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Abstract

Rett syndrome, a rare genetic neurodevelopmental disorder in humans, does not have an
effective cure. However, multiple therapies and medications exist to treat symptoms and
improve patients’ quality of life. As research continues to discover and evaluate new
medications for Rett syndrome patients, there remains a lack of objective physiological
and motor activity-based (physio-motor) biomarkers that enable the measurement of
the effect of these medications on the change in patients’ Rett syndrome severity. In our
work, using a commercially available wearable chest patch, we recorded simultaneous
electrocardiogram and three-axis acceleration from 20 patients suffering from Rett
syndrome along with the corresponding Clinical Global Impression - Severity score,
which measures the overall disease severity on a 7-point Likert scale. We derived
physio-motor features from these recordings that captured heart rate variability, activity
metrics, and the interactions between heart rate and activity. Further, we developed
machine learning (ML) models to classify high-severity Rett patients from low-severity
Rett patients using the derived physio-motor features. For the best-trained model, we
obtained a pooled area under the receiver operating curve equal to 0.92 via a
leave-one-out-patient cross-validation approach. Finally, we computed the feature
popularity scores for all the trained ML models and identified physio-motor biomarkers
for Rett syndrome.

Introduction 1

Rett syndrome is a rare genetic neurodevelopmental disorder that occurs primarily in 2

girls [1]. Though Rett syndrome is a clinical diagnosis, more than 95% of cases are 3

caused by mutations in the gene encoding the methyl-CpG binding protein 2 (MECP2), 4

a transcriptional regulator involved in chromatin remodeling and the modulation of 5

RNA splicing [2]. Rett syndrome affects 1 in 10000 females and is characterized by a 6

period of apparently normal postnatal development followed by developmental delay 7
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Fig 1. The project pipeline. We utilized the BioStamp® nPoint biosensor
wearables to collect simultaneous ECG and three-axis acceleration data from multiple
locations on the chest. We performed data pre-processing and implemented multiple
data imputation techniques to improve data quality. We trained L1-regularized logistic
regression classifier models and tuned the model weights using the imputed data.
Finally, we visualized model performance and computed feature popularity scores.

and loss of acquired skills resulting in psychomotor regression, development of 8

stereotypical hand movements, and dysautonomia [3]. It leads to the deterioration of 9

the autonomous nervous system, impacting breathing regularity, heart rate (HR), gut 10

motility, and impairs motor planning and locomotion, resulting in significantly impaired 11

mobility, no purposeful hand use, and largely absent verbal communication. There is no 12

permanent cure for Rett syndrome in humans, and symptom management remains the 13

standard of care [4]. When new drugs are discovered to alleviate specific Rett 14

symptoms, clinical trials are conducted to learn about their efficacy, safety, and side 15

effects. An essential step in measuring the efficacy of a drug or treatment method is to 16

assess the associated benefits and risks through clinical trials. However, objective 17

measures of symptom severity are not yet available for Rett syndrome or neurological 18

conditions generally, and efforts to develop objective measures of autonomic symptoms 19

could significantly enhance the ability to understand therapeutic efficacy. The key 20

benefit we would like to see in Rett patients is improving their autonomous nervous 21

system’s function and locomotion. Amongst various indices measured in Rett clinical 22
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trials, the Clinical Global Impression - Severity (CGI-S) is used to measure overall 23

disease severity in Rett subjects [5, 6]. The CGI-S is a 7−point Likert rating scale that 24

reflects experts’ clinical judgment of the patient based on the clinician’s total experience 25

with the Rett syndrome population. The CGI-S ranges from 1 to 7 and each score 26

corresponds to the following patient states: (1) normal, not at all ill, (2) borderline ill, 27

(3) mildly ill, (4) moderately ill, (5) markedly ill, (6) severely ill, (7) amongst the most 28

extremely ill. It has been widely used as an outcome measure in Rett syndrome and 29

other neurodevelopmental disorders such as Autism and Fragile X Syndrome [5]. In our 30

work, we measured CGI-S in all our patients during all clinic visits included in our 31

experiments to assess their global clinical state. 32

Dysautonomia or autonomic dysfunction is the abnormal function of the autonomous 33

nervous system. It adversely affects involuntary body functions, including 34

blood-pumping by the heart, maintaining proper blood pressure and respiration. 35

Unfortunately, dysautonomia is a cardinal feature in Rett syndrome [7–12]. A principled 36

approach to characterize dysautonomia is to utilize the electrocardiogram 37

(ECG) [8,13–15]. Researchers have used the ECG to study the variations in breathing 38

and HR in Rett girls [16, 17]. In our work, we captured the ECG signal from girls 39

suffering from Rett syndrome using the BioStamp® nPoint wearable biosensors to 40

capture the severity of autonomic dysfunction and, in turn, develop Rett severity 41

classification models using ECG. Specifically, we used the heart rate variability (HRV) 42

metrics for this purpose. The HRV is a physiological phenomenon of the variation of the 43

time interval between the heartbeats. Typically, it is measured using a set of metrics 44

known as the HRV metrics. We describe the HRV metrics utilized in this work in detail 45

in the section Materials and methods. Dystonia is a movement disorder where a subset 46

of muscles contract uncontrollably. The contractions cause the affected body parts to 47

twist involuntarily, resulting in repetitive movements. In Rett syndrome, dystonia, 48

psychomotor regression, and stereotypical hand movements are fundamental concerns 49

and cause significant stress on patient and caregiver quality of life. We refer the readers 50

to the following works [18–21] for a detailed explanation of dystonia in Rett syndrome. 51

The BioStamp® nPoint wearable biosensors measured the body movements of Rett 52

patients by recording the three-axis acceleration signal via an accelerometer [22], an 53

electromechanical sensor that senses static and dynamic forces of acceleration. To 54

further characterize body movements, we derived rest activity metrics [23] and the 55

cosinor rhytmometry features from the captured three-axis acceleration signals. 56

Together, we call them actigraphy metrics. We describe these metrics in the 57

section Materials and methods. Interactions between the HR and body movement were 58

quantified using multiscale transfer entropy (MSTE) [24,25] and multiscale network 59

representation (MSNR) [26]. The MSTE metrics measured the information flow 60

between two simultaneously sampled time series at multiple time scales. In MSNR, we 61

constructed network representations of simultaneously sampled 3-dimensional time 62

series at multiple time scales and derived network characteristics at each time scale. 63

These network representations revealed more nuanced characteristics of the time series 64

being analyzed. 65

The goal of our study was two-fold. First, we wanted to develop machine learning 66

(ML) classification models to classify patients with low-severity Rett syndrome (CGI-S 67

≤ 4) from patients with high-severity Rett syndrome (CGI-S > 4) based on the 68

objective measures attained from a wearable biosensor. Second, through the 69

classification experiment, we wanted the trained models to provide us with important 70

features (physio-motor biomarkers) that could help us distinguish the two groups. 71

Hence, we developed Rett syndrome severity classifier models based on raw data 72

recordings using metrics derived from the following feature sets: (1) HRV metrics, (2) 73

Actigraphy metrics, (3) MSTE-features, and (4) MSNR-features. We used the least 74
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absolute shrinkage and selection operator (LASSO) for model training and developed 75

logistic regression models with the L1-penalty. We developed separate models for each 76

of the four feature sets listed above and for all possible two, three, and four 77

combinations of these feature sets. Thus, we developed 15 binary-classification models 78

for Rett syndrome severity classification. Finally, we listed the models’ features that 79

were important for Rett syndrome severity classification. We illustrate the complete 80

pipeline of our work in Fig 1. 81

Materials and methods 82

Data collection 83

The dataset for this work was sourced from two Institutional Review Board 84

(IRB)-approved studies: (1) The Triheptanoin-clinical trial [27] (2) The Outcome 85

measures and biomarkers development study [28]. The data were collected between 86

January 2016 and December 2018 - a three-year period. We used the body-worn patch 87

BioStamp® (MC10 Inc., Cambridge, MA, USA) [29] to record ECG and three-axis 88

acceleration from all the participants. While some ECG records were captured at a 89

sampling rate of 125Hz, others were captured at a sampling rate of 250Hz. 90

Concurrently, the three-axis acceleration records were captured at the sampling rates of 91

31.25Hz and 62.5Hz, respectively. These differences did not meaningfully influence the 92

HRV and activity metrics we extracted [30]. We captured the ECG signal and the 93

three-axis acceleration from the following four locations on the body: (1) Medial chest, 94

(2) Left Hypochondrium, (3) Right Hypochondrium, and (4) Left Pectoralis. Per the 95

protocols, all four locations were not used for all the participants, and only a subset of 96

these locations was used for each participant. In conjunction to the signal data obtained 97

from the biosensors, caretaker and physician surveys were conducted to obtain symptom 98

severity for all 20 patients enrolled in the study. Specifically, the CGI-S scores were 99

obtained through physician surveys to assign a binary label (low-severity vs. 100

high-severity) for each patient-visit. A patient-visit was assigned to the low-severity 101

category if the CGI-S ≤ 4 and was assigned to the high-severity category if the CGI-S 102

> 4. For each patient-visit we needed two consecutive days of signal data for the feature 103

extraction. By applying this filter, we obtained a total of 32 patient-visits with two 104

consecutive days of signal data and the associated CGI-S label. Among the 32 105

patient-visits, we had 18 high-severity visits corresponding to 10 unique patients and 14 106

low-severity visits corresponding to 11 unique patients. One patient had both 107

low-severity and high-severity visits. We considered each patient-visit a data point and 108

thus had 32 data points with an associated binary label for model development and 109

analysis. 110

Study approval 111

This study was approved by the Emory Institutional Review Board (IRB00088492 : 112

Outcome Measures and Biomarkers Development for Rett Syndrome and Multisite 113

development of standardized assessments for use in clinical trials). A written informed 114

consent was received prior to the participation from the parents of the patients. 115

Missing data 116

Considerable amounts of missing data were present in the dataset due to the following 117

reasons: (1) Device charging and data upload, (2) Motion artifacts, and (3) In some 118

cases, low compliance by the caretakers. Thus, we implemented three signal imputation 119
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Fig 2. Stochastic surrogate data imputation technique fills gaps in heart rate
(HR) and activity count signals by choosing a contiguous HR segment in the
gap’s neighborhood of the same length as the gap.(A) We illustrate an example
HR signal with missing data. (B) The HR signal contains a 25-second-long gap that has
been identified. Based on the boundaries and length of the gap, two folded normal
distributions are constructed for stochastically choosing a 25-second-long HR segment.
(C) We perform a coin toss experiment, and based on the outcome, we sample from one
of the two folded normal distributions and accordingly select a contiguous
25-second-long HR segment and copy it over to the gap. Further, we add a small noise
to this imputed signal (we do not show it in the figure for convenience). (D) The
imputed HR signal with no gaps.

techniques to improve data quality and increase the amount of available data for 120

analysis. Namely, 121

1 Signal quality index-based ECG data imputation. 122

2 Data imputation for activity counts. 123

3 Stochastic surrogate data imputation. 124
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Signal quality index-based ECG data imputation 125

The ECG signal recorded using the wearable patches contained sections of data 126

corrupted by motion artifacts. To improve data quality, we sourced data from multiple 127

sensors. As discussed earlier, we simultaneously captured ECG from up to four unique 128

locations on the body. Thus, for a time-window t, say we had N (N ≤ 4) ECG signal 129

snippets recorded from N locations, we chose the one signal snippet with the highest 130

Signal Quality Index (SQI). The SQI for ECG provides the percentage of beats that 131

match when detected by multiple annotation generators with highly differing noise 132

responses [31]. We refer the readers to Li et. al [32] for a detailed explanation of the 133

SQI computation algorithm. If this value was greater than 0.75, we used it in our 134

analysis; otherwise, we discarded all ECG data for the time-window t. By switching 135

between N signals for each time-window t to form a single 1−D ECG signal, we 136

maximized the amount of good data available for the analysis. 137

Data imputation for activity counts 138

When analyzing activity count signal in isolation, as per the scripts provided in the 139

actigraphy toolbox [33], we combined the data to obtain one value per hour. When 140

there was no data in a given hour, we imputed those samples using the Piecewise Cubic 141

Hermite Interpolating Polynomial (PCHIP) interpolation. 142

Stochastic surrogate data imputation 143

The computation of transfer entropy and multiscale network representation required us 144

to impute the missing data in the 48-hour HRV features and the activity count signals. 145

For this, we developed the surrogate data imputation method, a stochastic technique 146

developed to impute missing data in a timeseries using data in the vicinity of the 147

missing sections (or gaps). The data imputation algorithm works as follows. Given a 148

time series (S) and its timestamps (t), we find all the N gaps g[i] ∀i ∈ {1, 2, 3, . . . , N} 149

in S which are greater than a fixed threshold thg. The gaps are then sorted in 150

increasing order. We impute the gaps with surrogate signal snippets in increasing order 151

of the gap length as follows. We denote the gap length in seconds as gl, while tb and te 152

denote the time stamp where the gap begins and ends, respectively. Next, for each gap 153

g[i] we draw a sample xr from the normal distribution with mean 0 and variance equal 154

to 1, i.e., xr ∼ N (0, 1). The normal distribution from which we picked a sample is then 155

mapped to the timeseries S in the following way. We map the left half of the 156

distribution (0.5 × folded normal distribution) to S where t < tb − gl and the right half 157

of the distribution (0.5 × folded normal distribution) to S where t > te. We illustrate 158

this mapping of the Gaussian distribution onto the timeseries in Fig 2. Accordingly, we 159

copy the signal snippet of length gl starting from the point in time that corresponds to 160

xr on the timestamp signal t. We insert this copied signal in the gap g[i] and add a 161

noise signal which is 5% of the sample sampled from a Gaussian distribution with mean 162

(µS) and variance (σ2
S) equal to the mean and variance of the signal S. Further, we 163

update both the timeseries S and the corresponding timestamps t. This procedure is 164

repeated iteratively until all gaps {g[i]} in S greater than thg are imputed. 165

Feature extraction 166

We extracted HRV metrics from the ECG signals and actigraphy features from the 167

three-axis accelerometer signals in the dataset. The HRV metrics were extracted using 168

the open-source PhysioNet Cardiovascular Signal Toolbox provided by Vest et al. [31]. 169

We extracted 24 distinct HRV metrics, including time-domain measures, 170

frequency-domain measures, entropy measures, phase rectified signal averaging (PRSA) 171
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measures, and other non-linear metrics. We used the default window length settings 172

provided in the toolbox and thus used a 300-second-long feature extraction window with 173

a 30−second shift. We used the SQI based ECG data imputation to maximize the 174

amount of good ECG data. For a given patient-visit, we computed the mean and 175

variance of each HRV metric between the times 10 PM and 10 AM. We chose this 176

period to include ECG data during sleep and discard the noisier signal recorded during 177

daytime and evenings. Thus, each HRV metric provided two features resulting in 48 178

features from 24 HRV metrics. 179

We extracted the actigraphy features from the z-axis of the acceleration signal from 180

the right hypochondrium using the open-source Actigraphy Toolbox [33]. We converted 181

the acceleration signal to activity counts using the Oakley method described by Borazio 182

et al. [34]. First, we used Oakley’s method for converting accelerometer signals to 183

activity count. We then extracted the following eight features using the toolbox: (1) 184

Interday stability, (2) Intraday variability, (3) Least active 5 hours, (4) Most active 10 185

hours, (5) Rest activity, (6) Mesor, (7) Amplitude, and (8) Acrophase. The last three 186

features were based on Cosinor Rhythmometry. The Actigraphy features needed two 187

consecutive 24−hour periods (midnight to midnight) of data for feature computation. 188

Thus, we identified the best two consecutive 24-hour periods with the least missing data 189

for each patient-visit. If both days did not have at least 12−hours of acceleration data 190

per day, those patient-visits were discarded. To impute missing data, we used the 191

PCHIP interpolation. 192

Finally, we computed MTE and MSNR features using 2−day consecutive HR and 193

activity count signals. We utilized the Stochastic surrogate data imputation technique to 194

impute missing data. We processed the HR signal, deceleration capacity (DC) of the 195

RR-interval [35] signal, and the activity count (Act) signal for computing the features. 196

Transfer entropy depicted as TEX→Y is a measure of directional coupling between two 197

concurrently sampled timeseries X = {x1, x2, . . . , xN} and Y = {y1, y2, . . . , yN}. 198

Formally, TEX→Y is a reduction in uncertainty, given by the conditional entropy of yi 199

given its past values minus the conditional entropy of yi given both its past values and 200

past values of the other variable y
(l)
i−w: 201

TEX→Y = H
(
yi|y(l)i−w

)
−H

(
yi|y(l)i−w, x

(k)
i−t

)
(1)

where i indicates a given point in time, t and w are the time lags in X and Y 202

respectively, and k and l are the block lengths of past values in X and Y respectively. 203

The k and l were both set to 1 to improve computational speed, and t and w were both 204

set to 1 under the assumption that the maximum auto-transfer of information occurs 205

from the data point in X immediately before the target value in Y , and vice versa. 206

These choices of k = l = t = w = 1 are appropriate in biomedical experiments as the 207

absolute values of auto-correlation functions tend to decrease monotonically as time lag 208

increases [25]. In our experiments, we computed the TE between the following signals: 209

(1) HR-DC, (2) HR-Act, (3) DC-Act, (4) DC-HR, (5) Act-HR, and (6) Act-DC. We 210

computed these TE values at scales 1 to 10 using the coarse-graining algorithm [36] to 211

obtain Multiscale Transfer Entropy (MSTE) features. The probability densities for the 212

estimation of MTE were estimated using the Darbellay-Vajda (D-V) adaptive 213

partitioning algorithm [25,26, 37]. Further, we computed 3D D-V partitioning using the 214

HR-DC-Act signals and computed multiscale network representation (MSNR) features. 215

The network representation features included the following 11 metrics: (1) Number of 216

nodes (total number of nodes in the network), (2) Average degree (the average value of 217

the degree of all nodes in the network, where the degree of a node is defined as the total 218

number of its neighboring edges), (3) Number of loops (the total number of independent 219

loops in the network, also known as the “cyclomatic number” or the number of edges 220

that need to be removed so that the network cannot have cycles), (4) LOOP3 (the total 221
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number of loops of size 3 in the network), (5) LOOP4 (the total number of loops of size 222

4 in the network), (6) Average clustering coefficient - 1 (number of LOOP3s divided by 223

the number of connected triples in the network), (7) Average clustering coefficient - 2 224

(the clustering coefficient c(u) for node u can be defined as the ratio of the number of 225

actual edges between the neighbors of u to the number of possible edges between them, 226

and the average clustering coefficient C(G) of a network is the average of c(u) taken 227

over all the nodes in the network), (8) Graph radius (the eccentricity of a node u is 228

defined as e(u) = max{d(u, v) : v ∈ V }, where the distance d(u, v) is the length of the 229

shortest path from u to v, and V is the set of all nodes; the graph radius is the 230

minimum of eccentricities over all nodes in the network), (9) Spectral radius (the largest 231

magnitude eigenvalue of the adjacency matrix of the network), (10) Trace (sum of the 232

eigenvalues of the adjacency matrix, i.e.,Σλ), and (11) Energy (squared sum of the 233

eigenvalues of the adjacency matrix A. More formally, the energy of a network G is: 234

E(G) =
∑n

i λ
2
i ). We computed the above-described MSNR features at scales 1 to 10 235

using the coarse-graining technique [36]. Using the surrogate data imputation technique, 236

we obtained 100 imputations for each patient-visit. Thus, we generated 3200 datapoints. 237

We computed the MTE and MSNR features for all the 3200 datapoints and then 238

computed the mean and variance over 100 imputations for each patient-visit. In the end, 239

we obtained 32 vectors of length 120 (60 mean values and 60 variance values) as the 240

MTE features and obtained 32 vectors of length 220 (110 mean values and 110 variance 241

values) as the MSNR features. Thus, we obtained 48 HRV features, 8 Actigraphy 242

features, 120 MTE features, and 220 MSNR features for each of the 32 patient visits. 243

Rett syndrome severity classification experiments 244

We developed separate models for each feature sub-group and combinations of feature 245

sub-groups to obtain 15 classifiers corresponding to the following feature combinations: 246

(1) HRV, (2) Actigraphy, (3) MSTE, (4) MSNR, (5) HRV + Actigraphy, (6) HRV + 247

MSTE, (7) HRV + MSNR, (8) Actigraphy + MSTE, (9) Actigraphy + MSNR, (10) 248

MSTE + MSNR, (11) HRV + Actigraphy + MSTE, (12) HRV + Actigraphy + MSNR, 249

(13) HRV + MTE + MSNR, (14) Actigraphy + MTE + MSNR, and (15) HRV + 250

Actigraphy + MTE + MSNR. We used the LASSO based logistic regression classifier to 251

assess the performance of different feature combinations. The models were assessed via 252

a leave-one-patient out cross-validation experiment. The hyperparameter tuning was 253

performed using a within-training-three-fold cross-validation. We measured the 254

classification performance using the metric - area under the receiver operating curve 255

(AUC). Using this metric, we compared the 15 different classifiers and assessed their 256

classification performance. For each feature combination, the entire classification 257

experiment was repeated five times with different random seeds to account for 258

variability in model coefficients that arose during hyperparameter tuning (the 259

within-training-three-fold data split changed each time). The model’s outputs for the 260

five repetitions of the experiment were combined by computing the median value for the 261

classification probability output. The final AUC for each feature combination was 262

determined by comparing this median output against the ground truth labels. 263

Feature popularity score 264

Apart from measuring classification performance, we computed a novel feature 265

popularity score for the features used in classification, which allowed us to measure 266

feature importance and compare features. Since all classification experiments comprised 267

20 patients, the leave-one-patient out cross-validation approach produced 20 models. As 268

described previously we repeated the classification experiment five times for a given 269

feature combination, resulting in 5× 20 = 100 classifier models per feature combination. 270
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Fig 3. The feature combination of heart rate variability (HRV) metrics,
multiscale transfer entropy, and multiscale network representation achieves
the highest area under the receiver operating curve (AUC), equal to 0.92.
(A) The ROCs for the 15 different Rett severity classifiers are provided. Each classifier
uses a different subset-combination of the four feature sets, namely: (1) HRV metrics
(H), (2) Actigraphy metrics (A), (3) Multiscale transfer entropy features (T), (4)
Multiscale network representation features (N). The combination of H+T+N performed
the best with a leave one-patient out cross-validation pooled-AUC equal to 0.92. The
individual ROCs corresponding to the individual classifiers are shown using a
combination of line styles and colors. The figure legend shows the pooled-AUC values
for each feature combination. (B) A depiction of the number of patient-visits for each of
the 20 patients showing the low-severity and high-severity patient-visits in different
colors. (C) The top 10 most popular features used by the best classifier (H+T+N) for
Rett severity classification are shown here, along with the corresponding feature
coefficients. The mean deceleration capacity (µPRSA−DC) is the most popular feature
with a feature popularity score of 1 followed by σ2

τ
(8)
Act→HR

and σ2

τ
(8)
Act→DC

with feature

popularity scores 0.97 and 0.93, respectively. In the top-10 most popular features for
the H+T+N feature combination, two features were HRV-metrics (µPRSA−DC and
σ2
PNN50), three features were MSNR-features (σ2

LOOP4(3)
, σ2

LOOP4(5)
and µTRACE(10))

and the rest five were MSTE-features.
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In these 100 models, for each feature f, we counted the number of models in which it 271

had a non-zero LASSO coefficient. Then, the feature popularity score (ρ) for the feature 272

f was computed as: 273

ρ =
# of nonzero coefficients for f

100
(2)

This metric measured the popularity of the feature; the greater number of times the 274

feature was picked by the LASSO-based classifiers, the more popular the feature was. 275

Results 276

The HRV, breathing, and physical activity are thought to influence Rett syndrome 277

severity, but the underlying correlations are yet to be measured. Our experiments 278

investigated the effect of HRV-metrics, actigraphy, MSTE, and MSNR features on Rett 279

syndrome severity by assessing 15 binary classification models (Fig 3A) described in the 280

section Rett syndrome severity classification experiments. For this, as described in the 281

section Data collection, we utilized a cohort of 20 patients with Rett syndrome, of which 282

10 patients had low-severity patient-visits, nine patients had high-severity patient-visits 283

and one individual had both low-severity and high-severity patient-visits. We illustrate 284

this in Fig 3B. 285

Binary Classification Performance 286

The best binary Rett severity classifier used the feature combination of HRV-metrics, 287

MSTE-features, and MSNR-features, and obtained a pooled-AUC equal to 0.92. When 288

we used the four feature sub-groups separately for classification, HRV-metrics performed 289

the best with a pooled-AUC equal to 0.76. This was followed by MSTE-features (AUC 290

= 0.68), Actigraphy-metrics (AUC = 0.63) and MSNR-features (AUC = 0.55) 291

respectively. When we used 2-combinations of feature sets, the feature combination of 292

HRV and MSTE performed the best with an AUC = 0.80. This was followed by the 293

following 2-combinations of feature sets: (1) HRV + MSNR (AUC = 0.79), (2) HRV + 294

Actigraphy (AUC = 0.77), (3) Actigraphy + MSTE (AUC = 0.66), (4) MSTE + MSNR 295

(AUC = 0.62), and (5) Actigraphy + MSNR (AUC = 0.51). When we used 296

3−combinations of feature sets, we obtained the following descending order of 297

classification performances: (1) HRV + MSTE + MSNR (AUC = 0.92), (2) HRV + 298

Actigraphy + MSTE (AUC = 0.82), (3) HRV + Actigraphy + MSNR (AUC = 0.75), 299

(4) Actigraphy + MSTE + MSNR (AUC = 0.62). Finally, when all feature subsets were 300

used together, we obtained an AUC = 0.91, only second to the combination of 301

HRV-metrics, MSTE-features and MTNR-features (AUC = 0.92). 302

Feature popularity 303

The mean deceleration capacity (µPRSA−DC) was the most popular feature for Rett 304

syndrome severity classification. Using the novel formula described in the section 305

Feature popularity score, we extracted the top-10 most popular features utilized by the 306

best classifier (HRV, MSTE, and MSNR) and the distribution of their corresponding 307

weights (Fig 3C). The feature µPRSA−DC came out on top with a feature popularity 308

score ρ = 1.00. It was followed by the following 9 features: (1) Variance (across all 309

surrogate representations) of transfer entropy from the activity counts signal to the HR 310

signal at the 8th coarse-graining scale (σ2

τ
(8)
Act→HR

) (ρ = 0.97), (2) Variance (across all 311

surrogate representations) of transfer entropy from the activity counts signal to the 312

deceleration capacity signal at the 8th coarse-graining scale (σ2

τ
(8)
Act→DC

) (ρ = 0.93), (3) 313
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Fig 4. Data imputation techniques combined with first and second-order
statistics improve classification performance. (A) An illustration of the effects of
novel signal quality index-based ECG data imputation. We show the improvements in
the average signal quality index of the electrocardiogram records for all 32 patient-visits.
(B) The deceleration capacity (DC) values between 10 PM and 10 AM for the
low-severity and high-severity Rett syndrome groups. We show the DC values between
the 75th and 25th percentile for low-severity and high-severity Rett patient-visits. (C)
We depict all edges corresponding to 4-loops in the networks constructed from trivariate
time series (HR, DC, and Activity count signal) for a high-severity (left-red-panel) and
a low-severity (right-blue-panel) patient at the 3rd coarse-graining time scale. For each
patient, we show two surrogate LOOP4 networks at the following values for LOOP4: (1)
µLOOP4(3) − (1.96× σLOOP4(3)), (2) µLOOP4(3) + (1.96× σLOOP4(3)). From the image,
it is clear that both the number of 4-loops and the variance of the number of 4-loops are
smaller for the low-severity patient compared to the high-severity patient.

Variance (across all surrogate representations) of the number of 4−loops in the network 314

representation of the tuple - (HR signal, activity count signal, DC signal) at the 3rd 315

coarse-graining scale (σ2
LOOP4(3)

) (ρ = 0.81), (4) Variance (across all surrogate 316

representations) of the number of 4−loops in the network representation of the tuple - 317

(HR signal, activity count signal, DC signal) at the 5th coarse-graining scale (σ2
LOOP4(5)

) 318

(ρ = 0.79), (5) Mean (across all surrogate representations) of the trace of the adjacency 319

matrix of the network representation of the tuple - (HR signal, activity count signal, DC 320

signal) at the 10th coarse-graining scale (µTRACE(10)) (ρ = 0.76), (6) Variance (across 321

all surrogate representations) of transfer entropy from the activity counts signal to the 322

deceleration capacity signal at the 1st coarse-graining scale (σ2

τ
(1)
Act→DC

) (ρ = 0.47), (7) 323

Variance (across all surrogate representations) of transfer entropy from the activity 324

counts signal to the HR signal at the 1st coarse-graining scale (σ2

τ
(1)
Act→HR

) (ρ = 0.31), (8) 325
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Mean (across all surrogate representations) of transfer entropy from the activity counts 326

signal to the HR signal at the 4th coarse-graining scale (µ
τ
(4)
Act→HR

) (ρ = 0.29), (9) 327

Variance of the 5-minute PNN50 measure i.e., the average number of pairs of adjacent 328

beat-to-beat intervals differing by more than 50 ms, between the times 10 PM and 10 329

AM (σ2
PNN50) (ρ = 0.18). The feature weight for (µPRSA−DC) was greater than zero for 330

93% of the time, suggesting an inverse relationship (due to the negative-log relationship 331

between features and odds) between the feature values and the Rett disease severity 332

(i.e., a higher values of µPRSA−DC corresponded to a higher chance of low-severity Rett 333

syndrome). It conformed with our feature values as shown in Fig 4B. In supporting 334

information S1 Fig we illustrate the top 5 most popular features for each of the 15 335

classifiers. Whenever HRV-metrics were used for classification (8 of the 15 instances), 336

µPRSA−DC was the most important feature with a consistent feature popularity score of 337

1. When only Actigraphy-metrics were used for classification, the amplitude of the 338

circadian rhythm measured using the cosinor rhytmometry was the most popular feature 339

with a feature importance score of 0.94. When we used MSTE-features alone, σ2

τ
(8)
Act→DC

340

was the most popular feature with a feature popularity score of 0.94. Finally, when we 341

used the MSNR features alone, (σ2
LOOP4(3)

) was the most popular feature with a feature 342

popularity score of 0.90. Interestingly, the top features from the individual feature set 343

models for HRV-metrics (µPRSA−DC), MSTE-features (σ2

τ
(8)
Act→DC

), and MSNR-features 344

(σ2
LOOP4(3)

) were all featured as one among the top−5 most popular features in the best 345

model (AUC = 0.92) that used the feature combination of HRV-metrics, 346

MSTE-features, and MSNR-features. For the classifier that used all available features 347

(HRV + Actigraphy + MSTE + MSNR), the following metrics featured as the top-5 348

most popular features: (1) µPRSA−DC (ρ = 1.00), (2) σ2

τ
(8)
Act→HR

(ρ = 0.98), (3) 349

σ2

τ
(8)
Act→DC

(ρ = 0.97), (4) Interdaily Stability (ρ = 0.82); (5) σ2
LOOP4(3)

(ρ = 0.81). 350

Discussion 351

As of 2022, no clinically meaningful disease-modifying treatments exist for patients with 352

Rett syndrome. We instead rely on multiple therapeutics and symptomatic treatment 353

strategies geared towards managing respiratory ailments, treating seizures, improving 354

gastrointestinal function, and improving motor skills [38]. As new drugs and 355

therapeutics are discovered, the need for objective measures that can be used in clinical 356

trials increases. Neurological disorders, including Rett, suffer from difficult-to-measure 357

symptoms. Most efficacy assessments are based on parent, clinician (and in some cases, 358

patient) interpretation of symptom severity, which by nature introduces bias and often, 359

exemplified by high placebo rates, results in a high noise to signal ratio. Hence, the need 360

to establish objective measurements in patients directly, especially for symptoms that 361

are difficult or impossible to observe, would open the door to evaluate therapeutics in 362

novel ways and has the potential to expedite therapeutic development in multiple ways. 363

Namely, (1) It would reduce bias; (2) It would help reduce clinical trial sample size by 364

reducing the noise to signal ratio; and (3) It would facilitate shorter trial duration by 365

capturing continuous data at home. The measurement of autonomic function could be 366

an early biomarker of therapeutic efficacy and may be particularly relevant for curative 367

therapeutics such as gene therapies that theoretically should improve or restore baseline 368

function. If trials focus on efficacy measures that require learning and implementation 369

(like mobility, communication, and hand use), this may take significantly longer to 370

detect than an autonomic function correction that should not require learning. Thus, in 371

the current study, we attempted to address these unmet needs by capturing 372

physiological (ECG) and body activity (three-axis accelerometer data) from a 20-patient 373

cohort. We chose to regress features extracted from the ECG signal and body activity 374
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measurements against the binarized CGI-S to correlate objective measures attained 375

from a wearable biosensor to an overall symptom severity scale. We have shown that 376

the inclusion of multiscale features (MSTE and MSNR) along with HRV-metrics 377

provided a performance improvement of 21% in terms of the AUC (AUC = 0.92) when 378

compared to using HRV-metrics alone (AUC = 0.76). This improvement is attributable 379

to the information embedded in the higher-order interactions between the HR, DC, and 380

activity count signals. While the transfer entropy-based features enabled us to study 381

the 2-dimensional variations between all combinations of HR, DC, and activity count 382

signals in both directions, the network representations-based features enabled us to 383

study the 3-dimensional interactions between these signals. Further, the computations 384

of these features at multiple coarse-graining scales provided a means to analyze the 385

signal modulations occurring due to different physiological phenomena (at different 386

timescales). The coarse-graining scales we used in this study ranged from 1 to 10, which 387

corresponded to a variation of sampling rate from 1/30 Hz to 1/300 Hz (i.e., from a 388

sample every 30 seconds to a sample every 5 minutes). It allowed us to study the effect 389

of different physiological processes, including respiration, vagal activity, and circadian 390

rhythm, on the interactions between HR, DC, and activity count signals. 391

Our analysis suggested that the mean value of the DC of the HR signal captured on 392

the BioStamp® nPoint between 10 PM and 10 AM was the most popular feature to 393

classify low-severity Rett syndrome patients from high-severity Rett syndrome patients. 394

It was the most popular feature in all the eight classifier models in which it was used, 395

with a consistent and highest feature popularity score of 1. The computation of DC 396

involved synchronizing the phases of all periodic components of the signal irrespective of 397

their timescales [39]. Thus, the DC captured the overall deceleration of the sinus 398

rhythm due to physiological processes that occurred at different timescales, including 399

the vagal (parasympathetic) activity, the baroreflex, and the circadian rhythm. In 400

Fig 4B, we depicted the variation of the 5−minute averages of DC between the times of 401

10 PM and 10 AM for both low-severity and high-severity Rett syndrome patient visits. 402

Apart from the mean value of the DC, we observed the emergence of the variance of 403

transfer entropy at 8th coarse-graining scale from (1) Activity count signal to the HR 404

signal and (2) Activity count signal to the DC signal among the most popular features. 405

Further, the variance of the number of loops of size 4 in the network representations at 406

coarse-graining scales 3 and 5 were among the top−5 most popular features in the best 407

classifier model (AUC = 0.92). Thus, in Fig 4C, we illustrated an example of the 408

network representations for a low-severe and a high-severe Rett patient at the 3rd, 5th, 409

and 8th coarse-graining scales. In addition to demonstrating the viability of a wearable 410

biosensor to estimate disease severity based on objective measurements directly in 411

patients, another novelty in our work was handling missing data in signals captured 412

using wearables for patient state analysis. We proposed three different techniques for 413

this purpose. The first method of combining data from multiple channels boosted the 414

amount of available data by 13.4% when compared to using a single channel (medial 415

chest) and improved the average SQI by 10%. In Fig 4A, we illustrated this 416

improvement in SQI for each of the 32 patient-visits due to the usage of the novel SQI 417

based ECG imputation. The second method helped impute the activity count data and 418

reduce missingness. The third and final technique of generating stochastic surrogates 419

enabled us to compute the MSTE and MSNR features. It was specifically developed for 420

this study, without which no multiscale analysis could have been performed. We 421

computed the sample mean and sample variance of all MSTE and MSNR metrics across 422

all surrogate representations and used them as features for our classification models. 423

The sample mean is a measure of the samples’ central tendency, and the sample 424

variance is a measure of the spread of the samples. Since our method used a normal 425

distribution to sample the random variables, and a normal distribution can be 426
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completely defined by a mean value and variance, it was rational to use the sample 427

mean and variance to characterize the underlying MSTE and MSNR values. 428

Conclusion 429

We developed a machine learning model that utilized features characterizing HRV, body 430

movement, and the interaction between the two to estimate Rett syndrome severity in a 431

group of 20 female Rett patients. For this, we developed a novel stochastic method for 432

biosignal data imputation. We obtained the highest pooled-AUC equal to 0.92 utilizing 433

the feature combination of HRV-metrics, MSTE-features, and MSNR-features. Further, 434

the proposed approach provided us with physio-motor biomarkers that could be used in 435

clinical trials as objective metrics to quantify the improvement in overall patient state. 436

Specifically, the mean DC of the HR signal captured between 10 PM and 10 AM using 437

the BioStamp® nPoint biosensor was the most popular feature with a feature 438

popularity score equal to 1. In conclusion, our study (1) Implemented a novel data 439

imputation technique for physiological signals, (2) Developed a machine learning model 440

to estimate Rett disease severity, and (3) Developed objective measures that 441

characterize the autonomic function in Rett syndrome. 442
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Supporting information

S1 Fig. The novel feature popularity scores-based visualizations assist in
determining the top-5 features for each of the 15 Rett severity classifiers. We
show the normalized feature values for all 32 patient-visits for top-5 most popular
features in each subplot. The data points with the red marker correspond to
high-severity Rett patient-visits, and the data points with the blue marker correspond
to low-severity Rett patient-visits. Further, we provide the feature popularity (ρ) scores
for these five features. The individual subplots correspond to different feature
combinations of the following feature sets: (1) HRV – Heart Rate Variability; (2)
Actigraphy; (3) MSTE – Multiscale Transfer Entropy; (4) MSNR – Multiscale Network
Representation. (TIF).
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