1 Original article

2 Title: Prevalence of neutralizing antibody to human coronavirus 229E in Taiwan

- 3 Hao-Huan Chen¹, Wei-Fan Chen¹, Yhu-Chia Hsieh^{2,3}, Chih-Jung Chen^{2,3,4*}
- 4
- ¹Taipei Municipal Jianguo High School, 100 Taipei, Taiwan
- ⁶ ² Division of Pediatric Infectious Diseases, Departments of Pediatrics, Chang Gung Memorial
- 7 Hospital, 333 Taoyuan, Taiwan
- 8 ³School of Medicine, College of Medicine, Chang Gung University, 333 Taoyuan, Taiwan
- 9 ⁴ Molecular Infectious Diseases Research Center, Chang Gung Memorial Hospital, 333 Taoyuan,
- 10 Taiwan
- 11 Wei-Fan Chen and Hao-Huan Chen contributed equally to this study
- 12 **Running title**: Seroprevalence of HCoV-229E
- 13 ***Corresponding author**: Dr. Chih-Jung Chen, Department of Pediatrics, Chang Gung Memorial
- 14 Hospital, No, 5, Fu-Shin St., Kweishan, Taoyuan County 333, Taiwan
- 15 Tel: 886-3-3281200 ext. 8202; Fax: 886-3-3288957
- 16 E-mail: <u>chinjung@cgmh.org.tw; james.ped@gmail.com</u>
- 17
- 18
- 19
- 20

21 ABSTRACT

22	Background Four members in the Coronaviruses family including 229E circulating in the
23	community were known to cause mild respiratory tract infections in humans. The epidemiologic
24	information of the seasonal human coronavirus (HCoV) may help gain insight into the development
25	of the ongoing pandemic of coronavirus disease since 2019 (COVID-19).
26	Methods Plasma collection containing 1558 samples was obtained in 2010 for an estimate of the
27	prevalence and severity of 2009 pandemic influenza A H1N1 in Taiwan. Of 1558 samples, 200
28	were randomly selected from those aged < 1 year to > 60 years. The neutralizing antibody titers to
29	HCoV-229E were determined in the serums using live virus ATCC® VR-740 TM cultivating in the
30	Huh-7 cell line.
31	Results Seroconversion of HCoV-229E (titer \geq 1:2) was identified as early as less than 5 years of
32	age. Among 140 subjects aged younger than or equal to 40 years, all of them had uniformly low
33	titers (< 1:10) and the geometric mean titers (GMTs) were not significantly different for those aged
34	0-5, 6-12, 13-18 and 19-40 years ($P > 0.1$). For 60 subjects greater than 40 years old, a majority (39,
35	65%) of them had high titers \geq 1:10 and the GMTs were significantly increased with advanced age
36	(P < 0.0001). Age was the most significant factor predicting seropositivity in the multivariate
37	analysis, with an adjusted odds ratio of 1.107 and a 95% adjusted confidence interval of
38	$1.061 - 1.155 \ (P < 0.0001).$

39 Conclusion

- 40 HCoV-229E infection occurred as early as younger than 5 years old in Taiwanese and the
- 41 magnitudes of neutralizing titers against HCoV-229E increased with advanced age beyond 40 years.

42

43 INTRODUCTION

44	Coronaviruses are positive-sense, single-stranded RNA viruses, causing respiratory or intestinal
45	infections in human beings and/or animals. ¹ They are named for the crown-like appearance under
46	an electron microscope. Before the emergence of SARS-CoV-2 responsible for the ongoing global
47	pandemic of coronavirus disease 2019 (COVID-19), six coronaviruses had been known to cause
48	distinct respiratory syndromes in humans. Four of the human coronaviruses (HCoVs), namely
49	HCoV-229E, HCoV-OC43, HCoV-NL63 and HCoV-HKU1, were seasonal organisms circulating
50	in the community and typically associated with mild and self-limited respiratory tract infections in
51	children. ² The other two species including Severe Acute Respiratory Syndrome coronavirus
52	(SARS-CoV-1) and Middle East Respiratory Syndrome coronavirus (MERS-CoV) were of greater
53	virulent potential especially in adult populations and accounted for the epidemics of lethal
54	respiratory diseases in 2002 and 2013, respectively. ³
55	It has been suggested that the first seasonal HCoVs infections generally occurred in early
56	childhood and repeated infections with the same virus was frequently identified throughout the
57	whole life. ^{1,2,4} However, the infections of seasonal HCoVs appeared to vary substantially across
58	different age groups and in distinct geographic regions. In Taiwan, the HCoV-NL63 was detected in
59	1.3% of hospitalized children with respiratory tract infections in northern Taiwan during 2004 and
60	2005 whereas 8.4% of hospitalized patients of all ages with pneumonia in central Taiwan during
61	2010 and 2011 were associated with this organism. ^{5,6} The epidemiologic information of other three
62	seasonal HCoVs were completely lacking in this island. To better understand the epidemiology of

63	seasonal HCoVs,	we conducted a service	oprevalence study	y by measuring	the neutralizing	g antibody

64 (NAb) titers against the HCoV-229E among different age groups of Taiwanese population.

65 METHODS

66 Subjects

67	The serum samples were selected from the plasma collection containing 1558 samples obtained in
68	2010, which had been used to estimate the prevalence and severity of 2009 pandemic influenza A
69	H1N1 in the general population in Taiwan. ⁷ For this study, the participants were categorized by
70	ages into different groups respectively of age $0 - 5$ years, $6 - 12$ years, $13 - 18$ years, $19 - 60$ years
71	and > 60 years. Random samples with indicated numbers as shown in Table 1 were selected from
72	each age group and determined for NAb titers against HCoV-229E virus. The study was approved
73	by the institute review boards in Chang Gung Memorial Hospital (202100266B0). A wavier of
74	inform consent was granted given the retrospective nature of the project and anonymous analysis of
75	the samples and the demographic information.
75 76	the samples and the demographic information. <i>Neutralization assay</i>
76	Neutralization assay
76 77	Neutralization assay The Huh-7 cell line (JCRB0403) was obtained from Japanese Collection of Research Bioresources
76 77 78	Neutralization assay The Huh-7 cell line (JCRB0403) was obtained from Japanese Collection of Research Bioresources Cell Bank and grown in low glucose Dulbecco's modified Eagle medium (LG-DMEM, Gibco)
76 77 78 79	Neutralization assay The Huh-7 cell line (JCRB0403) was obtained from Japanese Collection of Research Bioresources Cell Bank and grown in low glucose Dulbecco's modified Eagle medium (LG-DMEM, Gibco) supplemented with 10% heated inactivated fetal bovine serum (FBS, Biological Industries) and 1%

83	tissue culture infective dose (TCID50). For neutralization test, sera were serially two-fold diluted in
84	the same medium as used for the virus culture, and mixed 1:1 with HCoV-229E (2000 TCID50/mL)
85	in 96-well-plate. The plates then were incubated at 35 \square and 5% CO2 for 2h before addition of
86	Huh-7 cells to the mixtures. The result of the virus infection was determined after 5 days of
87	incubation. All sera were previously inactivated at 56 \square for 30 min. A titer of \ge 1:10 was defined as
88	high titer. Comparison of categorical variables between seronegative and seropositive groups was
89	performed with a chi-square test or with the Fisher exact test where appropriate, whereas
90	differences among the numerical variables were analyzed by two-sample t-test. The general linear
91	model (GLM) procedure was used for comparison of geometric mean titers (GMT) between age
92	groups. Multiple logistic regression analysis was applied to explore factors associated with high
93	NAb titers \geq 1:10. Statistic significance was defined as a P value of <0.05 in the tests. The statistics
94	were performed using an SAS 9.3 for windows (SAS Institute, Inc., Cary, NC).
95	RESULTS
96	The distribution of NAb titers against HCoV-229E in 200 participants at different ages is
97	shown in Figure 1A. The comparisons of different age groups regarding to the GMTs of NAb is
98	displayed in Figure 1B. Among 140 participants aged younger than or equal to 40 years, all of them
99	had uniformly low titers (< 1:10, Figure 1A) and the GMTs were not significantly different for
100	those aged 0-5, 6-12, 13-18 and 19-40 years ($P > 0.1$ for all pairwise comparisons by GLM). On the
101	contrary, for 60 participants greater than 40 years old, a majority (39, 65%) of them had high titers
102	\geq 1:10 and the GMT were significantly increased in participants aged 41-60 years when compared 6

	103	to the younger	participants age	d 19-40 years	(1.57)	versus 4.58	. P <	< .0001)). The	GMT	level	furthe
--	-----	----------------	------------------	---------------	--------	-------------	-------	----------	--------	-----	-------	--------

- 104 elevated significantly in the participants aged > 60 years (Figure 1B).
- 105 To determine the factors associated with elevated NAb titers, we compared a variety of 106 demographic and clinical parameters between the participants by an arbitrarily defined NAb titer 107 cut-off of 1:10. When compared to the participants with low titers (< 1:10), the participants with 108 high titers \geq 1:10 were at significantly elder age (64.3 ± 9.59 years versus 17.9 ± 18.0 years, P < 109 0.0001, Table 1). In addition to the age factor, the living areas, number of family members, certain 110 co-morbidities including heart diseases and metabolic disorders, and the seropositivity of pandemic 111 influenza H1N1 in 2009 were also significant parameters of participants associated with high NAb 112 titers in the univariate analysis (Table 1). However, a majority of the parameters lost their 113 significance in the multivariate logistic regression analysis. The age remained the most significant 114 factor in the multivariate analysis, with an adjusted odds ratio of 1.107 and a 95% adjusted 115 confidence interval of 1.061–1.155 (*P* < 0.0001, Table 1).

116 **DISCUSSION**

Results from the current study indicated that the age was a significant, if not the only, factor associated with NAb titers against HCoV-229E in Taiwan. It was intriguingly to learn that the NAb titers increased with advanced age, though commenced at young adults, did not reach a significant level until the age of or greater than 40 years old (Figure 1B). The result was inconsistent with the finding of other studies with similar design, which usually disclosed incremental seropositive rates in childhood until a plateau commencing in young adulthood.^{1,9} Ethnic and geographic factors

123	might both be implicated in the discrepant results in the current and others' studies. Further, the
124	seropositivity was substantially influenced by the sensitivities of different antibody detection
125	methods. Indeed, the detection rates of NAb against HCoVs were usually much lower compared to
126	those determined by the enzyme immunoassay (EIA) methods. ^{1,8} No standard method measuring
127	the NAb titers, use of different targets in EIA methods, and no consensus defining seropositivity
128	further complicated the interpretation of the seroprevalence studies. Nevertheless, our study clearly
129	demonstrated the HCoV-229E infection, when defined by a cut-off titer of \geq 1:2, occurred as early
130	as at $0-5$ years of age. Before entering into adulthood, at least 17.5% of Taiwanese have been
131	infected with this viral agent and 90% of population had been infected at least once throughout the
132	life. The data indicated that the exposure to HCoV-229E was common in Taiwanese population of
133	all ages irrespective of gender and other demographic characteristics.
134	The NAb titers against HCoV-229E were at exclusively low levels (< 1:10) in participants
135	younger than 40 years of age. On the contrary, a majority of the cases equal or elder than 40 years
136	of age had high levels of NAb. Of note, the proportions of cases with NAb titer \geq 1:10 was 45%
137	(9/20) in participants aged $40 - 60$ years and increased to 75% (30/40, Table 1) in those elder than
138	60 years old. The observation might suggest a relatively poor humoral immune response evoked by
139	HCoV-229E infections in young populations. The significant elevation of NAb titer in middle age
140	was likely caused by a more potent or accumulated humoral immunity possibly due to the amnestic
141	response of repeated infections with HCoV-229E. The speculation was supported by a 35-year

- 141 response of repeated infections with HCoV-229E. The speculation was supported by a 35-year
- 142 longitudinal serosurvey investigating the change of antibody titers to HCoVs in 10 individuals in

143 Amsterdam, which demonstrated that the reinfections with the same HCoVs strains indicated by

abrupt elevation of antibody titer were common events in adult individuals.⁴

145 In coincidence with the elevated NAb titers against HCoV-229E in middle age group and 146 elderly, the COVID-19 severity increased significantly in patients beyond 40 years of age. It was 147 suggested that various immune dysregulations were implicated in the severe lung disease of 148 COVID-19. Indeed, an machinery called antibody-dependent enhancement (ADE) was among the 149 potential mechanisms accounting for the enhanced respiratory diseases of COVID-19.9 The 150 speculation was supported by the 1-week delayed development of severe respiratory symptoms during the course of COVID-19.¹⁰ The presence of non-neutralizing antibody during infection has 151 152 been shown to enhance virus infection, induce uncontrolled cytokine release and Th2 153 hyperinflammation in the airway with SARS-CoV-1 and MERS-CoV infections. The high antibody 154 titers evoked by the common seasonal HCoVs infections including HCoV-229E might play a 155 contributing role to the greater morbidity and mortality of COVID-19 in patients with advanced 156 ages. Further studies investigating into the interaction between immune profiles of the seasonal 157 HCoVs and SARS-CoV-2 infection might help get insight into the pathogenesis of COVID-19. 158 In conclusion, the seroconversion of HCoV-229E in Taiwanese occurred early in childhood 159 younger than 5 years of age. Both the positive rates of NAb and magnitude of NAb titers to

- 161 identified in middle age group and elderly who were coincidently vulnerable to severe COVID-19
- 162 diseases.

160

HCoV-229E increased when the age advanced. The high NAb titer $\geq 1:10$ was exclusively

163 ACKNOWLEDGMENTS

- 164 We thank Dr. Shin-Ru Shih, Director in Research Center for Emerging Viral Infections in Chang
- 165 Gung University, Taiwan, for providing the HCoV-229E virus.

166 FUNDING

- 167 The work was partly supported by grants from Ministry of Science and Technology in Taiwan
- 168 (MOST 108-2314-B-182A-055, MOST109-2320-B-182A-015). The funders had no role in study
- 169 design, data collection and analysis, decision to publish, or preparation of the manuscript.
- 170 **TRANSPARENCY DECLARATION:** All authors declare no conflict of interest.

171

- **172 REFERENCES**
- 173 1. Zhou W, Wang W, Wang H, Lu R, Tan W. First infection by all four non-severe acute
- 174 respiratory syndrome human coronaviruses takes place during childhood. BMC Infect Dis

175 2013;13:433

- 176 2. Gaunt ER, Hardie A, Claas ECJ, Simmonds P, Templeton KE. Epidemiology and clinical
- presentations of the four human coronaviruses 229E, HKU1, NL63, and OC43 detected over 3
- 178 years using a novel multiplex real-time PCR method. *J Clin Microbiol* 2010;48:2940–2947
- 179 3. Cui J, Li F, Shi Z-L. Origin and evolution of pathogenic coronaviruses. *Nat Rev Microbiol*
- 180 2019;17:181–192
- 181 4. Edridge AWD, Kaczorowska J, Hoste ACR, Bakker M, Klein M, Loens K, et al. Seasonal
- 182 coronavirus protective immunity is short-lasting. *Nat Med* 2020;26:1691–1693

183	5.	Wu P-S, Chang L-Y, Berkhout B, Hoek L van der, Lu C-Y, Kao C-L, et al. Clinical
184		manifestations of human coronavirus NL63 infection in children in Taiwan. Eur J Pediatr
185		2008;167:75-80
186	6.	Huang S-H, Su M-C, Tien N, Huang C-J, Lan Y-C, Lin C-S, et al. Epidemiology of human
187		coronavirus NL63 infection among hospitalized patients with pneumonia in Taiwan. J
188		Microbiol Immunol Infect 2017;50:763–70
189	7.	Chen C-J, Lee P-I, Chang S-C, Huang Y-C, Chiu C-H, Hsieh Y-C, et al. Seroprevalence and
190		Severity of 2009 Pandemic Influenza A H1N1 in Taiwan Plos One 2011;6:e24440
191	8.	Huang AT, Garcia-Carreras B, Hitchings MDT, Yang B, Katzelnick LC, Rattigan SM, et al. A
192		systematic review of antibody mediated immunity to coronaviruses: kinetics, correlates of
193		protection, and association with severity. Nat Commun 2020;11:4704
194	9.	Lee, W. S., Wheatley, A. K., Kent, S. J. & DeKosky, B. J. Antibody-dependent enhancement and
195		SARS-CoV-2 vaccines and therapies. Nat Microbiol 2020;5,1185–91
196	10	. Cloutier M, Nandi M, Ihsan AU, Chamard HA, Ilangumaran S, Ramanathan S. ADE and
197		hyperinflammation in SARS-CoV2 infection- comparison with dengue hemorrhagic fever and
198		feline infectious peritonitis. Cytokine 2020;136:155256
199		
200		

201 Figure legend

- Figure 1. Neutralizing antibody (NAb) titers against human coronavirus 229E. (A) Distributions of
- 203 NAb titers in 200 Taiwanese at different ages. (B) Comparisons of geometric mean titers of NAb in
- 204 participants of six age groups. There was no significant difference among four age groups of
- 205 participants younger than 41 years old (P > 0.1 for all pairwise comparisons between the four
- 206 groups).
- 207

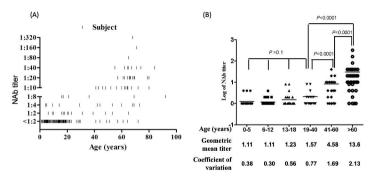
208 Table 1. Univariate and multivariate analysis of demographics and clinical features in 200 subjects

Factor		Cases, N (%)		P	value
	Total	High titer	Low titer	univariate	multivariate
	(n = 200)	(≥ 10)	(< 10)		
		(n = 39)	(n = 161)		
Age in years					
(Mean ± SD)	27.0 ± 24.8	64.3 ± 9.59	17.9 ± 18.0	< .0001	< .0001 [#]
0-5	40 (20)	0 (0)	40 (24.8)	< .0001	
6-12	40 (20)	0 (0)	40 (24.8)		
13-18	40 (20)	0 (0)	40 (24.8)		
19-40	20 (10)	0 (0)	20 (12.4)		
41-60	20 (10)	9 (23.1)	11 (6.83)		
> 60	40 (20)	30 (76.9)	10 (6.21)		
Female gender	123 (61.5)	21 (53.8)	102 (63.4)	.2736	
Living area				.0005	
Taipei city	33 (16.5)	18 (46.2)	15 (9.3)		Referent
New Taipei city	18 (9)	2 (5.1)	16 (9.9)		.0455*
Taoyuan city	68 (34)	7 (17.9)	61 (37.9)		.1814
Tainan city	81 (40.5)	12 (30.8)	69 (42.9)		.4266
No. of family members	4.59 ± 1.74	3.93 ± 1.65	4.73 ± 1.74	.0234	.8532
(mean ± SD)					
Education level				.3381	
Non	38 (19)	4 (10.3)	34 (21.1)		
Primary	47 (23.5)	8 (20.5)	39 (24.2)		

209 with high and low neutralizing antibody titers against human coronavirus 229E in Taiwan

13

Lower secondary	31 (15.5)	9 (23.1)	22 (13.7)		
Upper secondary	36 (18)	8 (20.5)	28 (17.4)		
Tertiary	41 (20.5)	10 (25.6)	31 (19.2)		
Comorbidity					
None	181 (90.5)	27 (69.2)	154 (95.7)	.0001	.8865
Heart diseases	8 (4)	5 (12.8)	3 (1.9)	.0240	.9864
Lung diseases	4 (2)	2 (5.1)	2 (1.2)	.4802	
Metabolic disorders	5 (2.5)	4 (10.3)	1 (0.6)	.0372	.9877
Liver or kidney	3 (1.5)	2 (5.1)	1 (0.6)	.1950	
disorders					
Neurologic disorders	1 (0.5)	1 (2.6)	0 (0.0)	.1950	
Immune disorders	1 (0.5)	0 (0)	1 (0.62)	1.0000	
pH1N1					
HAI titers	38.3 ± 39.3	26.7 ± 24.4	41.2 ± 41.7	.0393	
$(mean \pm SD)$					
Seroprotection	72 (36)	5 (12.8)	67 (41.6)	.0008	.7127
$(HAI \ge 40)$					
Vaccination	101 (50.5)	16 (41.0)	85 (52.8)	.1640	


210 Abbreviations: SD, standard deviation; HAI, hemagglutination-inhibition assay; pH1N1, pandemic

212 [#]Odds ratio 1.107 95% confidence interval 1.061–1.155

213 *Odds ratio 10.818 95% confidence interval .787–148.732

214

²¹¹ influenza A H1N1 in 2009

