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Abstract  

Cholera is reported as endemic in more than 50 countries, many of which are in sub-Saharan 

Africa. Nigeria currently reports the second highest number of cases, with several risk factors 

potentially contributing to this including poverty, water, sanitation and climate. Enteric pathogens 

have a significant global burden, especially on children and those most vulnerable. Despite this, 

attention is often drawn away from these diseases, most recently to Ebola and COVID-19. To 

address the need for more research and focus on cholera, a covariate selection process and 
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machine learning was used. Data for environmental (floods, droughts) and social (conflicts) 

extremes, along with pre-existing social vulnerabilities, were fit to time varying reproductive number 

in Nigeria. We analysed this both spatially and temporally and used it to create a traffic-light 

system for cholera transmission, highlighting potential thresholds and triggers for outbreak. 

Improved access to sanitation, number of monthly conflict events, Multidimensional Poverty Index 

and Palmers Drought Severity Index were retained in the best fit model. Varying exposure periods 

showed that those living in decreased poverty, with more access to sanitation were not as 

vulnerable to changes and offset some of the cholera risk caused by extremes. The work 

presented here shows the need to address these pre-existing vulnerabilities and sustainable 

development for disaster prevention and mitigation and improve health and quality of life.  

 

Introduction  

The seventh and continuing cholera pandemic has far reaching implications, with 3 to 5 million 

reported annual cases and 120,000 deaths, in more than 50 endemic countries. Many of these 

cases and deaths are reported in low- and middle-income countries and it is the second leading 

cause of mortality in children under 51. The short incubation period of cholera (2 hours to 5 days) 

and high numbers of asymptomatic infections which can still contaminate the environment, means 

explosive outbreaks can occur which can spread rapidly and cause high mortality rates (>1%)2.  

 

Since the re-introduction of cholera into Africa in the 1970s, the disease has become endemic in 

several countries, with some countries reporting the highest burdens of cholera globally. Nigeria 

currently reports the second highest number of estimated cases in Africa1,3 and has seen several 

large reported outbreaks, especially in the northeastern region4-7. There are several potential 

reasons for Nigeria’s high cholera burden including its climate8,9, access to water, sanitation and 

hygiene (WASH)10,11 and the proportion of the population living in poverty (62% at <$1.25/day)12-14. 

It also has a robust reporting system, meaning more cases are likely to be reported compared to 

countries with weaker surveillance systems15. 
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Cholera is a preventable disease through wide-spread access to safe drinking water and sanitation 

and is considered a disease of inequity16. Improved access to sanitation and water are key 

determinants of global health and 73% of the enteric disease burden in Nigeria is associated with 

inadequate WASH17. These pre-existing vulnerabilities can be worsened in times of environmental 

and social extremes, which can act as a catalyst for outbreaks. Previous research has found 

several links between extreme events and cholera including floods, drought and conflict18-20, all of 

which have impacted Nigeria in recent decades. Risk factors leading to disease outbreaks include 

an inability to access routine care, fears over safety, disruption of WASH services and human 

displacement21,22.  

 

Despite accounting for a large proportion of cholera cases, Africa is a chronically understudied 

continent compared to the Indian subcontinent and Haiti. Other disease outbreaks have drawn 

attention away from cholera in Africa in recent years, including COVID-19 and Ebola23,24. Research 

linking several social and environmental extremes to diseases is a global research gap. This is 

important in terms of cholera transmission which is often the result of a range of risk factors and 

cascades25. We aim to build a more cohesive understanding of how these conditions result in 

outbreaks and understand potential risk factors for these outbreaks through a detailed sub-national 

analysis.  

 

Previous research on disaster-related infectious disease outbreaks have examined disasters in 

isolation19,22, while others do not include multiple pre-existing socio-economic factors into the 

methodology26,27. We aim to fill this research gap by evaluating the effects of multiple disaster 

types on cholera outbreaks, taking into context population vulnerability. Using data from the Nigeria 

Centre for Disease Control (NCDC), we evaluated a range of environmental and social covariates 

and fit the data using machine learning to cholera time-varying reproductive number (R). Using the 

model with the best predictive power, we created a traffic light system of cholera risk, in terms of 

multiple disasters and pre-existing vulnerabilities. No previous research has created such 

framework for cholera and we hope the simplicity of the traffic light approach means that our 
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results can be used by a wide range of scientific disciplines and organisations to reduce cholera 

risk in fragile settings.  

 

Results  

Incidence and R 

In Nigeria, there were 837 and 564 cholera cases for 2018 and 2019, respectively. These were 

confirmed by either rapid diagnostic tests or culture. The confirmed cases are shown spatially in 

Fig. 1a and are concentrated in the northeast of the country, with Adamawa, Borno, Katsina and 

Yobe having the highest burden. Younger populations had much higher numbers of cases, which 

decreased through the age groups until age 45, over which saw a small increase. Cases by sex 

were relatively similar with more men affected in 2018 (51.6% male) and more women in 2019 

(43.6% male) (Fig. 1b).  
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Fig. 1: Number of confirmed cholera cases. a, by state, grey indicates states that had no 

reported confirmed cases and b, by sex and age group, all for 2018 and 2019. 

 

Six states for 2018 and two states for 2019 met the 40 case criteria to be included for R calculations, 

including Adamawa (2018 & 2019), Bauchi (2018), Borno (2018 & 2019), Gombe (2018), Katsina 

(2018) and Yobe (2018). Both the R values and the incidence used to calculate R are shown 

temporally in Fig. 2 for each state and year. Some states appear to have a peak in transmission 

around June-July, whereas others appear later during September to October.   

  

 

 

 

 

 

 

Figure 1: a, Number of confirmed cholera cases by state, grey indicates that 
there were no reported confirmed cases, b, confirmed cholera incidence by sex 
and age group, all for 2018 and 2019. 
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Fig. 2: R values (line) calculated from the incidence (bar) of cholera. Data is for the confirmed 

cholera cases for 2018 and 2019 of states which met the threshold equal to or more than 40 cases. 

The R values are not present for the full timescale of incidence values due to be calculated on 

monthly sliding windows. 

 

Covariate Selection and Random Forest Models  

Nineteen covariates were included in the covariate selection process. Five were removed, either 

because they were not significantly associated with the outcome variable (R) or because they were 

too highly correlated with other covariates (healthcare facilities, piped water, open defecation, 

population, internally displaced populations (IDPs). Eleven covariates remained and were grouped 

into five clusters, the clusters and variable importance (based on reducing node impurity) of each 

covariate are shown in Fig. 3.  
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Fig. 3: The variable importance for the eleven remaining covariates after variable selection. 

All three serial interval values tested are shown (Rt3 - 3 days, Rt5 - 5 days, Rt8 - 8 days) and the 

numbers represent the clusters. SPEI01, 12, 48 - Standardised Precipitation Index calculated on 1, 

12 and 48 month scale. PDSI - Palmers Drought Severity Index. MPI - Multidimensional Poverty 

Index.  

 

Stepping through the model possibilities using hierarchical stepwise analysis, the best fit model was 

found according to mean standard error of the residuals (RMSE), R² and correlations between the 

incidence-based and covariate-based R values. The model included number of monthly conflict 

events, Multidimensional Poverty Index (MPI), Palmers Drought Severity Index (PDSI) and 

improved access to sanitation, fitted to R values with a serial interval of 5 days (standard deviation: 

8 days). The fit of the incidence-based vs covariate-based R values are shown below, along with 

the measures of model performance used in the hierarchical analysis (Fig. 4).  
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Fig. 4: Incidence-based vs covariate-based R values for the best fit model fitted to the 

testing dataset. The error bars show mean absolute error and the line is a linear trend line 

intercepting at 0.  

 

Nowcasting  
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case threshold and the remaining dates for the six states which were included. This created 
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suggest that the model fits well and accurately predicts R, as the higher R values are in areas with 

known elevated cholera burden (northern and northeastern regions) and the states which only 

marginally fell below the threshold for R calculations (Fig. 5).  
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Fig. 5: Average R values for 2018 and 2019 for all 37 Nigerian states. Incidence-based (green) 

- the five states which met the equal to or more than 40 case thresholds. Covariate-based (purple) 

- the 31 states which did not meet the threshold and had R predicted using the best fit model. State 

label colour shows which states had an average R of R = >1 (black) and R = <1 (orange).  

 

Historical Exposure Periods  

The 48 historical exposure periods by month and R threshold are shown in Fig. 6. Sanitation and 

MPI have a clear relationship with the R threshold, with consistently lower MPI (less poverty) and a 
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>1 and R = <1, respectively. In contrast, monthly conflict events and PDSI shows a less defined 

relationship with some months showing either a positive or negative association.  

Fig. 6: Historical exposure periods. The mean and standard error for the four covariates 

included in the best fit model for each 48 historical exposure periods (24 months) and each R 

threshold (R = >1 and R = <1).  
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defined relationship between conflict and PDSI and R meant further investigation was needed to 

understand possible spatial differences. 

Fig. 7: Traffic-light system of cholera risk. Mean and range values for the three hypothetical 

exposure periods (red, amber and green) for each of the four covariates in the best fit model and 

the corresponding predicated R value means and range using the best fit model.  
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further for their clear relationship with conflict (more conflict = more cholera transmission). 

Furthermore, Kwara and Nasarawa had additional analysis due to their relationship between 

extreme dryness and higher R values and Ekiti and Lagos for extreme wetness and higher R values.  
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Fig. 8: Spatial differences for PDSI and conflict. The mean and standard error for PDSI and 

monthly conflict events by state for the two R threshold (R = >1 and R = <1). The red “x” shows the 

states which were included in the sub-national analysis: Conflict (Borno and Kaduna), extreme 

wetness (Lagos and Ekiti), extreme dryness (Nasarawa and Kwara). 
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in a stepwise pattern and in a similarly way for MPI but to a lesser degree of magnitude. This showed 

that increasing sanitation and therefore decreasing vulnerability, allowed the states to adapt to 

increasing conflict and keep the R value below 1 (See Supplementary Figure 2).  
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For the four states investigating the differences between extreme wetness (Lagos and Ekiti) and 

extreme dryness (Nasarawa and Kwara) and R values, the analysis and subsequent PDSI 

hypothetical exposure periods yielded similar results. All four states found low predicted R values 

and higher ranges (Supplemental Figs. 3 & 4). A potential explanation for this is the high variable 

importance of PDSI (Fig. 3) and the high levels of sanitation and low levels of poverty in all four 

states contribute to overall lower levels of cholera. Therefore, the model was detecting a signal in 

only small changes in PDSI, that resulted in changing R values which have not been detected in 

other states with higher rates of poverty and lower levels of sanitation access. It also helps to 

highlight the multi-directionality of the relationship between PDSI and cholera transmission, with 

both extreme wetness and extreme dryness causing increases in R. 

 

Discussion  

The results presented here show the importance of social and environmental extremes on cholera 

outbreaks in Nigeria, along with the importance of underlying vulnerability and socioeconomic 

factors. Of the 1,401 positive cases for Nigeria in 2018 and 2019, the northeast of the country and 

children under 5 carried the highest burden of disease, whereas there was minimal differentiation 

in cases between sex. Six states were used to calculate the R values, including Adamawa, Bauchi, 

Borno, Gombe, Katsina and Yobe. After covariate selection, a stepwise hierarchical analysis was 

used to find the best fit model according to the selected model performance measures and included 

monthly conflict events, percentage of the population with access to sanitation, MPI and PDSI. 

Using the best fit model, nowcasting was used to calculate the R values for the remaining thirty-one 

states which did not meet the threshold.  

 

Both historical and hypothetical exposure periods helped to shed light on the thresholds and triggers 

for raising R values above 1 in Nigeria. MPI and sanitation showed a well-defined relationship with 

R, with consistently higher access to sanitation and less poverty when R was less than 1. 

Thresholds which pushed R above one included decreasing access to sanitation below 50% and 

increasing the MPI above 0.32. Whereas the relationship between R and conflict events and PDSI 
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appeared to vary spatially, with some states showing a negative and some states a positive 

association. For these two covariates, the effect on R was largely dependent on the access to 

sanitation and poverty within the states, with high levels of sanitation and low poverty resulting in a 

decreased effect of PDSI and conflict. This showed that better sustainable development in the state 

acted as a buffer to social and environmental extremes and allowed people to adapt to these events 

better, due to less pre-existing vulnerability.  

 

According to the World Bank28,  up to 47.3% (98 million people) of Nigeria’s population live in 

multidimensional poverty. Poverty is a well-known risk factor for cholera, which is considered a 

disease of inequity29. Poverty can result in several risk factor cascades, which puts people at risk of 

not just cholera but several other diseases. Examples of these risks include poor access to WASH10, 

inadequate housing30, malnutrition31 and overcrowding32. The expansion of sustainable 

development helps to reduce these risks and meeting or exceeding the Sustainable Development 

Goals would see significant gains in global health33. People living in poverty have fewer options and 

abilities to adapt to new and extreme situations, becoming trapped in the affected area or displaced 

to areas where their needs are not met. This provides further evidence for the need to reduce pre-

existing vulnerabilities and their importance in terms of disasters adaptation and resilience34,35.  

 

Poverty when measured in monetary terms alone can create issues due to its impact on the risk 

factors stated and is an advantage of using the MPI as a poverty indicator. Nigeria’s cash transfer 

scheme has allowed many Nigerians to meet the household income limit for poverty but there is a 

case for turning these funds and attention onto structural reform36. Nigeria’s nationwide average 

access to sanitation is around 25%, therefore using these funds to increase access to sanitation 

may significantly improve health37. Here we show the need for expansion of sanitation to reduce 

cholera risks and the shocks of extremes on its transmission. In a recent review on the 

implementation of non-pharmaceutical cholera interventions, there was generally a high acceptance 

of several WASH interventions. Despite this, education was key and building community 

relationships is needed to achieve this, such as understanding cultural differences and barriers38. 
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This is especially important in areas with conflict, where trust between the government and residents 

may have been lost31.  

 

Since 2002, Boko Haram (and Islamic State’s West Africa Province) has been gaining a foothold 

and territory in northeastern Nigeria which has resulted in ongoing conflict, unrest and oppression 

of civilians39. Currently 5,860,200 people live in Borno state40, where the fighting has been most 

concentrated. Millions of people live in conflict-affected populations and there is an increasing 

proportion of people living in early post conflict areas41. This is significant in terms of health and 

disease, as conflict has known risk factors for cholera along with several other diseases20,2242 and 

can worsen several of the social risk factors discussed above. Here, conflict was included in the 

best fit model and in some states, highly influential in terms of cholera transmission. Providing 

services and protecting health in conflict zones is especially challenging and coordination across 

organisations in reporting and operations are needed to streamline resources and prevent 

duplication of services43. The traffic light system used here helps highlight what is needed in these 

situations to protect health and when outbreaks may occur.    

 

PDSI and several of the other drought indices tested here showed high variable importance, this 

resulted in only small changes altering R values in some states. When analysing spatial differences 

between R and PDSI, the relationship appears to be multi-directional. Furthermore, access to 

sanitation and poverty were important in how PDSI impacted R, similar to the impacts of conflict. 

There is significant evidence to show that both droughts19,26 and floods27,44 can cause cholera 

outbreaks and elevated transmission. Mechanisms through which this can occur includes a lack of 

water increasing risky drinking water behaviour and floods allowing for the dispersal of the 

pathogen. Nigeria has a varied climate across the country and therefore both extremes are likely to 

be felt by those living there. Cholera outbreaks have been seen in both the rainy and the dry season 

and the traffic light system shows potential triggers for when extra vigilance is needed. This 

immediate insight is important, while continually working to offset cholera risks from extremes 

through sanitation and hygiene, which can take significant time and resources45.  
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Despite adapting the methodology to account for this, a potential limitation may be lagged effects 

of the covariates on cholera46,47. Both long-term and short-term changes to the population may take 

time before changes in cholera transmission are evident. While some disasters may be considered 

slow-onset or rapid-onset and therefore defining their beginning is subjective. Despite this, the 

incubation period of cholera is short (<2 hours - 5 days) and previous research has suggested that 

acute shocks cause increases in cholera cases within the first week of the event48,50. Calculating R 

on monthly sliding windows and using monthly covariate data helped to reduce potential lagged 

effects on the R values, which would be captured if the one-week lag estimate is applicable here. 

Although beyond the scope of the research presented here, the impacts of different lagged periods 

for several of these covariates and cholera outbreaks is an essential area of future research.  

 

Cholera is considered an under-reported disease, and the lack of symptomatic cases means that 

many are likely to be missed. There are also incentives not to report cholera cases, due to travel 

restrictions and isolations and implications for trade and tourism51. However, the robust reporting 

system in Nigeria suggests that the data used here is the best available for analysis. While during 

times of crisis, cholera may be over-reported or more accurately represent the cholera burden in 

the area. This is due to the presence of cholera treatment centres and external assistance from 

humanitarian aid and non-governmental organization, detecting cases that may have been missed 

previously20.  

The Global Task Force on Cholera Control’s 2030 target of reducing cholera deaths by 90%52 will 

require acceleration of current efforts and significant commitment. Increasing cholera research and 

data are important in achieving this and the traffic light system for cholera risk presented here sheds 

light on ways to reduce cholera outbreaks in fragile settings. The results highlight the importance of 

extreme events on cholera transmission and how reducing pre-existing vulnerability could offset the 

resultant cholera risk. This research is the first time several disaster types and measures of 

population vulnerability have been evaluated together quantitatively in terms of cholera. We hope it 
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shows the importance of doing so to gain a more accurate understanding of disease outbreaks in 

complex emergencies. Nigeria is currently working towards its ambitious goal of lifting 100 million 

people out of poverty by 203036. If it is successful, this could significantly improve health, increase 

quality of life and decrease the risks of social and environmental extremes.  

 

Methods  

Datasets 

Cholera data were obtained from NCDC and contained linelist data for 2018 and 2019. The data 

were age and sex-disaggregated, on a daily temporal scale and to administrative level 4. The data 

also provided information on the outcome of infection and whether the patient was hospitalised. 

The data were subset to only include cases which were confirmed either by rapid diagnostic tests 

or by laboratory culture. 

 

A range of covariates were investigated based on previously understood cholera risk factors. 

Covariates included conflict (monthly, daily)53, drought (Palmers Drought Severity Index, 

Standardised Precipitation Index)54,55, IDPs (households, individuals)56, WASH (improved drinking 

water, piped water, improved sanitation, open defecation)57, healthcare (total facilities, facilities per 

100,000)53, population (total, density)58 and poverty (MPI, headcount ratio in poverty, intensity of 

depravation among the poor)53. 

 

The covariate data were on a range of spatial and temporal scales, therefore administrative level 

one (state) was set as the spatial granularity (data on a finer spatial scale were attributed to the 

upper level) and the smallest temporal scale possible was used for covariate selection (repeating 

values if data were not available to the lower level). The datasets and methods used here were 

approved by Imperial College Research Ethics Committee and a data sharing agreement through 

NCDC and the authors.  
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Incidence and R 

The 2018 and 2019 positive linelist data were used to calculate incidence. Incidence was calculated 

on a daily scale by taking the sum of the data entry points by state and date of onset of symptoms. 

This created a new dataset with a list of dates and corresponding incidence for each state. All 

analysis was completed in R Studio version 4.1.0. (packages !incidence”59 & !EpiEstim”60). 

 

Using the incidence data, R was calculated with the parametric standard interval method, which 

uses the mean and the standard deviation of the standard interval (SI). The SI for cholera is well-

documented and there are several estimates in the literature61-63. The parametric method was used 

(vs the non-parametric which uses a discrete distribution), as assumptions can be made here about 

data distribution and parameters. SI is the time from illness onset in the primary case to onset in the 

secondary case and therefore impacts the evolution of the epidemic and speed of transmission. To 

account for several reported SI values for cholera, a sensitivity analysis was used including 3, 5 and 

8 days with a standard deviation of 8 days. 

 

Estimating R too early in the epidemic increases error, as R calculations are less accurate when 

there are lower incidence cases over the time window. A way to understand how much this impacts 

R values is to use the coefficient of variation (CV), which is a measure of how spread out the dataset 

values are relative to the mean. The lower the value, the lower the degree of variation in the data 

and a posterior coefficient of variation was set to 0.3 (or less) as standard, based on previous work60. 

To reach the CV threshold, calculation start date for each state was altered until the threshold CV 

was reached. States with <40 cases were removed, as states with fewer cases did not have high 

enough incidence across the time window to reach the CV threshold.  

 

Additionally, the R values were calculated over monthly sliding windows, to ensure sufficient cases 

in the time window. Daily and two-week sliding windows did not have incidence values sufficient to 

reach the posterior CV threshold. Monthly data were the most common temporal data granularity 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted March 21, 2022. ; https://doi.org/10.1101/2022.03.21.22272693doi: medRxiv preprint 

https://doi.org/10.1101/2022.03.21.22272693
http://creativecommons.org/licenses/by-nd/4.0/


 

 

used in the model and many of the covariates could have potential lag effects on cholera. Several 

of the tested covariates may not have impacted cholera immediately and using monthly data and 

calculating R over monthly sliding windows helped to account for some of this uncertainty.  

 

Covariate Selection and Random Forest Models  

The covariates listed above (conflict, drought, IDPs, WASH, healthcare, population and poverty) 

were run through a covariate selection process64,65. The selection process removes covariates not 

significantly associated with the outcome variable (R) and clusters the remaining based on the 

degree of correction between them. The threshold for clustering was set to an absolute pairwise 

correlation of above 0.75 and the aim was to reduce multi-linearity in the final model. R was chosen 

as the outcome variable, rather than incidence (which has less implicit assumptions) as it is more 

descriptive, providing information on the evolution of the epidemic (e.g., R = >1, cases are 

increasing) and not a single time point of disaster burden. 

 

Using the subset list of covariates, the aim was to fit a model which could accurately predict R 

values under changing conditions. Supervised machine learning algorithms such as decision-

making algorithms, are now a widely used method. They work by choosing random data points from 

a training set and building a decision tree to predict the expected value given the attributes of these 

points. Transparency is increased by allowing the number of trees (estimators), number of features 

at each node split and resampling method to be specified. Random forest then combines several 

decision trees, combining predictions from multiple algorithms into one model, this makes them 

more accurate, while also dealing well with interactions and non-linear relationships66,67. 

 

Random forest variable importance was tested on all the covariates which were not removed from 

the covariate selection process. Variable importance is a measure of the cumulative decreasing 

mean standard error each time a variable is used as a node split in a tree. The remaining error left 

in predictive accuracy after a node split is known as node impurity and a variable which reduces 

this impurity is considered more important.  
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A training and testing dataset were created at a proportion of 70% training, to train the model and 

test the predictions. Covariates were fit to all three R values (SI 3, 5 & 8 days) on a daily temporal 

scale and to administrative level 1. Random forest regression models were used (vs classification) 

due to the continuous outcome variable. The parameters for training were set to repeated cross-

validation for the resampling method, with ten resampling interactions and five complete sets of 

folds to complete. The model was tuned with an optional number of predictors at each split set to 2, 

based on the lowest out-of-bag (OOB) error rate and the evaluation metric used was RMSE 

(package !caret”68). 

 

A hierarchical stepwise analysis was used to fit the models taking into consideration the covariate 

clustering and variable importance. One covariate was selected from each cluster, and different 

combinations tested until the best-fit model. Models were assessed against each other in terms of 

predictive accuracy, based upon R² and RMSE. Predictions were then calculated on the testing 

dataset to compare incidence-based vs covariate-based R values, evaluations were built on 

multiple metrics including correlation, R² and RMSE. Despite random forest models being 

accurate and powerful at predicting, they are easily over-fit and therefore calculating error for the 

predictions is important. Error was calculated using mean absolute error (MAE), where yi is the 

prediction and xi  is the true value, with the total number of data points as n.  

 

Nowcasting & Exposure Periods  

The best fit model in terms of predictive power according to the metrics above, was used to predict 

R for the remaining states which did not have sufficient reported cases to calculate R using 

incidence or had missing data for certain dates. Data for the best fit model covariates were collected 

for the states and missing dates from the sources given above. The data for the selected covariates 

are shown spatially in Supplementary Figure 1. 

𝑀𝐴𝐸 =
∑!"#$ |𝑦! − 𝑥!|

𝑛
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To understand the conditions needed to raise R values from less than 1 to more than 1, the data 

were split into exposure periods, to investigate the relationship between the covariates and R in 

these different time periods. Historical periods were set by splitting the data into monthly periods for 

2018 and 2019 and by the R threshold being equal to or more than 1 (R = >1) or less than 1 (R = 

<1). For each of the 48 historical exposure periods, the mean, standard deviation, median and 

standard error were calculated for each covariate. This was to understand how the mean and 

median covariate values changed when R was over or less than 1. The two thresholds were also 

compared by state to investigate any spatial differences in the historical covariate values.  

 

Hypothetical exposure periods were then created based on these findings, using the median values 

and standard error for R = >1 and R = <1 as a starting point for the red exposure period and green 

exposure period, respectively. The amber exposure period was taken as a mid-point between the 

two. The best fit model was used to predict how this would impact R and the exposure periods 

altered as needed. This provided thresholds and triggers for outbreaks in Nigeria, creating a traffic 

light system for cholera risk.  

 

To understand spatial differences, six states had additional sub-national analysis and included 

Borno, Kaduna, Nasarawa, Ekiti, Lagos and Kwara. These states were selected based on their 

relationship with conflict or PDSI and R (clear positive/clear negative relationship). Three 

hypothetical exposure periods (red, amber and green) for either conflict or PDSI were produced for 

these states, keeping all the other covariates at the R = >1 mean values. This was to understand 

spatial differences in these two covariates and understand the threshold needed to push R values 

below 1. 

 

References  

1. Ali, M., Nelson, A. R., Lopez, A. L. & Sack, D. A. Updated global burden of cholera in endemic 

countries. PLoS Neglect. Trop. Dis. 9, e0003832 (2015). 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted March 21, 2022. ; https://doi.org/10.1101/2022.03.21.22272693doi: medRxiv preprint 

https://doi.org/10.1101/2022.03.21.22272693
http://creativecommons.org/licenses/by-nd/4.0/


 

 

2. King, A. A., Ionides, E. L., Pascual, M. & Bouma, M. J. Inapparent infections and cholera 

dynamics. Nature 454, 877-880 (2008). 

3. Lessler, J. et al. Mapping the burden of cholera in sub-Saharan Africa and implications for 

control: an analysis of data across geographical scales. Lancet 391, 1908-1915 (2018). 

4. Dalhat, M. M. et al. Descriptive characterization of the 2010 cholera outbreak in Nigeria. BMC 

Public Health. 14, 1-7 (2014). 

5. Ngwa, M. C. et al. The multi-sectorial emergency response to a cholera outbreak in internally 

displaced persons camps in Borno state, Nigeria, 2017. BMJ Glob. Health. 5, e002000 (2020). 

6. Sule, I. B., Yahaya, M., Aisha, A. A., Zainab, A. D., Ummulkhulthum, B. & Nguku, P. Descriptive 

epidemiology of a cholera outbreak in Kaduna State, Northwest Nigeria, 2014. Pan Afr. Med. 

J. 27, (2017). 

7. Adeneye, A. K. et al. Risk factors associated with cholera outbreak in Bauchi and Gombe States 

in North East Nigeria. J. Public Health Epidemiol. 8, 286-296 (2016). 

8. De Magny, G. C., Guégan, J. F., Petit, M. & Cazelles, B. Regional-scale climate-variability 

synchrony of cholera epidemics in West Africa. BMC Infect. Dis. 7, 1-9 (2007). 

9. Abdussalam, A. F. Modelling the climatic drivers of cholera dynamics in Northern Nigeria using 

generalised additive models. Int. J. Geogr. Environ. Manage. 2, 84-97 (2016). 

10. Gidado, S. et al. Cholera outbreak in a naïve rural community in Northern Nigeria: the 

importance of hand washing with soap, September 2010. Pan Afr. Med. J. 30 (2018).  

11. Hutin, Y., Luby, S., Paquet, C. A large cholera outbreak in Kano City, Nigeria: the importance of 

hand washing with soap and the danger of street-vended water. J. Water Health. 1, 45-52 

(2003).  

12. Dan-Nwafor, C. C. et al. A cholera outbreak in a rural north central Nigerian community: an 

unmatched case-control study. BMC Public Health 19, 1-7 (2019). 

13. Leckebusch, G. C. & Abdussalam, A. F. Climate and socioeconomic influences on interannual 

variability of cholera in Nigeria. Health Place. 34, 107-17 (2015).  

 . CC-BY-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted March 21, 2022. ; https://doi.org/10.1101/2022.03.21.22272693doi: medRxiv preprint 

https://doi.org/10.1101/2022.03.21.22272693
http://creativecommons.org/licenses/by-nd/4.0/


 

 

14. United Nations Statistical Division. Millennium Development Goal Indicators. 

https://unstats.un.org/unsd/mdg/SeriesDetail.aspx?srid=580 (2015). 

15. Ali, M. et al. The global burden of cholera. Bull. World Health Organ. 90, 209-218 (2012). 

16. Anbarci, N., Escaleras, M. & Register, C. A. From cholera outbreaks to pandemics: the role of 

poverty and inequality. Working Paper 05003 (Florida Atlantic University, FL, 2006). 

17. World Bank Group. A Wake Up Call: Nigeria Water Supply, Sanitation, and Hygiene Poverty 

Diagnostic. World Bank; 2017 Aug.  

18. Elimian, K.O. et al. Descriptive epidemiology of cholera outbreak in Nigeria, January–November, 

2018: implications for the global roadmap strategy. BMC Public Health 19, 1-11 (2019). 

19. Charnley, G. E. C., Kelman, I., Green, N., Hinsley, W., Gaythorpe, K. A. M. & Murray, K. A. 

Exploring relationships between drought and epidemic cholera in Africa using generalised linear 

models. BMC Infect. Dis. 21, 1-12 (2021). 

20. Charnley, G. E. C., Jean, K., Kelman, I., Gaythorpe, K. A. M. & Murray, K. A. Using self-

controlled case series to understand the relationship between conflict and cholera in Nigeria and 

the Democratic Republic of Congo. Preprint at https://doi.org/10.1101/2021.10.19.21265191 

(2021). 

21. Charnley, G. E. C., Kelman, I., Gaythorpe, K. A. M. & Murray, K. A. Traits and risk factors of 

post-disaster infectious disease outbreaks: a systematic review. Sci. Rep. 11, 1-4 (2021). 

22. Wells, C. R. et al. The exacerbation of Ebola outbreaks by conflict in the Democratic Republic 

of the Congo. PNAS. 116, 24366-72 (2019). 

23. Carter, S. E. et al. What questions we should be asking about COVID-19 in humanitarian 

settings: perspectives from the social sciences analysis cell in the Democratic Republic of the 

Congo. BMJ Glob. Health. 5, e003607 (2020).  

24. Musa, S. S. et al. Dual tension as Nigeria battles cholera during the COVID-19 pandemic. Clin. 

Epidemiology Glob Health. 12 (2021). 

25. Elimian, K. O. et al. What are the drivers of recurrent cholera transmission in Nigeria? Evidence 

from a scoping review. BMC Public Health. 20, 1-3 (2020). 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted March 21, 2022. ; https://doi.org/10.1101/2022.03.21.22272693doi: medRxiv preprint 

https://doi.org/10.1101/2022.03.21.22272693
http://creativecommons.org/licenses/by-nd/4.0/


 

 

26. Rieckmann, A., Tamason, C. C., Gurley, E. S., Rod, N. H. & Jensen, P. K. Exploring droughts 

and floods and their association with cholera outbreaks in sub-Saharan Africa: a register-based 

ecological study from 1990 to 2010. Am. J. Trop. Med. Hyg. 98, 1269 (2018). 

27. Jutla, A. et al. Environmental factors influencing epidemic cholera. Am. J. Trop. Med. Hyg. 89, 

597 (2013). 

28. World Bank. Tackling poverty in multiple dimensions: A proving ground in Nigeria. 

https://blogs.worldbank.org/opendata/tackling-poverty-multiple-dimensions-proving-ground-

nigeria (2021). 

29. Talavera, A. & Perez, E. M. Is cholera disease associated with poverty?. J. Infect. in Dev. 

Countr. 3, 408-11 (2009). 

30. Penrose, K., Castro, M. C., Werema, J. & Ryan, E. T. Informal urban settlements and cholera 

risk in Dar es Salaam, Tanzania. PLoS Neglect. Trop. Dis. 4, e631 (2010). 

31. Charnley, G. E. C., Kelman, I. & Murray, K. A. Drought-related cholera outbreaks in Africa and 

the implications for climate change: a narrative review. Pathog. Glob. Health. 1-10 (2021). 

32. Ververs. M. & Narra, R. Treating cholera in severely malnourished children in the Horn of Africa 

and Yemen. Lancet. 390, 1945-6 (2017). 

33. von Schirnding Y. Health and sustainable development: can we rise to the challenge?. Lancet. 

360, 632-7 (2002).  

34. Masozera, M., Bailey, M. & Kerchner, C. Distribution of impacts of natural disasters across 

income groups: A case study of New Orleans. Ecol. Econ. 63, 299-306 (2007). 

35. Lahsen, M. & Ribot, J. Politics of attributing extreme events and disasters to climate change. 

Wiley Interdiscip. Rev. Clim. Change. 13, e750 (2022). 

36. Onyeiwu, S. Nigeria’s poverty profile is grim. It’s time to move beyond handouts. 

https://theconversation.com/nigerias-poverty-profile-is-grim-its-time-to-move-beyond-handouts-

163302 (2021). 

37. Ajisegiri, B. et al. Geo-spatial modeling of access to water and sanitation in Nigeria. J. Water 

Sanit. Hyg. Dev. 9, 258-80 (2019). 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted March 21, 2022. ; https://doi.org/10.1101/2022.03.21.22272693doi: medRxiv preprint 

https://doi.org/10.1101/2022.03.21.22272693
http://creativecommons.org/licenses/by-nd/4.0/


 

 

38. Polonsky, J. A. et al. Feasibility, acceptability, and effectiveness of non-pharmaceutical 

interventions against infectious diseases among crisis-affected populations: a scoping review. 

Infect. Dis. Poverty. 11, 1-9 (2022). 

39. Falode, J. A. The nature of Nigeria"s Boko Haram war, 2010-2015: A strategic analysis. 

Perspect. Terror. 10, 41-52 (2016). 

40. Borno State Government. Population. https://bornostate.gov.ng/population/ (2016). 

41. Garfield, R. M., Polonsky, J. & Burkle, F. M. Changes in size of populations and level of conflict 

since World War II: implications for health and health services. Disaster Med Public Health Prep. 

6, 241-6 (2012). 

42. Federspiel F, Ali M. The cholera outbreak in Yemen: lessons learned and way forward. BMC 

public health. 2018 Dec;18(1):1-8. 

43. Ricau, M., Lacan, L., Ihemezue, E., Lantagne, D. & String, G. Evaluation of monitoring tools 

for WASH response in a cholera outbreak in northeast Nigeria. J. Water Sanit. Hyg. Dev. 11, 

972-82 (2021). 

44. Sidley, P. Floods in southern Africa result in cholera outbreak and displacement. BMJ 336, 471 

(2008). 

45. Onwe, F. I., Agu, A. P., Umezuruike, D. & Ogbonna, C. Factors responsible for the 2015 

Cholera outbreak and spread in Ebonyi state, Nigeria. J. Epidemiol. Soc. Nigeria. 2, 53-58 

(2018).  

46. Reyburn, R., Kim, D. R., Emch, M., Khatib, A., Von Seidlein, L. & Ali, M. Climate variability and 

the outbreaks of cholera in Zanzibar, East Africa: a time series analysis. Am. J. Trop. Med. Hyg. 

84, 862 (2011). 

47. Emch, M., Feldacker, C., Yunus, M., Streatfield, P. K., DinhThiem, V. & Ali, M. Local 

environmental predictors of cholera in Bangladesh and Vietnam. Am. J. Trop Med. Hyg. 78, 823-

32 (2008). 

48. Fredrick, T. et al. Cholera outbreak linked with lack of safe water supply following a tropical 

cyclone in Pondicherry, India, 2012. J. Health. Popul. Nutr. 33, 31 (2015). 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted March 21, 2022. ; https://doi.org/10.1101/2022.03.21.22272693doi: medRxiv preprint 

https://doi.org/10.1101/2022.03.21.22272693
http://creativecommons.org/licenses/by-nd/4.0/


 

 

49. Jeandron, A. et al. Water supply interruptions and suspected cholera incidence: a time-series 

regression in the Democratic Republic of the Congo. PLoS Med. 12, e1001893 (2015).  

50. Bhunia, R. & Ghosh, S. Waterborne cholera outbreak following cyclone Aila in Sundarban area 

of West Bengal, India, 2009. Trans R Soc Trop. 105, 214-219 (2011). 

51. Ganesan, D., Gupta, S. S. & Legros, D. Cholera surveillance and estimation of burden of 

cholera. Vaccine 38, A13-7 (2020).  

52. Global Task Force on Cholera Control. Roadmap 2030. https://www.gtfcc.org/about-

gtfcc/roadmap-2030/ (2020).  

53. HDX. The Humanitarian Data Exchange. https://data.humdata.org (2021).  

54. University of East Anglia. Climate Research Unit. https://www.uea.ac.uk/groups-and-

centres/climatic-research-unit (2020). 

55. CEDA. High resolution Standardized Precipitation Evapotranspiration Index (SPEI) dataset for 

Africa. https://catalogue.ceda.ac.uk/uuid/bbdfd09a04304158b366777eba0d2aeb (2019). 

56. IOM. DTM Nigeria. https://displacement.iom.int/nigeria (2021). 

57. JMP. Nigeria. https://washdata.org (2020). 

58. WorldBank. Data Bank Subnational Population. 

https://databank.worldbank.org/source/subnational-population (2021). 

59. Kamvar, Z. N., Cai, J., Pulliam, J. R. C., Schumacher, J. & Jombart, T. Epidemic curves made 

easy using the R package incidence https://doi.org/10.12688/f1000research.18002.1 (2019). 

60. Cori, A. EpiEstim: Estimate Time Varying Reproduction Numbers from Epidemic Curves. R 

package version 2.2-4. https://CRAN.R-project.org/package=EpiEstim (2021). 

61. Azman, A. S. et al. Urban cholera transmission hotspots and their implications for reactive 

vaccination: evidence from Bissau city, Guinea bissau. PLoS Neglect Trop. Dis. 6, e1901 (2012). 

62. Azman, A. S. et al. Population-level effect of cholera vaccine on displaced populations, South 

Sudan, 2014. Emerg. Infect. Dis. 22, 1067 (2016).  

63. Kahn, R. et al. Incubation periods impact the spatial predictability of cholera and Ebola outbreaks 

in Sierra Leone. PNAS. 117, 5067-73 (2020). 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted March 21, 2022. ; https://doi.org/10.1101/2022.03.21.22272693doi: medRxiv preprint 

https://doi.org/10.1101/2022.03.21.22272693
http://creativecommons.org/licenses/by-nd/4.0/


 

 

64. Garske, T. et al. Yellow fever in Africa: estimating the burden of disease and impact of mass 

vaccination from outbreak and serological data. PLoS Med. 11, e1001638 (2014). 

65. Gaythorpe, K. A. M. et al. The global burden of yellow fever. Elife 10, e64670 (2021).  

66. Breiman, L. Random forests. Mach. Learn. 45, 5-32 (2001). 

67. Biau, G. Analysis of a random forests model. J. Mach. Learn. Res. 13, 1063-95 (2012). 

68. Kuhn, M. caret: Classification and Regression Training. https://CRAN.R-

project.org/package=caret (2021). 

 

Acknowledgements  

We would like to thank and acknowledgement the Nigeria Centre for Disease Control for providing 

the data used here and those who work for the NCDC who collected the data in the field. We would 

also like to thank Anwar Musah (University College London) and Kelly Elimian (Karolinska Institutet) 

for their guidance on cholera data for Nigeria and facilitating the partnership with NCDC. This work 

was supported by the Natural Environmental Research Council [NE/S007415/1], as part of the 

Grantham Institute for Climate Change and the Environment"s (Imperial College London) Science 

and Solutions for a Changing Planet Doctoral Training Partnership. We also acknowledge joint 

Centre funding from the UK Medical Research Council and Department for International 

Development [MR/R0156600/1].  

 

Author Contributions  

GECC was part of the study design and conceptualisation of ideas, ran the analysis, wrote and 

finalised the manuscript and incorporated any feedback. SY & CO provided the cholera datasets, 

facilitated the data sharing agreement and provided expertise on cholera in Nigeria. IK offered 

expertise on disasters and health, provided expertise in the methodology and revised several 

drafts. KAMG was part of the study design and conceptualisation of ideas, provided expertise in 

the methodology, provided supervision and revised several drafts. KAM was part of the study 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted March 21, 2022. ; https://doi.org/10.1101/2022.03.21.22272693doi: medRxiv preprint 

https://doi.org/10.1101/2022.03.21.22272693
http://creativecommons.org/licenses/by-nd/4.0/


 

 

design and conceptualisation of ideas, provided expertise in the methodology, provided 

supervision and revised several drafts. All authors have read and approved the manuscript.  

 

Competing interests  

The authors declare no competing interests.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted March 21, 2022. ; https://doi.org/10.1101/2022.03.21.22272693doi: medRxiv preprint 

https://doi.org/10.1101/2022.03.21.22272693
http://creativecommons.org/licenses/by-nd/4.0/


 

 

Supplementary Information  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

a b 

c d 

Supplementary Figure 1: Average values of the four covariates included in the best fit 
model. By state, covariates included: a, monthly conflict events, b, Palmers Drought Severity 
Index (PDSI), c, percentage access to sanitation and d, Multidimensional Poverty Index (MPI).  
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Supplementary Figure 2: Mean and range values for the three hypothetical conflict 
scenarios. The other three covariate values are kept the same at the mean value for R = >1 and 
the predicted R values mean and range for a, Borno and b, Kaduna.  
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Supplementary Figure 3: Mean and range values for the three hypothetical PDSI 
scenarios. The other three covariate values are kept the same at the mean value for R = >1 
and the predicted R values mean and range for the states which found drier conditions caused 
R = >1. a, Kwara and b, Nasarawa.  

a 
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Supplementary Figure 4: Mean and range values for the three hypothetical PDSI 
scenarios. The other three covariate values are kept the same at the mean value for R = >1 and 
the predicted R values mean and range for the states which found wetter conditions caused R = 
>1. a, Ekiti and b, Lagos.  

a 
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