
 

 

Abstract 
Ambiguity and misunderstanding of free-text clinical trial 
eligibility can affect the accuracy of translating trial inves-
tigators’ mental model of the study population to the cor-
rect cohort identification queries.  In this pilot study, to 
eliminate the ambiguity when parsing eligibility criteria, 
we built ontology-based representations to standardize 
clinical trial eligibility criteria.  We analyzed 10 Alz-
heimer’s disease (AD) trials' eligibility criteria and cate-
gorized them into general query patterns using an annota-
tion schema borrowed from the literature on constructing 
knowledge graphs.  Then, for each pattern, we built the 
corresponding ontological representations, linked them to 
real-word electronic health record (EHR) data, and con-
structed cohort identification queries using the neo4j 
graph database.  Our evaluation results of these cohort 
queries verified the accuracy of our ontology representa-
tion; and interestingly, we found that graph-queries 
achieved better runtime performance for complex study 
traits.  These results indicated that our approach is feasible 
and potentially beneficial; nevertheless, more systematic 
and comprehensive investigations are warranted. 

1 Introduction 
Eligibility criteria are critical in the clinical trials, which de-
fine the study population that shall participate in clinical trials 
(Chondrogiannis et al., 2017).  Nevertheless, trial eligibility 
criteria are unstructured free-text written in natural language, 
where the ambiguity often causes researchers misunderstand 
the meaning of eligibility criteria and have difficulty parsing 
these criteria computationally into database queries (Tu et al., 
2011).  Misunderstanding of eligibility criteria and inaccurate 
cohort identification queries can lead to deviations from the 
original trial recruitment target, where (1) certain enrolled 
participants may not meet the requirements as the eligibility 
criteria described, or (2) missing potential eligible partici-
pants, which leads to low accrual of the trials.  For example, 
an inclusion criterion “creatinine < 1.5 times upper limits 
normal” leads to ambiguity on what biospecimen source (e.g., 
serum, urine, blood) the creatinine is measured from.   

Thus, standardized and computable knowledge representa-
tions for eligibility criteria are needed.  Nevertheless, there is 

no consistent knowledge representation (e.g., standardized 
terminology, syntactic formats, and computability) for eligi-
bility criteria (Weng et al., 2010).  Ontology (i.e., a standard-
ized representational framework that includes defined classes 
and relations among them (Arp et al., 2015) is a common tool 
for formal knowledge representations.  There are a number of 
existing works on ontology-based representation of eligibility 
criteria.  Milian et al. proposed an automated method, lever-
aging pattern detection and semantic tagging to turn free-text 
eligibility criteria into a structured format (Milian et al., 
2015); nevertheless, it merely used UMLS concepts to stand-
ardize the entities rather than providing a computable repre-
sentation of the criteria.  Tao et al. created an ontology-based 
method focusing on representing temporal patterns in eligi-
bility criteria (Crowe & Tao, n.d.); nevertheless, they did not 
fully consider all use cases (e.g., missing representation of the 
length of time an event occurs before the other event).  Given 
the page limit, interested readers can refer to the review in 
(Weng et al., 2010) for a more comprehensive understanding. 

In parallel, the literature on automatically building 
knowledge graphs with formal (often ontology-based) repre-
sentations through mining free-text data (e.g., publications 
and web content) is rich.  For example, a number of works 
has demonstrated the feasibility of using advanced natural 
language processing (NLP) methods to construct biomedical 
knowledge base/graphs in the format of triples (i.e., subject-
predicate-object) to represent factual statements (e.g., 
SemRep (Rindflesch & Fiszman, 2003)).  More recently, 
Jiang et al. proposed a novel scientific knowledge graph rep-
resentation and construction model that considers not only 
the factual statements, but also the conditions when the fac-
tual statements are true (Jiang et al., 2019).  In our past work 
on computable eligibility criteria (Zhang et al., n.d.), we have 
observed that conditions are frequently encountered and im-
portant when representing eligibility criteria.  For example, 
in a criterion, "Patient who had Parkinson’s disease within 
the prior 5 years," the temporal constraint "within the prior 5 
years" is better represented as the condition of when the 
"Parkinson’s disease" diagnosis was given.  

Thus, in this pilot study, we analyzed eligibility criteria 
from a small sample of Alzheimer’s disease (AD) trials and 
categorized them into general query patterns using an anno-
tation schema borrowed from the literature on constructing 
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knowledge graphs (Jiang et al., 2019).  Then, we built formal 
ontology representations for the different query patterns, and 
further mapped them to electronic health records (EHRs) data 
from the OneFlorida Clinical Research Consortium in a graph 
database (i.e., Neo4j) to achieve semantic queries for cohort 
discoveries.  To evaluate the accuracy of our translations, we 
compared our graph queries with manually curated data que-
ries in Python pandas against the original data formats. 

2 Methods 
2.1 Data Sources 
In this pilot, we randomly selected 10 Phase III/IV AD inter-
ventional trials and obtained their free-text eligibility criteria 
from ClinicalTrials.gov.  We obtained individual-level pa-
tient EHR data from the OneFlorida Clinical Research Con-
sortium – a clinical data research network contributing to the 
national Patient-Centered Clinical Research Networks 
(PCORnet).  The OneFlorida data follows the PCORnet 
Common Data Model (CDM) that contains detailed patient 
and clinical variables, including demographics, diagnoses, 
procedures, vitals, medications, and labs.  For performance 
reasons, we randomly selected 10% patient data from patients 
diagnosed with AD-related dementias (AD/ADRD) based on 
diagnostic (i.e., ICD-9/10) codes.   

2.2 Define Patterns for Eligibility Criteria 
We tailored an annotation guideline for eligibility criteria 
based on the study from Jiang et al. on knowledge graph con-
struction (Jiang et al., 2019), where decomposed individual 
criteria into fact and condition tuples.  Fact tuples are in the 
format of (subject, relation, object) which focus on the clini-
cal observations (clinical event) related to a patient; and con-
ditions represent the constraints related to the clinical obser-
vations such as temporal constraints of the clinical observa-
tions.  Based on the annotation results, we summarized the 
criteria patterns using fact and condition tuples.  The criteria 
patterns are categorized into demographic, diagnosis, en-
counter, medication, procedure, lab test respectively 
(PCORnet, 2020).  Note that as we focused on developing 
computable representations, we excluded criteria that are not 
computable (e.g., patient willingness for consent) against the 
EHR data. 

2.3 Ontology Construction and Representation of 
Eligibility Criteria 

An ontology comprises defined classes and certain relations 
among them, which can help us standardize the entities and 
relations, but also potentially encode logics (e.g., temporal 
constraints) in the ontology.  Based on our analysis of the el-
igibility criteria patterns, we created the initial version of the 
Computable Eligibility Criteria Ontology (CECO) using 
Basic Formal Ontology (BFO) as the upper-level ontology.  
We took a bottom-up approach (i.e., analyzing individual en-
tities extracted from the eligibility criteria through the anno-
tation process, defining the ontology classes corresponding to 
each entity, and establishing the relations among the ontology 
classes.   Following best practice in ontology construction, 

we reused existing high-quality biomedical ontologies and it-
eratively improved the ontological structure.  As the concept 
of computable eligibility criteria (against EHR data) is simi-
lar to computable phenotypes (i.e., “clinical conditions, char-
acteristics, or sets of clinical features that can be determined 
solely from EHRs and ancillary data sources.”) (Tasker, 
2017), we heavily reused the classes in the Human Phenotype 
Ontology (HP) (Köhler et al., 2017).  Otherwise, we priori-
tized to reuse classes in existing well-known ontologies that 
follow the BFO as the upper-level ontology and the scope of 
the ontology is similar to CECO (e.g., (Arp et al., 2015)).  For 
the temporal constraints, we reused the Time Event Ontology 
(TEO) to represent events, time points, and their relationships. 

2.4 Query Construction and Evaluation  
We imported the CECO ontology into Neo4j a graph database 
platform (Neo4j, 2021) using the neosemantics toolkit (Neo4j 
Lab, 2021).  According to the representations in CECO, we 
represented the criteria patterns as (knowledge) graphs in 
Neo4j.  We then imported the individual-level AD/ADRD pa-
tient data from OneFlorida and linked classes of CECO to the 
data elements in OneFlorida.  We evaluated the accuracy of 
the our representations by comparing the graph query results 
with the results from directly applying query logic (i.e., Py-
thon and pandas) to the RWD. 

3 Results 
3.1 Patterns for Alzheimer’s disease (AD) Trials 
From the 10 AD trials, we identified 157 eligibility criteria, 
where each trial has an average of 4.7 (2 - 9) inclusion and 11 
(3 - 25) exclusion criteria.  We further decomposed each cri-
terion into study traits (i.e., the minimal units that do not 
change the meaning of the original criterion; e.g., the inclu-
sion criterion "patients with AD but not with other AD-related 
dementia" can be decomposed into two study traits (1) "pa-
tients with AD"; and (2) "patients without other AD-related 
dementia").  In sum, we identified 223 computable (and ig-
nored those that are not computable as our focus is represen-
tation for data queries) study traits (i.e., merged inclusion and 
exclusion study traits, as (1) the relationship between the two 
is simply negation, and (2) a study trait can be either inclusion 
or exclusion depending on the specific trials), which would 
not affect how the we summarize the patterns of criteria/study 
traits patterns.  Through annotation, we identified and formal-
ized 9 types of criteria patterns based on data domains as 
shown in Table 1.  For example, a criterion “Patient who had 
Parkinson’s disease within the prior 5 years.” can be classi-
fied as a diagnosis pattern and represented as follows: 

• Fact: (subject, diagnosed with, Parkinson’s disease)   
• Condition: (Parkinson’s disease, {within T time be-

fore: 5 years}, baseline) 
As another example, for criterion "if subjects are taking Ace-
tylcholinesterase inhibitors (AChEIs), they must be on a sta-
ble dose for > 3 months prior to baseline," it can be summa-
rized as a medication pattern as: 

• Fact: (subject, treated with stable dosage, AChEIs) 
• Condition: (AChEIs, {before at least T time: 3 

months}, screening visit) 
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Note that a fact tuple in one criterion can be a condition tuple 
depending on the individual criteria; and a complex criterion 
would use a mix of the different patterns with different logic 
operations.  

Table 1. Identified criteria patterns from the 10 AD trials. 
Type Fact/Cond. Tuples 
Demo-
graphic 
(Dem.) 

Fact ({subject: age}, greater than or equal to, 
number) 

Fact ({subject: sex}, equals to, xxx) 
Encoun-
ter 

Fact (subject, has encounter status, encounter 
type) 

Proce-
dure 

Fact (subject, treated with, procedure) 

Diagnosis 
(DX) 

Fact 1 (subject, diagnosed with/not diagnosed 
with, disease) 

Fact 2 (subject, status, specific status) 

Cond. 1 (disease, {within/at least before: T time}, 
event) 

Medica-
tion 
(Med.) 

Fact (subject, treated with/not treated with/are 
being treated with, drug) 

Cond. 1 (drug, {within/at least before: T time}, 
event) 

Cond. 2 (drug, less/greater/equal, {dosage: 
value}) 

Cond. 3 (drug, more than, one type) 
Lab test Fact (subject, has lab test result, lab test re-

sult) 
Cond. 1 (lab test result, {within/at least before: T 

time}, event) 
Cond. 2 (lab test result, greater/less/equal, {result: 

value} 
DX + En-
counter 

Fact (subject, diagnosed with/not diagnosed 
with, disease) 

Cond. 1 (disease, {within before: T time}, event) 
Cond. 2 (subject, has encounter status, encounter 

type) 
Cond. 3 (subject, has been treated for, disease) 

DX + 
Med. 

Fact (subject, status, specific status) 
Cond. (subject, treated with, drug) 

DX + 
Dem. 

Fact ({subject: sex}, diagnosed with, disease 
Cond. (disease, {at least before: T time}, event) 

a The Fact/Cond. classification is verbatim of how they were classified 
in the limited number of eligibility criteria we reviewed; and a fact tuple 
in one criterion can be a condition tuple in another criterion. 
b Note that certain criterion covers multiple data domains. 

 
The other important aspect of modeling criteria is temporal 

patterns, as much of a criterion expresses how different 
events are related to each other on the patient timeline.  As in 
our previous example, i.e., "(Parkinson’s disease, {within T 
time before: 5 years}, baseline)," it describes that the patient 
has to have been diagnosed with Parkinson’s disease (i.e., 
event X) within 5 years (i.e., a temporal constraint) before the 
baseline (i.e., when the screening happens as event Y) as 
shown in Figure 1.  We have summarized temporal patterns 
previously in (Zhang et al., n.d.). 

3.2 Ontology Representation 
We used CECO classes and relations to standardize and rep-

resent the eligibility criteria patterns we discovered. 

Demographic The first step is to represent patients, where 
we consider patient as role of human being (dependent rela-
tionship).  We used “bear of” relation from relation ontology 
(RO) to describe the dependent relationship where the exist-
ence of patient roles depends on the existence of human be-
ing.  To represent patient demographic information such as 
age, we used “is about” relation to categorize these attributes 
as information artifact of a human being.  We introduce the 
data property “has measurement value” to capture the age 
value of the patients.  An example of the demographic repre-
sentation is shown in Figure 2.   

Encounter Encounter is a subclass of the health care pro-
cess.  We used “has participant” relationship from RO to rep-
resent patients (i.e., human being with patient role) that par-
ticipate in the process of health care encounters.  For temporal 
relations, we used object property “hasValidTime” in TEO 
ontology, where we consider clinical observations as events 
and describe the temporal constraint by linking an clinical 
event (individual) with a specific time (individual) (Li et al., 
2020) as shown in Figure 3.   

Procedure We only found one criterion related to proce-
dures in our limited criteria sample, which simply described 
a subject treated with a type of procedure.  We can find the 

Figure 2. An example of temporal constraint for the criterion, "(Par-
kinson’s disease, {within T time before: 5 years}, baseline)." 

Figure 1. The ontology representation of patient demographics. 

Figure 3. The ontology representation of a patient encounter. 

Figure 4. The representation for procedures. 
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“medical procedure” in the Ontology of Medically Related 
Social Entities (OAE), which is a subclass of "medical inter-
vention"; nevertheless, "medical intervention" also contains 
other treatment related procedures (e.g., "acupuncture" as we 
found in one of criteria we reviewed).  For simplicity, we 
used "medical intervention" in Figure 4 to demonstrate these 
procedure patterns.  Further, the procedure would only hap-
pen through the patient's encounter with the health care sys-
tem, as shown in Figure 4.   

Diagnosis The representation of diagnosis is based on Ho-
gan et al. work (Hogan & Ceusters, 2016).  Further, a diag-
nosis of a certain disease does not necessarily mean the pa-
tient has that disease, but can be an artifact of the diagnostic 
process.  Thus, we represented these two separately: (1) a di-
agnosis given as part of a health care encounter (i.e., Fact 1 
in DX type); and (2) a disease as a phenotype abnormality 
that a patient has (i.e., inheres in; Fact 2 in DX type).  For 
temporal relations, we considered the diagnostic process as 
an event since the events are time-oriented (Li et al., 2020).  
The diagnosis representation is shown in Figure 5.   

Medication  As shown in Figure 6, we consider the “drug 
administration” as a process; the patient role is “realized in” 
the “drug administration” process; and the “drug product” is 
the participant of the “drug administration” process.  To cap-
ture temporal constraints, we can consider the “drug admin-
istration” process as an event.  We used the class “dose” from 
the Ontology for Biomedical Investigations (OBI) and linked 
it with the “drug product” using “is about” relation, where 
we described the drug dosage as an information entity about 
the “drug product”.   

Lab test  The representation of lab tests and results is shown 
in Figure 7.  We defined the “specimen” as the material entity 

which is the bearer of the “specimen role;” and patients par-
ticipated in the “specimen collection process” for the collec-
tion of the specimen.  A clinical laboratory test is performed 
on the specimen.  Thus, the specimen is an input of the lab 
test, and the lab result is the laboratory finding of the lab test.   

3.3 Query Construction and Evaluation  
Built upon these representations, we constrctured graph-
based semantic queries against the RDF data in neo4j for a 
range of randomly sampled study traits and compared the 
query results with the queries constructred in Python pandas 
against the original datasets (i.e., relational database 
following the PCORnet CDM converted into csv files).  All 
graph-based queries returned the same results as the pandas-
based queries indicating query and representation accuracies.  
We also recorded the runtimes of each graph-query and 
comparied with their pandas conterparts.  Interestingly, for 
complex study traits (e.g., "patients has been hospitalized or 
treated for suicidal behavior in the past 5 years"), graph 
queries are faster than pandas queries (e.g., 0.106 seconds vs. 
0.2452 seconds, respectively, for this example); while for 
simple study traits (e.g., "aged ≥ 50 years"), graph queries 
are slower than their pandas conterparts (e.g., 0.021 seconds 
vs. 0.00198 seconds, respectively, for this example).  
Nevertheless, our sample size is small, and more systematic 
and comprehensive evaluation is needed. 

4 Discussion and Conclusion 
We summarized eligibility criteria patterns of 10 AD trials 
and created the CECO to standardize and render them com-
putable through graph-based queries using neo4j graph data-
base.  Our study is limited as we only analyze 10 AD trials; 
thus, the identified patterns are still unrepresentative.  Never-
theless, we initial evaluations are satisfactory in terms of both 
the accuracy of the ontological representation and graph-
query results.  Interestingly, we found that graph-based que-
ries outperform their traditional counterparts (i.e., pandas 
against relational csv files in this pilot study), suggesting po-
tential benefits of using a graph-based ontological approach 
besides having a more accurate mental model to render the 
eligibility criteria computable.  Thus, a more systematic and 
comprehensive study is warranted. 
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Figure 5. The representation of diagnosis. 

Figure 6. The representation of medications. 

Figure 7. The representation of lab tests. 
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