 0.608 and 0.780, respectively. For both incident asthma and COPD, the baseline 67 
gut microbiome had C-indices of 0.623 for asthma and 0.817 for COPD, which were more 68 
predictive than other conventional risk factors. The integration of gut microbiome and 69 
conventional risk factors further improved prediction capacities. Subgroup analyses indicated 70 
gut microbiome was significantly associated with incident COPD in both current smokers and 71 
non-smokers, as well as in individuals who reported never smoking. 72 

Conclusions: The gut microbiome is a significant risk factor for incident asthma and incident 73 
COPD and is largely independent of conventional risk factors. 74 

  75 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted March 23, 2022. ; https://doi.org/10.1101/2022.03.22.22272736doi: medRxiv preprint 

https://doi.org/10.1101/2022.03.22.22272736
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 
 

Introduction 76 

Asthma and chronic obstructive pulmonary disease (COPD) represent the vast majority of 77 
chronic respiratory diseases worldwide, causing a considerable burden on health and 78 
economy[1, 2]. Both asthma and COPD are recognized as heterogeneous diseases with 79 
diverse phenotypes and various underlying mechanisms[3-6]. Currently, spirometry-confirmed 80 
airflow limitation is the most common reference standard for establishing diagnoses of asthma 81 
and COPD, yet a negative spirometry test result does not rule out the disease[7, 8]. Other 82 
criteria that complement evaluation include self-reported symptoms, medical history, physical 83 
examination and other diagnoses such as infection, interstitial lung disease, and others[7, 9]. 84 
Despite rapidly changing assessments and treatments, both asthma and COPD remain largely 85 
underdiagnosed and thus undertreated, leading to lesser quality of life and poorer disease 86 
outcomes[3, 9].  87 

With recent advances in high-throughput sequencing, improved characterisation of the human 88 
respiratory and gastrointestinal microbiome has been followed by growing recognition of the 89 
link between human microbiota and chronic respiratory disease[10, 11]. The gut microbiome 90 
is by far the largest and most studied microbial community in the human body[11, 12]. 91 
Although the lung microbiome has become well characterized only recently, the link between 92 
the lung microbiome and respiratory diseases has been generally acknowledged[10, 13-15]. 93 
“Dysbiotic” changes in both airway and gut microbiome have been linked to respiratory 94 
diseases; however, the precise mechanism or causal pathway is, as yet, not well 95 
understood[16-19]. Emerging evidence suggests cross-talk between gut microbiome and the 96 
lungs, via changes to immune responses as well as an interaction of microbiota between the 97 
sites, in a hypothesised “gut-lung axis”[11, 20]. 98 

Existing studies on the association between gut microbiota and asthma have focused mainly 99 
on disease development during childhood[21-23] which is driven by evidence of the influence 100 
of early-life microbial exposures on immune function[24, 25]. Previous cross-sectional studies 101 
have reported compositional and functional differences of the gut microbiome between adult 102 
asthma patients and healthy controls [26-29]. However, little is known about whether and to 103 
what extent the gut microbiome affects prospective risk of developing incident asthma in 104 
adults. For COPD, there have been far fewer studies on the link between the gut microbiome 105 
and disease. Recently, the first analysis of gut microbiome in COPD by Bowerman et al. 106 
reported that the faecal microbiome and metabolome significantly differentiate COPD patients 107 
and healthy controls[30], which suggests a possible avenue for further investigation using 108 
prospective population-scale datasets. Finally, it is only in recent years that methodological 109 
and technological advances have opened up the possibility of using large-scale microbial data 110 
to predict human respiratory disease[22, 31], but the feasibility of such measures has yet to 111 
be evaluated for COPD. 112 

Here we report association analysis and predictive modelling of the gut microbiome and 113 
incident asthma and COPD using stool samples from >7,000 participants of a prospective 114 
population-based cohort (FINRISK 2002) with electronic health records (EHRs) over ~15 115 
years of follow-up[32].  Specifically, we (1) describe the gut microbial composition from shallow 116 
shotgun metagenomic sequencing and assess the associations with incident asthma and 117 
COPD, (2) employ machine learning approaches to quantify the predictive capacities of the 118 
gut microbiome at baseline for incident respiratory disease, and (3) construct integrated 119 
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models of the gut microbiome and conventional risk factors and evaluated their predictive 120 
performance. 121 

Results  122 

A total of 7,115 FINRISK02 participants with baseline gut microbiome profiles and EHR 123 
linkage were available for the present study. A summary description of the cohort is given in 124 
the Methods and baseline characteristics are reported in Table 1. After quality control and 125 
exclusion criteria were applied, 435 and 145 incident cases of asthma and COPD, 126 
respectively, occurred during a median follow-up of 14.8 years after gut microbiome sampling 127 
at baseline. Notably, more males than females developed COPD, and incident COPD cases 128 
displayed older baseline age than non-cases (P<0.001). The age of onset of incident COPD 129 
was significantly older compared to incident asthma (P<0.001). A higher body mass index 130 
(BMI) was observed in asthma cases vs non-cases (P=0.002), while there was no significant 131 
difference in BMI between COPD cases and non-cases. For both COPD and asthma, a higher 132 
proportion of current smokers during the survey year were observed in disease cases than 133 
non-cases.   134 

Gut microbiome composition and taxon-level abundances 135 

Individual gut microbiome compositions were characterized by shallow shotgun metagenomic 136 
sequencing of stool samples (Methods). The present study focused on microbial taxa whose 137 
relative abundance exceeded 0.01% in at least 1% of samples; this yielded 46 phyla, 71 138 
classes, 124 orders, 232 families, 617 genera and 1,224 species, as classified according to 139 
the Genome Taxonomy Database (GTDB) release 89[33]. The majority of the gut microbiota 140 
were dominated by the Firmicutes_A and Bacteroidota phyla (Fig 1A), which mostly 141 
comprised members of classes Clostridia and Bacteroidia, respectively. At the genus level, 142 
Faecalibacterium and Agathobacter in phylum Firmicutes_A, as well as Bacteroides, 143 
Bacteroides_B and Prevotella in phylum Bacteroidota were most abundant in a majority of 144 
samples (Fig 1B).  145 

Baseline alpha-diversity measures significantly differed between incident asthma cases and 146 
non-cases (P<0.01), with lower values of Shannon’s, Chao1, and Pielou’s indices in 147 
individuals who went on to develop asthma (Fig 1C). Alpha-diversity indices were not 148 
significantly different between COPD cases and non-cases. Principal component analysis of 149 
the centered log-ratio (CLR) transformed abundances showed no clear separation between 150 
incident cases and non-cases (Fig 1D), suggesting that the association of incident asthma 151 
and COPD with the gut microbiome was unlikely related to the whole microbial community 152 
and may be attributable to specific microbial taxa.  153 

We assessed the association between baseline taxon-level microbial abundances and 154 
incident respiratory diseases using Cox regression, based on centered log-ratios (Methods). 155 
At 5% false discovery rate, significant associations of incident asthma were found in 5 phyla, 156 
5 classes, 18 orders, 111 families, 257 genera and 299 species (Table S1); for incident COPD, 157 
we found significant associations with 5 phyla, 7 classes, 32 orders, 57 families, 133 genera 158 
and 158 species (Table S2). Of the asthma- and COPD-associated taxa, 76% and 68.6% 159 
showed positive associations with disease incidence, respectively. A number of highly 160 
abundant genera were associated with incident asthma, such as Bacteroides, 161 
Faecalibacterium, Agathobacter, Blautia_A and Roseburia (Fig 1E). Among the most 162 
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abundant COPD-associated genera, increased abundance of Faecalicatena, Oscillibacter, 163 
Lawsonibacter, Flavonifractor and Streptomyces, and reduced abundances of Lachnospira, 164 
ER4, KLE1615, Eubacterium_F and Coprococcus were associated with incident COPD.  165 

Gut microbiome and gradient boosting decision trees to predict incident asthma and 166 
COPD 167 

To investigate whether the baseline gut microbiome was predictive of incident asthma and 168 
COPD, we train and validate prediction models via the machine learning algorithm of gradient 169 
boosting decision trees. These models were trained with 5-fold cross-validation in 70% of the 170 
individuals and then the performances were validated in the remaining 30% (Methods); all 171 
performance metrics given are based on the 30% validation set unless otherwise specified. 172 
Models were developed at different taxonomic levels separately and for a combination of all 173 
taxonomic levels (Fig S1). To assess sampling variation, we resampled training and testing 174 
partitions at different taxonomic levels 10 times and report mean values of prediction 175 
performance.  176 

The best performance was obtained at individual taxonomic levels, rather than their 177 
combination, for both asthma and COPD prediction. Generally better prediction performance 178 
was attained at lower taxonomic levels, particularly for COPD where the highest average area 179 
under the operating characteristic curve (AUC) was at species level (mean AUC = 0.780), 180 
followed by genus (mean AUC = 0.734) and family (mean AUC = 0.688) levels. For prediction 181 
of incident asthma, the best performance was obtained at family level (mean AUC = 0.608), 182 
with slight attenuation of AUC scores obtained at genus (mean AUC = 0.592) and species 183 
(mean AUC = 0.593) levels.  184 

The gut microbiome had greater predictive value than individual conventional risk 185 
factors 186 

To compare the predictive value of conventional risk factors and the gut microbiome for 187 
incident asthma and COPD, we first conducted univariate analysis using Cox models. We 188 
utilised the optimal cross-validated gradient boosting model at family and species level for 189 
asthma and COPD, respectively, and refer to the resultant score as a “gut microbiome score” 190 
for each condition. We found that the gut microbiome score had a relatively high predictive 191 
capacity with C-indices of 0.623 for asthma and 0.817 for COPD, which were each greater 192 
than those of other risk factors (Fig 2). Smoking status at baseline was significantly associated 193 
with increased risk of both asthma (HR=2.21, 95% CI [1.53-3.20], P <0.001) and COPD 194 
(HR=8.16 [4.55-14.64], P<0.001) compared with non-smoking (Table 2). Increased incidence 195 
of COPD was also significantly associated with male sex (HR=2.19 [1.25-3.82], P=0.01) and 196 
older baseline age (HR=1.07 per year, [1.04-1.10], P<0.001). The gut microbiome score was 197 
associated with increased incidence of both asthma (HR=1.44 per s.d., [1.23-1.67], P<0.001) 198 
and COPD (HR=1.39 per s.d., [1.30-1.49], P<0.001).  199 

Integrated prediction models of the gut microbiome and conventional risk factors  200 

When integrating risk factors and gut microbiome score, the Cox model for asthma showed 201 
that current smoking status and gut microbiome were significantly associated with higher risk 202 
(HR=2.06 [1.40-3.03], P<0.001, and HR=1.34 per SD [1.15-1.57], P<0.001, respectively), and 203 
male sex was significantly associated with lower risk (HR=0.67 [0.46-0.97], P=0.03), whereas 204 
there were no significant associations for baseline age and BMI (Table 2). For COPD, baseline 205 
age, current smoking status and gut microbiome score were significant predictors (HR= 1.1 206 
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per year [1.07-1.13] P<0.001; HR=11.07 [5.81-21.09], P<0.001; and HR=1.18 per SD [1.08-207 
1.29], P<0.001 respectively). While consistent with the individual predictive power of the gut 208 
microbiome score (Fig 2), the multivariable Cox model showed the risk associated with current 209 
smokers at baseline was significantly greater than other risk factors for COPD.  210 

In subgroup analyses, the gut microbiome score association patterns were generally 211 
consistent with those above (Fig 3). For COPD, where current smoking status had a relatively 212 
large hazard ratio, the gut microbiome score was independently associated with incident 213 
COPD in both current smokers and non-smokers. In individuals who indicated past smoking 214 
but who were not current smokers at survey (n=414), we found that the gut microbiome score 215 
was not significantly associated with incident COPD (HR=1.22 [0.89-1.68], P=0.22) but that, 216 
in individuals who reported never smoking (n=970), there was a significant association with 217 
incident COPD (HR=1.40 [1.02-1.91], P=0.04). Finally, in COPD, we observed evidence for 218 
statistical interactions of the gut microbiome score with age and sex (Fig 3).  219 

The integrated models showed significantly improved predictive capacity for both incident 220 
asthma and COPD (Fig 4). For asthma, a reference model of age, sex and BMI yielded C-221 
index of 0.567; addition of smoking status then gut microbiome score increased the C-index 222 
further to 0.626 and 0.656, respectively. For COPD, the reference model of age, sex and BMI 223 
yielded C-index of 0.735; addition of smoking status then gut microbiome score increased the 224 
C-index further to 0.855 and 0.862, respectively. 225 

Discussion 226 

In this prospective study, we investigated the association and predictive capacity of the gut 227 
microbiome for future chronic respiratory diseases, asthma and COPD, in adults using 228 
shotgun metagenomics. We demonstrated that the gut microbiome is significantly associated 229 
with incident asthma and COPD and evaluated the relative contributions of traditional risk 230 
factors and a gut microbiome score. We then constructed integrated risk models which 231 
maximised predictive performance. Taken together, our findings indicate that the gut 232 
microbiome is a valid and potentially substantive biomarker for both asthma and COPD. 233 

The gut and lung microbial communities, although residing in distal sites, are dominated by 234 
broadly similar bacterial phyla, including Firmicutes and Bacteroidetes, but differ in local 235 
compositions and total microbial biomass[11]. Some of our findings are relevant to previous 236 
microbial studies of the respiratory tract. For example, Haemophilus and Streptococcus have 237 
been previously found to be positively associated with respiratory illnesses in the airways [18, 238 
34, 35]. In our gut microbiome samples, we also found positive associations between 239 
Streptococcus and incident asthma; however, we found that multiple Haemophilus spp. were 240 
significantly negatively associated with incident COPD. An increased abundance of 241 
Pseudomonas spp. from the airway microbiome was previously reported in COPD 242 
exacerbations[36, 37] and impaired pulmonary function[38, 39]. Consistent with this, we found 243 
positive associations of the Pseudomonas, Pseudomonas_A and Pseudomonas_E genera 244 
(all part of Pseudomonas according to the NCBI taxonomy) with incident asthma and COPD. 245 
These findings support the emerging evidence of possible functional links between the 246 
respiratory tract and gastrointestinal tract, however the underlying mechanisms by which 247 
microorganisms between the sites may interact remain unclear[40, 41].  248 
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Despite increasing recognition of the existence of gut-lung crosstalk, the role of the gut 249 
microbiota in respiratory disease has been primarily studied in children. Its relevance in adults 250 
has been unclear. Previous studies have demonstrated that the early-life gut microbial 251 
alteration and maturation patterns influence the risk of asthma development in childhood[22, 252 
23, 42]. In our data, we found that higher abundances of Escherichia[31], Enterococcus, 253 
Clostridium, Veillonella, and B. fragilis were associated with increased incidence of asthma in 254 
adulthood, consistent with that observed for childhood asthma[22, 43, 44] . In contrast to 255 
previous findings showing that the relative abundances of Faecalibacterium, Roseburia and 256 
Flavonifractor were decreased in childhood asthma[22, 43], we found positive associations 257 
with adult-onset asthma. We confirmed previous findings that increased abundances of 258 
Clostridium and Eggerthella lenta in the adult gut microbiome were associated with 259 
asthma[27]. The relationship between the gut microbiome and COPD is even less understood. 260 
A recent study reported that Streptococcus sp000187445 was enriched in COPD patients and 261 
was correlated with reduced lung function[30], which was also confirmed by a positive 262 
association with incident COPD in our study.  263 

Regarding consideration of causality in observational studies, it is challenging to determine 264 
whether the composition of the gut microbiome is a cause or consequence of respiratory 265 
disease. In this respect, one strength of our study was the use of baseline gut microbiome and 266 
incident disease systematically identified through EHRs. The follow-up using EHRs was nearly 267 
complete in all samples (except for the small number of participants who moved abroad 268 
permanently). Using machine learning models, we found that the baseline gut microbiome had 269 
moderate predictive capacities in distinguishing incident cases from non-cases for asthma and 270 
COPD, suggesting that there are detectable changes in the gut microbiome antecedent to the 271 
onset of symptomatic disease. This does not confirm causality or eliminate other possibilities. 272 
For example, disease-associated host changes and gut microbial alteration may influence 273 
each other and operate simultaneously[40]. We also showed that the association between gut 274 
microbiome-based predictions and incident asthma or COPD was largely independent of age, 275 
sex, BMI and smoking, all of which can influence susceptibility to respiratory diseases[45-48]. 276 
Moreover, significant interactions of gut microbiome by sex and age were found, suggesting 277 
different impact of gut microbiome on age and sex groups, consistent with findings in other 278 
settings[49-51].  279 

Importantly, our study affirms the large body of evidence that smoking is associated with 280 
respiratory illness, especially COPD. Despite many ways to characterise the smoking 281 
phenotype, we found that individuals who reported being current smokers were at high risk of 282 
future asthma and COPD. The association between smoking and gut microbiota is well 283 
established and smoking cessation has been shown to have profound, putatively causal 284 
effects on the gut microbiome[52]. Our results show that, particularly for COPD, the gut 285 
microbiome is both a substantial independent predictor of future disease and that its predictive 286 
power is partially explained by smoking behaviour. As such, our findings are both consistent 287 
with previous studies and take us a step closer to delineating which and to what extent 288 
particular gut microbial taxa sit along the causal path from smoking behaviour to future asthma 289 
and COPD. For the latter, larger prospective studies will be necessary but population-scale 290 
gut microbiome and e-health studies are under way. 291 

There are limitations of the present study. Firstly, despite a relatively large sample size, our 292 
study was enrolled from a single European country (Finland), and the generalizability of the 293 
findings to other geographically- and culturally-distinct settings will require further 294 
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investigation. Furthermore, only one time point of the gut microbiome was sampled per 295 
individual, which did not allow for dynamic or temporal assessment of gut microbiome 296 
alterations along with incident disease onset. Changes in diet and environmental exposures 297 
(apart from smoking) can induce changes in gut microbiota and should be considered in future 298 
studies. While the asthma and COPD phenotypes can be difficult to diagnosis or indeed 299 
overlap in some individuals, our study takes a pragmatic approach and future clinical cohorts 300 
may be necessary to precisely quantify disease specific effects. Finally, although formal lung 301 
function test results (FEV1, FVC) may further improve prediction, it was not feasible to perform 302 
wholescale clinical examination of airflow obstruction at the population level. Regardless, our 303 
study demonstrates that future exploration of the influence of the gut microbiome in severity 304 
and progression of asthma and COPD is warranted, and may lead to further clinically-305 
significant findings.  306 

Our study supports the role of gut microbiome in adult respiratory disease and as potential 307 
biomarkers that might aid in risk profiling of asthma and COPD. The underlying mechanisms 308 
and causal links by which gut microbiota influence the lung, and vice versa, remain to be 309 
established.  310 

  311 
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Methods 312 

Study design and participants 313 

The FINRISK 2002 study is a population-based nationwide survey carried out in Finland in 314 
2002, consisting of random samples of the population aged 25 to 74 years drawn from the 315 
National Population Information System[32]. The survey included self-administered 316 
questionnaires, health examinations conducted at the study sites by trained personnel, and 317 
collection of biological samples. The overall participation rate was 65.5% (n = 8798). The 318 
participants were followed up through linkage to national administrative electronic registers 319 
that proved highly reliable[53-55]. Inclusion criteria have been described elsewhere[32]. 320 
Exclusion criteria for the present study are missing follow-ups, prior diagnosis of the disease 321 
for prediction, baseline pregnancy, systemic use of antibiotics at baseline and unmet 322 
sequencing depth. The incident cases of asthma and COPD were identified according to ICD-323 
10 diagnosis codes (Finnish modification) from linked EHRs which were last followed up by 324 
Dec 31st, 2016. COPD cases were defined using ICD codes J43|J44; asthma cases were 325 
defined using ICD codes J45|J46, or the Social Insurance Institution of Finland (Kela) 326 
reimbursement code 203 for asthma medication, or medicine purchases with ATC codes 327 
R03BA|R03BC|R03DC|R03AK. Covariates included baseline age, sex, body mass index 328 
(BMI), and smoking. Written informed consent was obtained from all participants. The 329 
Coordinating Ethics Committee of the Helsinki and Uusimaa Hospital District approved the 330 
FINRISK 2002 study protocols (Ref. 558/E3/2001). The study was conducted according to the 331 
World Medical Association’s Declaration of Helsinki on ethical principles. 332 

Sample collection 333 

During the baseline survey, stool samples were collected by participants at home using a 334 
collection kit with instructions, and mailed overnight under winter conditions to the Finnish 335 
Institute for Health and Welfare for storing at -20°C. The frozen stool samples were transferred 336 
to University of California San Diego for sequencing in 2017. 337 

DNA extraction, sequence processing and taxonomic profiling  338 

The gut microbiome was characterized by shallow shotgun metagenomics sequencing[56] 339 
with an Illumina HiSeq 4000 platform to a mean depth of ~106 reads/sample. The stool shotgun 340 
sequencing was successfully performed in 7,231 individuals. Libraries were prepared using 341 
KAPA HyperPlus Kit according to manufacturer’s protocol. Sequencing reads were processed 342 
using the Snakemake pipeline[57]. Removal of low quality, adapter and host reads was 343 
performed. The details of DNA extraction and library preparation for stool samples have been 344 
described elsewhere[31]. Samples were filtered by sequencing depth of 400,000 345 
reads/sample to preserve data quality and the majority of disease cases which resulted in 346 
7163 samples remaining. The metagenomes were classified using default parameters in 347 
Centrifuge 1.0.4[58], and using an index database based on taxonomic definitions from the 348 
Genome Taxonomy Database (GTDB) release 89[33]. In total, 151 phyla, 338 classes, 925 349 
orders, 2,254 families, 7,906 genera and 24,705 species were uniquely identified based on 350 
GTDB taxonomy. The relative abundances of bacterial taxa at phylum, class, order, family, 351 
genus and species levels were computed. The present analyses focused on common taxa 352 
with relative abundances greater than 0.01% in more than 1% of samples. Three measures 353 
of microbial diversity were calculated: Shannon’s alpha diversity, Chao1 richness and Pielou’s 354 
evenness (R packages vegan and otuSummary). The centered log-ratio (CLR) transformation 355 
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was performed on abundance data, of which the zeros were substituted with 1/10 of non-zero 356 
minimum abundance. Further analyses were based on CLR transformed abundances.  357 

Machine learning and statistical analysis 358 

A machine learning framework was employed to develop prediction models at different 359 
taxonomic levels separately. The samples were randomly partitioned into two subsets: (1) a 360 
training dataset (70% of samples) for developing models, and (2) a validation dataset (30% of 361 
samples) for evaluating prediction performance. We resampled the data 10 times and 362 
performed the same training and validation procedure for each sampling partition. In each 363 
training dataset, we first selected microbial indicators for predicting incident asthma and 364 
COPD; we analyzed the relationships between taxon-level abundance and incident disease 365 
using logistic regression adjusted for age and sex, Cox regression for time to disease onset 366 
adjusted for age and sex and Spearman correlation. The taxa that were associated with 367 
incident diseases at a significance threshold of P<0.05 by any of the above approaches were 368 
selected for further analyses. The selected taxa together with diversity measurements were 369 
considered as microbial predictors for developing prediction models. Next, gradient boosting 370 
decision tree (implemented by Xgboost) models were developed with Bayesian optimization 371 
through 5-fold cross-validation to determine optimal hyperparameters. The optimal setting was 372 
then trained on the whole training data to build the final model used in validation. We 373 
additionally performed ridge logistic regression to compare the prediction performance using 374 
the same samples for training and testing. The gradient boosted trees-based models 375 
outperformed those based on ridge logistic regression. A similar trend of prediction 376 
performance across taxonomic levels was observed with both methods. The final performance 377 
across various models and partitions was assessed in the validation datasets.  378 

Wilcoxon rank-sum test was performed to compare differences in patient characteristics, gut 379 
microbial relative abundances and diversity metrics between incident cases and non-cases. 380 
Cox regression with adjustment of age and sex was utilized to assess the association between 381 
taxon-level CLR abundance and incident disease using all samples (FDR<0.05 was 382 
considered as statistical significance). The gut microbiome-based predictions from the optimal 383 
gradient boosting model were used as the gut microbiome scores for further analyses in its 384 
respective validation dataset for each disease condition. Cox models of conventional risk 385 
factors and in combination with the gut microbiome score were built using the time from 386 
baseline to the occurrence of the disease or end of follow-up. Machine learning and statistical 387 
analysis of data were carried out in R (version 3.6.1).  388 

Data and code availability 389 

The FINRISK data for this study are available with a written application to the THL Biobank as 390 
instructed on the website: https://thl.fi/en/web/thl-biobank/for-researchers. A separate 391 
permission is needed from FINDATA (https://www.findata.fi/en/) for use of the EHR data. 392 
Custom code for analysis in this study is available at 393 
https://github.com/yangl700/microb_pred. 394 
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Tables  419 

Table 1. Characteristics of study participants.  420 
 Asthma COPD 

Characteristic Incident cases 
(n = 435) 

Non-cases 
(n = 5244) 

Incident cases 
(n = 145) 

Non-cases 
(n = 5932) 

Females, n (%) 252 (57.9%) 2740 (52.3%) 43 (29.7%) 3204 (54%) 
Baseline age, years  50.9 (40.5-60.5) 50.5 (39.2-59.3) 59.5 (53.6-66.5) 50.5 (39.2-59.5) 

Age at first event, years  57.6 (46.7-67.3) -- 69.1 (61.3-73.6) -- 
Body mass index, kg/m2  26.7 (24-30.7) 26.3 (23.7-29.3) 26.6 (23.5-29.6) 26.4 (23.7-29.5) 
Current smoker, n (%) 151 (34.8%) 1192 (22.8%) 105 (72.9%) 1313 (22.2%) 

Ex-smoker, n (%) 94 (21.6%) 1181 (22.5%) 32 (22.1%) 1321 (22.3%) 
Continuous variables are presented as median (IQR).  421 

 422 
 423 
 424 
 425 
 426 
Table 2. Association of risk factors separately and combined for incident asthma and 427 
COPD.  428 

 Asthma COPD 

Covariate 
Univariable Multivariable Univariable Multivariable 
HR 

(95% CI) 
P 

value HR (95% CI) P 
value HR (95% CI) P 

value HR (95% CI) P 
value 

Sex (Male) 0.71  
(0.49-1.03) 0.07 0.67  

(0.46-0.97) 0.03 2.19  
(1.25-3.82) 0.01 1.35  

(0.76-2.4) 0.31 

Baseline age 
(years) 

0.99  
(0.98-1.01) 0.28 1.00  

(0.98-1.01) 0.75 1.07  
(1.04-1.1) <0.001 1.1  

(1.07-1.13) <0.001 

BMI (kg/m2) 1.02  
(0.99-1.06) 0.22 1.03  

(0.99-1.07) 0.13 1.02  
(0.97-1.08) 0.48 0.99  

(0.92-1.06) 0.8 

Smoking (Yes) 2.21  
(1.53-3.2) <0.001 2.06  

(1.4-3.03) <0.001 8.16  
(4.55-14.64) <0.001 11.07  

(5.81-21.09) <0.001 

Gut microbiome  1.44  
(1.23-1.67) <0.001 1.34  

(1.15-1.57) <0.001 1.39  
(1.3-1.49) <0.001 1.18  

(1.08-1.29) <0.001 

HR, hazard ratio; CI, confidence interval; BMI, body mass index; Gut microbiome score is represented as 429 
microbiome-based predictions per SD. All analyses were performed in the validation set.  430 

 431 
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Figures 433 

Fig 1. Gut microbiome composition and characteristics. A, Gut microbiome profiles at phylum level. 434 
B, Box plots of the 20 most abundant genera sorted by mean relative abundance. C, Shannon’s, 435 
Pielous’s and Chao1 indices at genus level between cases and non-cases. Median values are 436 
represented by horizontal lines. D, Principal component analysis on centered log-ratio transformed 437 
abundances at genus level. E, Genera associated with incident asthma or COPD surpassing a false 438 
discovery rate threshold of 5% (PFDR<0.05). Only the top 10 most abundant genera for each of 439 
combination of positive or negative associations, with COPD or asthma.  440 

 441 

 442 
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Fig 2. Predictive capacity of each risk factor separately for A, incident asthma or B, COPD. 444 
Univariate Cox models were performed for each of sex, baseline age, BMI, smoking and gut microbiome 445 
individually. Points and error bars represent the C-indices and 95% confidence intervals.  446 

 447 
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Fig 3. Subgroup analyses for A, incident asthma or B, COPD. Cox models were applied to test for 449 
interactions between gut microbiome and patient characteristic subgroups. Points and error bars 450 
represent hazard ratios per SD and 95% confidence intervals of gut microbiome score across 451 
subgroups.  452 

 453 
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Fig 4. Predictive capacity of integrated models for A, incident asthma and B, COPD. ‘Ref' is a 455 
reference model that jointly considers age, sex and BMI. Points and error bars represent the C-indices 456 
and 95% confidence intervals. Analysis of deviance based on the log partial likelihood, P<0.01, **; 457 
P<0.001, ***.  458 

 459 

 460 
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