
Electrocardiography-Based Prediction of Sudden Cardiac Death in Heart Failure Patients: 
Application of Artificial Intelligence 

Running Title: Prediction of SCD using ECG-Based AI in HF 

 
Yasuyuki Shiraishi, MD1,2*, Shinichi Goto, MD3*, Nozomi Niimi, MD1, 

Yoshinori Katsumata, MD2, Ayumi Goda, MD4, Makoto Takei, MD5, Mike Saji, MD6, 
Yosuke Nishihata, MD7, Motoaki Sano, MD1, Keiichi Fukuda, MD1, Takashi Kohno, MD4, 

Tsutomu Yoshikawa, MD6, and Shun Kohsaka, MD1 
 

1Department of Cardiology, Keio University School of Medicine, Tokyo, Japan; 2Institute for 
Integrated Sports Medicine, Keio University School of Medicine, Tokyo, Japan; 3One Brave Idea 

and Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s 
Hospital, Boston, MA, USA; 4Department of Cardiovascular Medicine, Kyorin University School 
of Medicine, Tokyo, Japan; 5Department of Cardiology, Saiseikai Central Hospital, Tokyo, Japan; 
6Department of Cardiology, Sakakibara Heart Institute, Tokyo, Japan; 7Department of Cardiology, 

St. Luke’s International Hospital, Tokyo, Japan 

*Y.S. and S.G. contributed equally to this manuscript. 

 
Word count: 5,539 words (including title page, abstract, text, reference, table, and figure 
legend) 
Number of Tables: 1 
Number of Figures: 4 
Number of Supplemental Materials: 1 method, 2 tables, 7 figures 

 

Address for Correspondence: 
Yasuyuki Shiraishi, MD, PhD, and Yoshinori Katsumata, MD, PhD 
Department of Cardiology 
Keio University School of Medicine 
35 Shinanomachi Shinjuku-ku, Tokyo 160-8582, Japan 
Tel.: +81-3-3353-1211 
Fax: +81-3-5843-6167 
E-mail: yasshiraishi@keio.jp 
  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 21, 2022. ; https://doi.org/10.1101/2022.03.20.22272659doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2022.03.20.22272659
http://creativecommons.org/licenses/by-nc-nd/4.0/


  1 
 

ABSTRACT 

Background: Although predicting sudden cardiac death (SCD) in patients with heart failure 

(HF) is critical, the current predictive model is suboptimal. Electrocardiography-based artificial 

intelligence (ECG-AI) algorithms may better stratify risk. We assessed whether the ECG-AI 

index established here could better predict SCD in HF and whether the ECG-AI index and 

conventional predictors of SCD can improve SCD stratification. 

Methods: In a prospective observational study, four tertiary care hospitals in metropolitan 

Tokyo that enrolled 2,559 patients hospitalized with HF who were successfully discharged after 

acute decompensation. ECG data collected during the index hospitalization were extracted from 

the hospitals’ electronic medical record systems. The ECG-AI index is the output from an AI 

model that was trained to predict the risk of SCD based on ECG input. The association between 

ECG-AI index and SCD was evaluated with adjustment for left ventricular ejection fraction 

(LVEF), New York Heart Association (NYHA) class, and competing risk of non-SCD. The 

outcome measure was a composite of SCD and implantable cardioverter-defibrillator activation. 

The ECG-AI index was established using a derivation (hospital A) and validation cohort 

(hospital B), and its ability was evaluated in a test cohort (hospitals C and D). 

Results: The ECG-AI index plus classical predictive guidelines (i.e., LVEF ≤ 35%, NYHA class 

II–III) significantly improved the discriminative value of SCD (area under the receiver operating 

characteristic curve, 0.66 vs. 0.59; p=0.017; Delong’s test) with good calibration (p=0.11; 

Hosmer–Lemeshow test) and improved net reclassification (36%; 95% confidence interval, 

9%–64%; p=0.009). The Fine-Gray model considering the competing risk of non-SCD 

demonstrated that the ECG-AI index was independently associated with SCD (adjusted 

sub-distributional hazard ratio, 1.25; 95% confidence interval, 1.04–1.49; p=0.015). An 

increased proportional risk of SCD vs. non-SCD with increasing ECG-AI index was also 

observed (low, 16.7%; intermediate, 18.5%; high, 28.7% risk; p for trend = 0.023). Similar 

findings were observed in patients aged ≤75 years with a non-ischemic etiology and an LVEF 

>35%. 
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Conclusions: Among patients with HF, ECG-based AI significantly improved the SCD risk 

stratification compared to the conventional indication for implantable cardioverter-defibrillators 

inclusive of LVEF and NYHA class. 

 

Key Words: artificial intelligence; electrocardiogram; heart failure; left ventricular ejection 

fraction; sudden cardiac death 

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 21, 2022. ; https://doi.org/10.1101/2022.03.20.22272659doi: medRxiv preprint 

https://doi.org/10.1101/2022.03.20.22272659
http://creativecommons.org/licenses/by-nc-nd/4.0/


  3 
 

INTRODUCTION 

Heart failure (HF) is a serious clinical condition associated with poor patient quality of life and 

premature death; approximately 50% of patients with HF die within 5 years of diagnosis.1,2 A high 

incidence of HF is observed in Asia (1.2%–6.7%) and Western countries (1%–14%),2-5 and as the 

prevalence is expected to increase, HF creates a substantial global public health burden. Sudden 

cardiac death (SCD), typically caused by lethal arrhythmias, is reportedly responsible for 

approximately 50% of all cardiovascular deaths in patients with HF,6,7 and contributes substantially 

to this health burden. Although implantable cardioverter-defibrillators (ICDs) are used to reduce 

the risk of SCD, the implantation procedure is invasive, and approximately 50% of patients with 

ICD implantation experience inappropriate shocks, reducing quality of life and increasing mortality 

rates.8,9 Therefore, the accurate assessment of SCD risk in patients with HF is paramount for 

clinical decision-making to ensure appropriate device application. 

Current approaches to assessing SCD risk are mainly based on left ventricular ejection 

fraction (LVEF; ≤ 35%) and the New York Heart Association (NYHA) functional classification 

and remain suboptimal,10,11 resulting in an over- and underuse of ICD.12 Furthermore, despite the 

fact that SCD also occurs frequently in patients without severe left ventricular dysfunction, there is 

currently no risk stratification algorithm for SCD in patients with an LVEF > 35%.13 Artificial 

intelligence (AI) is a promising technology for deriving a statistical model from information-rich 

yet complex datasets.14 Electrocardiography-based AI (ECG-AI) models constructed by 

convolutional neural networks (CNNs) have shown potential to detect disease,15 predict cardiac 

function,16-18 and estimate prognosis.19 

Therefore, we hypothesized that AI models trained on ECG will enable the detection of 

important features for classifying the risk of SCD and improve the risk stratification of patients 

with HF, allowing for a more appropriate application of medical resources. Using data from a 

prospective observational study, we aimed to assess the ability of ECG-based AI to predict the 

incidence of SCD among patients with HF who were hospitalized for acute decompensation, 

required urgent treatment, and were successfully discharged. 
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METHODS 

Data Source and Data Collection 

The design of the West Tokyo Heart Failure Registry (WET-HF) has been described previously 

(eMethod 1 in the Supplement).20,21 Using data from this prospective observational study, we 

analyzed hospitalized patients with HF who required urgent treatment for acute decompensation in 

four tertiary care hospitals (Keio University Hospital, Kyorin University Hospital, Sakakibara 

Heart Institute, and St. Luke’s International Hospital) within the metropolitan area of Tokyo, Japan. 

All 12-lead ECG data of the patients were reported and extracted from the electronic medical 

record system of each institution. A standard 12-lead ECG has 15 voltage-time traces, including 

those 2.5 s in duration for all 12 leads and those 10 s in duration for leads V1, II, and V5. The ECG 

data were stored as measurements of the time-series voltage at a sampling rate of 500 Hz. Of the 

six hospitals, two were not included in the present study because the ECG data could not be 

extracted from the database. Patients who were registered in the remaining hospitals underwent 

ECG at the time of discharge. 

 

Study Cohort 

The patient selection and exclusion criteria as well as the group allocations are shown in eFigure 1 

in the Supplement. A total of 2,559 patients who were successfully discharged between 2006 and 

2017 were included in the present analysis. Patients were allocated to one of the three cohorts 

(derivation, validation, or test) based on the hospital of recruitment. To maximize the data for 

model training, the derivation cohort consisted of patients from two institutions, while the 

validation and test cohorts consisted of patients from only one institution. The ECG data of the 

patients at the time of discharge were reported and extracted from the electronic medical record 

systems. The latest data were included in the analysis when multiple ECG data were available for 

the same patient. By design, only one ECG reading was used for each patient; thus, no data from a 

single patient were allocated to more than two cohorts. 
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Model Training 

The AI model to predict 3-year SCD was constructed using a combination of CNN and long 

short-term memory (LSTM), a variant of recurrent neural network (RNN) (eFigure 2 in the 

Supplement). The details of the architecture have been published previously.22 The architecture 

consists of a neural network that stacks up four layers of one-dimensional CNN suitable for 

detecting “shape patterns” with a relatively low computational cost and two layers of LSTM 

suitable for learning time-series data in detail with a relatively high computational cost. The model 

was trained with the data from the derivation cohort to minimize the binary cross-entropy loss with 

the RMSProp optimizer with an initial learning rate of 0.0001. The performance of the model was 

calculated using data from the validation dataset at the end of each epoch. The final model was 

chosen as the one that performed best for 50 epochs in the validation cohort (eFigure 3 in the 

Supplement). To ensure that the model works on data that were never seen during training and the 

model selection procedure, the performance of the final model (i.e., the ECG-AI index) was 

calculated only once using data from the test cohort. Finally, we implemented gradient-weighted 

class activation mapping (Grad-CAM) to identify which regions in the ECG were based on the 

prediction of the neural network model (eFigure 4 in the Supplement). The model was trained 

using Tensorflow framework version 2.2.0, with Python version 3.6.8. 

 

Ascertainment and Classification of SCD or ICD Events 

The outcome measure was a composite of SCD and ICD activation (i.e., both shock and 

anti-tachycardia pacing). To ensure the accuracy of SCD assessment, the WET-HF registry was 

supported by a central study committee that adjudicated the mode of death. All deaths were 

reviewed by the investigators and then categorized into those in need of adjudication or those in 

which the mode of death could be defined clearly. Central committee members reviewed the 

abstracted records and adjudicated modes of death. SCD was defined as unexpected and otherwise 

unexplained death in a previously stable patient or death from documented or presumed cardiac 

arrhythmia without a clear non-cardiovascular cause, including patients who were comatose and 

then died after attempted resuscitation.23 Patients who died and had been out of contact for more 
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than 24� h were classified as “unknown death.”23 All other causes of death were classified as 

non-SCD. In addition, ICD activation was ascertained through device interrogation during regular 

check-ups or at a suspected instance of an arrhythmic episode and SCD. 

 

Statistical Analyses 

With respect to descriptive statistics, continuous variables are presented as median and interquartile 

range, while categorical variables are presented as frequency and percentage. For baseline 

characteristics, the three cohorts (i.e., derivation, validation, and test) were compared using the 

Kruskal–Wallis rank sum test for continuous variables and the chi-square test or Fisher’s exact test 

for categorical variables as appropriate. 

The discriminative ability of the conventional guideline–directed indication for ICD (i.e., 

LVEF ≤ 35% and NYHA class II–III) or its combination with the ECG-AI index (ECG-AI combined 

model) for predicting composite SCD events over 3 years was evaluated using the receiver operating 

characteristic area under the curve (ROC-AUC) with logistic regression analysis and the pairwise 

Delong’s test. The model’s calibration performance was assessed by comparing the predicted and 

observed probabilities for the four groups using the Hosmer–Lemeshow test. The model’s 

reclassification of the composite SCD events was also assessed as a net reclassification improvement 

using the 3-year estimated probabilities of composite SCD events. 

Next, the model’s discriminative abilities were assessed in the pre-specified subgroups (i.e., 

age (≥ 75 vs. < 75 years), sex (male vs. female), and etiology (ischemic vs. non-ischemic). In the 

subset of patients divided by LVEF, the discriminative ability of the ECG-AI index, as well as the 

frequencies of composite SCD vs. non-SCD events were assessed separately: ≤ 35%, 35%–50%, and 

≥ 50%. Furthermore, we performed sensitivity analyses using several LVEF cut-off values (45%, 

55%, and 60%). 

For the survival analysis, we evaluated the cumulative incidence of composite SCD and 

non-SCD events using the Aalen–Johansen estimator divided by the risk of the conventional 

guideline–directed indication for ICD and the ECG-AI combined model. The optimal thresholds for 
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risk categories (low vs. high risk) for ICD indication and the ECG-AI combined model were 

determined using the Youden index. We also examined the association between the ECG-AI index 

and composite SCD events using univariate and multivariate Fine and Gray models, which accounted 

for the competing risk of non-SCD. To assess the model’s discrimination of the survival analysis, we 

used Harrel’s c-statistics for the Fine and Gray model. We transformed the ECG-AI index (the output 

of the neural network model) to be standardized (mean = 0; standardized deviation = 1). A survival 

analysis that did not consider the competing risk was also performed with time-dependent 

ROC-AUC. 

To visualize the proportional risk of composite SCD vs. non-SCD events, we divided the 

patients into three groups according to tertile of predicted risk by the ECG-AI index alone and the 

ECG-AI combined model and calculated the prevalence of SCD and non-SCD events by group using 

a trend test. All analyses were conducted using the tidyverse, tidymodels, pROC, PredictABEL, 

survminer, cmprsk, riskRegression, and survival packages of R version 4.0.3 (R Foundation for 

Statistical Computing, Vienna, Austria, 2008). 

 

RESULTS 

Patient Characteristics 

The baseline characteristics of the derivation, validation, and test cohorts are shown in Table 1. 

The mean patient age and LVEF were 73–78 years and 40%–48%, respectively. The proportions of 

patients with NYHA functional class II–III were 75.2%, 92.4%, and 93.4% in the derivation, 

validation, and test cohorts, respectively. Medical therapies for HF were similarly implemented 

during the index hospitalization across each cohort: angiotensin-converting enzyme inhibitors or 

angiotensin receptor blockers, 62.3%–69.2%; beta blockers, 75.7%–79.2%; and mineralocorticoid 

receptor antagonists, 29.9%–34.9%. The prevalence of ICD implantation was low at 3.0%–8.4%. 

Overall, 236 (21.9%) deaths (48 [20.3%] SCDs and 188 [79.7%] non-SCDs) and 4 ICD activations 

occurred in 1,077 patients who were included in the test cohort in the 3 years following the 

hospitalization events. 
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ECG-Based AI Performance 

The ROC curve analysis, without considering time-to-event, showed a good discriminative ability 

for predicting SCD over 3 years of the ECG-AI index with 0.62 (95% confidence interval [CI], 

0.54–0.70) of ROC-AUC compared to the conventional guideline–directed indication for ICD. 

Figure 1A shows that the addition of the ECG-AI index to the conventional indication for ICD, 

inclusive of LVEF and NYHA class (ROC-AUC = 0.59 [95% CI, 0.52–0.66]), significantly 

improved the discrimination (ROC-AUC = 0.66 [95% CI, 0.58–0.73], p = 0.017, Delong’s test) 

compared to the conventional indication for ICD alone. The ECG-AI combined model showed 

good calibration (Figure 1B; p = 0.11, Hosmer–Lemeshow test). Furthermore, the addition of the 

ECG-AI index to the conventional indication for ICD improved the indices of reclassification (net 

reclassification improvement, 36% [9%–64%; p = 0.009]).  

Similar findings were observed in the pre-specified subgroup analyses (Figure 2). In 

particular, compared to the conventional indication for ICD, the ECG-AI combined model showed 

significantly better discrimination of the incidence of SCD among younger patients (≤ 75 years) 

with a non-ischemic etiology. 

The proportion of patients with SCD vs. non-SCD steadily decreased as LVEF increased, 

and the ECG-AI index showed the best discriminative ability in patients with an LVEF of 

35%–50% (Figure 3). In sensitivity analyses using several LVEF cut-offs, the ECG-AI index 

showed the best performance for patients with LVEF 35%–50%, although a good discriminative 

ability was also observed among those with an LVEF of 35%–60% (eTable 1 in the Supplement). 

In addition, another sensitivity analysis stratifying patients who met or did not meet the 

conventional indication for ICD showed a better discriminative ability of the ECG-AI index with 

0.64 (95% CI, 0.53–0.75) of ROC-AUC in those who did not meet the ICD indication (n = 809) 

compared with those who met the ICD indication (ROC-AUC = 0.51 [95% CI, 0.38–0.65]). 

 

Competing Risk Analysis for Adjusting Non-SCD 
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The results of the survival analysis accounting for the competing risk of non-SCD (eTable 2 in the 

Supplement) show that the ECG-AI index (adjusted sub-distributional hazard ratio [sHR], 1.23; 

95% CI, 1.04–1.49; p = 0.015), as well as the conventional guideline–directed indication for ICD 

(adjusted sHR, 1.98; 95% CI, 1.11–3.54; p = 0.02), were independently and significantly associated 

with the risk of SCD using the Fine-Gray models. In this competing analysis, our new model 

combined with the conventional indication for ICD and ECG-AI index showed good discriminative 

ability, with a 0.65 concordance index (95% CI, 0.62–0.69) using a bootstrapping technique (500 

sets). 

In subgroup analyses, the ECG-AI index was also independently associated with 

composite SCD events among each subset of patients in the Fine-Gray competing risk model 

(eFigure 5 in the Supplement). The cumulative incidence calculated via Aalen-Johansen estimates 

and further demonstrates this relationship (eFigure 6, using both the ECG-AI index (A) and the 

ECG-AI combined model with LVEF and NYHA class (B), in the Supplement). These results 

were similar to the time-dependent ROC-AUC without adjustment for the competing risk of 

non-SCD (eFigure 7 in the Supplement). 

 

Proportional Risk of SCD vs. Non-SCD using the ECG-Based AI Models 

Figure 4 shows that the ECG-AI index alone and the ECG-AI combined model could discriminate 

between SCD and non-SCD across the low-, intermediate-, and high-risk patient groups. We 

observed an increase in the proportional risk of SCD vs. non-SCD as the ECG-AI index increased 

as follows: low risk, 16.7%; intermediate risk, 18.5%; high risk, 28.7% (p for trend = 0.023). A 

similar but sharper separation was seen in the ECG-AI combined model: low risk, 11.8%; 

intermediate risk, 15.7%; high risk, 36.1% (p for trend < 0.001). 

 

DISCUSSION 

In the present study, the association between the ECG-AI index and SCD was evaluated in 

consecutive patients who required hospitalization for HF. Overall, the ECG-AI index, when added 

to the conventional guideline–directed indication for ICD based on LVEF and NYHA functional 
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class, significantly improved the indices of discrimination and reclassification of SCD. We also 

observed an increased proportional risk estimation of SCD versus non-SCD. Importantly, similar 

findings were observed in subsets of patients with HF with a non-ischemic etiology and those with 

an LVEF > 35%. 

The early AI model applied to the ECG data used neural network structures (i.e., 

multilayer perceptron) other than CNN or RNN. Improvements in computing and neural network 

technology have allowed the development of a deeper network pattern and, as a result, have 

enabled the handling of more complex data. For example, ECG-AI models using two-dimensional 

CNN reportedly predict age and sex and detect LV function and further latent atrial fibrillation 

from normal sinus rhythm ECG.16,17,24 More recently, we reported that an ECG-based AI model 

combining a one-dimensional CNN with RNN (i.e., LSTM) successfully identified patients with 

chest pain requiring urgent revascularization in an emergency setting.22 RNN can theoretically 

learn the time-series voltage data more precisely than CNN, as it explicitly deals with data 

ordering.25 Although some complex tasks may still require an RNN, the superiority of model 

performance using RNN over CNN is unclear; thus, consensus is lacking about the tasks that are 

suitable for RNN or CNN. In the present study, we attempted to establish an ECG-AI model using 

RNN combined with CNN to predict the incidence of SCD in patients with HF, and our results 

showed good performance beyond the conventional indication for ICD. Accurate risk prediction of 

SCD is essential in clinical practice, and these new approaches using AI algorithms may help 

clinicians provide a basis for decision-making to ensure the appropriate application of ICDs. 

Previous studies reported that several ECG features (e.g., heart rate variability, T-wave 

alternance, early repolarization, late potential, and atrial fibrillation) are associated with SCD and 

can provide independent values beyond LV dysfunction.26,27 In fact, the Grad-CAM showed that 

our neural network model looked at the QRS wave and T wave, which seemed to focus on early 

repolarization, late potential, and T-wave alternance. Our ECG-based AI algorithm likely integrates 

specific features associated with SCD and can be accurately applied to a broader spectrum of 

patients with HF than classical predictive models. This is important as SCD represents a substantial 
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burden for patients with HF and an LVEF > 35%, as evidenced by the fact that approximately 50% 

of SCD cases occur in the absence of severe LV dysfunction following myocardial infarction.28 

Furthermore, a retrospective analysis of 714 patients with SCD found that only one-third exhibited 

sufficient LV dysfunction to meet the ICD criteria.29 Our ECG-based AI algorithm demonstrated a 

more refined risk stratification, in particular, an enrichment in the proportional risk estimation of 

SCD vs. non-SCD regardless of LVEF. As the prediction of SCD in these patient populations is 

considered highly difficult, we believe that our findings are highly encouraging. The number of 

patients with HF and an LVEF > 35% is increasing worldwide; therefore, we believe that our 

ECG-based AI algorithm will play a significant role in future research and clinical practice. 

A known limitation of the conventional ICD indication also exists in non-ischemic 

patients. The DANISH trial (a study to assess the efficacy of ICDs in patients with non-ischemic 

systolic HF on mortality) reported that patients with HF of a non-ischemic etiology could not 

benefit from ICD as a primary prevention for SCD.30 However, a subgroup analysis of the 

DANISH trial indicated a mortality benefit from ICD implantation in younger patients, 

corresponding to a lower proportion of SCD relative to non-SCD with increasing age.31 In the 

present study, the ECG-AI index showed good discriminative ability, especially among patients 

with a non-ischemic etiology. Given the need to maximize the clinical benefit of ICDs, our 

ECG-based AI algorithm has the potential to aid in the identification of patients at high risk of SCD 

who are not currently captured by existing tools. 

We also observed that the ECG-AI index alone and the ECG-AI combined model could 

discriminate between SCD and non-SCD across patients with different risk scores. As patients at 

increased risk of SCD are also likely to have a significantly higher risk of non-SCD mortality, those 

with a higher absolute risk of SCD are not always at a higher proportional risk. Importantly, 

previous reports demonstrated that the projected ICD benefit is relatively insensitive to absolute 

SCD risk but is highly sensitive to proportional risk.10,32 Furthermore, a recent analysis identified 

seven novel indicators associated with SCD; however, all were associated with non-SCD to at least 

the same extent and, hence, do not specifically predict SCD.33 These observations further highlight 
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the potential impact of the ECG-AI index applied in our study. Overall, the ECG-AI index appears 

well poised to meet the requirements of SCD predictions, which are distinctly lacking from 

conventional standards. 

 

Strengths and Limitations 

This study has some strengths, including the standardized assessment and adjudication of SCD by 

the central study committee of the WET-HF registry and the derivation and validation of the 

ECG-AI index using different hospitals with different patient backgrounds. This study also has 

several inherent limitations. First, the limited number of patients and clinical events resulted in a 

relatively low power to detect the incidence of fatal arrhythmic events, although our results are 

comparable to previously reported values demonstrating that ~20% of patients with HF with a 

preserved LVEF succumbed to SCD over a 3-year follow-up period.29 In addition, we did not 

perform substantial statistical adjustments in the multivariable models, in which only two 

parameters, LVEF and NYHA class, were covariables. Other indicators, such as sex and body mass 

index, are reportedly useful for discriminating SCD from non-SCD,10 but they have not been 

universally confirmed as relevant tools for predicting SCD. We believe that our ECG-based AI 

algorithm adds substantial value to the current strategy for risk prediction of SCD with extremely 

low accuracy. Finally, a pitfall of these AI models is that unidentified biases or flaws can exist in 

the dataset, which can lead to misclassification. Further investigations are needed to validate our 

results in external cohorts with high-quality data inputs and ultimately compare AI-guided 

treatment with the standard treatment in a randomized controlled trial. 

 

CONCLUSIONS 

The multifactorial nature of the ECG-AI index has allowed the creation of a more sensitive 

predictive model that may address the current shortcomings of capturing dynamic and proportional 

SCD risk in patients with HF. In this study, the AI-based assessment of ECG was tested as a new 

model for risk stratification of SCD in patients with HF and was found to be more discriminatory 

than conventional standards. Specifically, we observed improved prediction of SCD in patients 
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with an LVEF of 35%–50% and a non-ischemic etiology, as well as discrimination between SCD 

and non-SCD. The ECG-AI algorithm may offer a powerful tool for improving clinical 

decision-making regarding preventive treatment, including the efficient use of ICD implants. 
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Figure legends 

 

Figure 1. Discrimination and calibration of risk models for predicting SCD events. 

Comparison of ROC-AUC (a) shows the conventional guideline–directed indication for ICD 

(LVEF ≤ 35% and NYHA class II–III; AUC = 0.59 [95% CI, 0.52–0.66]) vs. the ECG-AI 

combined model (ECG-AI index + ICD indication; AUC = 0.66 [95% CI, 0.58–0.73]) for 

predicting 3-year composite SCD events (p = 0.017 for Delong’s test). Calibration of the ECG-AI 

combined model is shown (b) by dividing four bins based on the quartiles of the model-predicted 

risk (p = 0.11 for the Hosmer–Lemeshow test). 

 

CI, confidence interval; ECG-AI, electrocardiogram-based artificial intelligence; ICD, implantable 

cardioverter-defibrillator; LVEF, left ventricular ejection fraction; NYHA, New York Heart 

Association; ROC-AUC, receiver operating characteristic area under the curve; SCD, sudden 

cardiac death 

 

Figure 2. Subgroup analyses of the discriminative abilities of the ECG-AI combined model 

and conventional indication for ICD. The model’s discrimination was compared to that of the 

Delong test. Red bars, the ECG-AI combined model; Green bars, the conventional indication for 

ICD. 

 

CI, confidence interval; ECG-AI, electrocardiogram-based artificial intelligence; ICD, implantable 

cardioverter-defibrillator; ROC-AUC, receiver operating characteristic area under the curve 

 

Figure 3. Discriminative ability of the ECG-AI index and frequency of SCD vs. non-SCD 

events by LVEF category. The above forest plots show ROC-AUC with 95% confidence intervals 

of the ECG-AI index for predicting SCD events by LVEF. In patients with an LVEF of 35%–50%, 

the ECG-AI index showed the best discriminative ability. The bar graphs represent the number of 

SCD and non-SCD patients according to LVEF. The proportion of patients with SCD vs. non-SCD 
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steadily decreased as LVEF increased. 

 

ECG-AI, electrocardiogram-based artificial intelligence; LVEF, left ventricular ejection fraction; 

ROC-AUC, receiver operating characteristic area under the curve; SCD, sudden cardiac death 

 

Figure 4. Proportional risk of SCD vs. non-SCD events based on the model-based risk. 

ECG-AI index (a), ECG-AI combined model (with LVEF and NYHA class b). The patients were 

divided into three groups by tertile of risk score (each p for trend < 0.05). 

 

ECG-AI, electrocardiogram-based artificial intelligence; LVEF, left ventricular ejection fraction; 

NYHA, New York Heart Association; SCD, sudden cardiac death. 

-AUC, receiver operating characteristic area under the curve  
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Table 1. Patient backgrounds according to derivation, validation, and test cohorts 

Value Derivation cohort 
n = 1,028 

Validation cohort 
n = 454 

Test cohort 
n = 1,077 

P-value 

Age, years 78 (69–84) 73 (60–81) 77 (67–84) < 0.001 
Men, n (%) 606 (58.9) 288 (63.4) 638 (59.2) 0.400 
Body mass index, kg/m2 21.5 (19.3–24.1) 21.8 (19.5–24.1) 21.1 (18.7–23.8) < 0.001 
Systolic blood pressure, mm Hg 110 (100–120) 108 (97–120) 113 (100–128) < 0.001 
Heart rate, bpm 70 (60–78) 71 (61–80) 70 (61–80) < 0.001 
LVEF, % 48 (32–59) 40 (30–56) 48 (34–59) < 0.001 
LVEF ≤ 35%, n (%) 321 (31.5) 209 (46.2) 290 (26.9) < 0.001 
NYHA class II–III, n (%) 771 (75.2) 416 (92.4) 990 (93.4) < 0.001 
Previous HF hospitalization 337 (32.7) 146 (31.7) 257 (27.5) < 0.001 
Atrial fibrillation, n (%) 607 (59.0) 210 (46.1) 428 (39.7) < 0.001 
Hypertension, n (%) 653 (63.5) 266 (58.5) 766 (71.1) < 0.001 
Diabetes mellitus, n (%) 296 (28.8) 145 (31.8) 428 (39.7) < 0.001 
Stroke, n (%) 140 (12.9) 66 (14.2) 141 (13.1) 0.552 
COPD, n (%) 27 (2.5) 42 (7.4) 67 (6.0) < 0.001 
Hemoglobin, g/dL 11.9 (10.5–13.3) 12.5 (10.7–14.3) 11.9 (10.6–13.4) < 0.001 
Blood urea nitrogen, mg/L 20.1 (15.2–29.4) 23.9 (18.0–32.2) 24.4 (17.9–35.2) < 0.001 
eGFR, ml/min/1.73 m2 51.8 (37.7–64.5) 50.3 (36.3–62.4) 49.2 (30.9–66.0) 0.001 
Sodium, mEq/L 139 (137–141) 139 (137–141) 139 (136–141) 0.522 
Potassium, mEq/L 4.3 (4.0–4.6) 4.4 (4.1–4.7) 4.3 (4.0–4.7) < 0.001 
Uric acid, mg/L 6.6 (5.3–7.8) 6.9 (5.6–8.2) 7.2 (5.7–8.6) < 0.001 
Albumin, mg/L 3.6 (3.3–3.9) 3.7 (3.3–4.0) 3.4 (3.0–3.7) < 0.001 
BNP, pg/mL* N/A 244 (116–479) 247 (128–508)  
NT-proBNP, pg/mL* 1,830 (1,109–3,612) N/A N/A  
Loop diuretics, n (%) 820 (79.8) 315 (69.2) 821 (76.2) < 0.001 
ACEi or ARB, n (%) 640 (62.3) 315 (69.2) 687 (63.8) 0.018 
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Beta blocker, n (%) 788 (76.7) 360 (79.2) 815 (75.7) 0.304 
MRA, n (%) 307 (29.9) 193 (34.9) 378 (34.9) < 0.001 
Digitalis, n (%) 73 (7.1) 54 (7.0) 77 (7.0) 0.011 
Amiodarone, n (%) 75 (7.2) 42 (8.8) 114 (10.5) 0.044 
ICD, n (%) 52 (5.1) 38 (8.4) 32 (3.0) < 0.001 

 

BNP was measured in the validation and test cohorts, while NT-proBNP was measured in the derivation cohort. 

Abbreviations: LVEF: Left ventricular ejection fraction, NYHA: New York Heart Association, HF: Heart failure, COPD: Chronic 

obstructive pulmonary disease, eGFR: Estimated glomerular filtration rate, BNP: B-type natriuretic peptide, NT-proBNP: N-terminal 

pro-B-type natriuretic peptide, ACEi: Angiotensin-converting enzyme inhibitor, ARB: Angiotensin receptor blocker, MRA: 

Mineralocorticoid receptor antagonist, ICD: Implantable cardioverter-defibrillator. 
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