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Abstract 

Background: Systemic sclerosis (SSc) is a multisystem autoimmune disorder that has an unclear etiology and 

disproportionately affects women and African Americans. Despite this, African Americans are dramatically 

underrepresented in SSc research. Additionally, monocytes show heightened activation in SSc and in African 

Americans relative to European Americans. In this study, we sought to investigate DNA methylation and gene 

expression patterns in classical monocytes in a health disparity population.  

Methods: Classical monocytes (CD14++CD16-) were FACS-isolated from 34 self-reported African American 

women. Samples from 12 SSc patients and 12 healthy controls were hybridized on MethylationEPIC BeadChip 

array, while RNA-seq was performed on 16 SSc patients and 18 healthy controls. Analyses were computed to 

identify differentially methylated CpGs (DMCs), differentially expressed genes (DEGs), and CpGs associated with 

changes in gene expression (eQTM analysis).  

Results: We observed modest DNA methylation and gene expression differences between cases and controls. The 

genes harboring the top DMCs, the top DEGs, as well as the top eQTM loci were enriched for metabolic processes. 

Genes involved in immune processes and pathways showed a weak upregulation in the transcriptomic analysis. 

While many genes were newly identified, several other have been previously reported as differentially methylated 

or expressed in different blood cells from patients with SSc, supporting for their potential dysregulation in SSc.  

Conclusions: While contrasting with results found in other blood cell types in largely European-descent groups, 

the results of this study support that variation in DNA methylation and gene expression exists among different cell 

types and individuals of different genetic, clinical, social, and environmental backgrounds. This finding supports 

the importance of including diverse, well-characterized patients to understand the different roles of DNA 

methylation and gene expression variability in the dysregulation of classical monocytes in diverse populations, 

which might help explaining the health disparities. 
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Background   

Systemic sclerosis (SSc or scleroderma) is a rare, multisystem, connective tissue disease characterized by 

cutaneous and visceral fibrosis, immune dysregulation, and vasculopathy. SSc is very heterogeneous, with patients 

being commonly classified into three subsets based on the pattern of skin involvement: sine scleroderma, limited 

cutaneous SSc (lcSSc), or diffuse cutaneous SSc (dcSSc), the latter having  the worse prognosis [1]. SSc is also 

marked by pronounced gender and ethnic disparities. Similar to other autoimmune diseases, women are four to 

nine times more likely to have SSc than men [2]. Relative to individuals of European descent, African Americans 

are more likely to develop SSc [3], have earlier onset of disease, increased disease severity, increased morbidity, 

earlier mortality, and reduced survival [4-13]. The etiology of SSc and the factors underlying these disparities 

remain elusive, and African American individuals continue to be underrepresented in research [14].  

While having a family history of SSc is a risk factor for developing the disease [15], the low concordance rate 

of disease between monozygotic twins suggests that epigenetic and/or environmental factors may play a 

substantial role in SSc pathogenesis [16-18]. Indeed, genetic and epigenetic studies conducted mostly in 

individuals of European descent have uncovered multiple loci associated with SSc [19, 20]. Variation in DNA 

methylation across ancestral populations is contributed to by genetic ancestry and environmental factors [21]. 

Despite the increased disease burden in African Americans and variation in DNA methylation across populations, 

only two genome-wide differential DNA methylation analyses have been conducted in peripheral blood and skin 

fibroblasts from SSc patients of African descent [22, 23].  

The dysregulation of monocytes in patients with SSc is well established as evidenced by their increased 

numbers in both peripheral blood and in skin of SSc patients [24-27] and are associated with reduced survival in 

SSc [27]. African Americans exhibit stronger inflammatory signatures [28-34], including heightened monocyte 

activation [30, 31]. As recently reviewed, monocytes are associated with altered epigenetic marks in SSc [20]. 

Notably, histone demethylation and chromatin dysregulation underlie monocyte dysregulation in patients with 

SSc [16, 35], and contribute to the trans-differentiation of fibroblasts, a key step in the pathogenesis of SSc [36, 

37]. Recently, the first transcriptomic analysis of monocytes in patients with SSc revealed great variability of 

expression patterns across SSc patients that correlated with disease activity outcome measures [38]. The role of 

DNA methylation and its relationship with gene expression patterns in SSc monocytes has not been previously 

investigated and studies in health disparity populations are lacking. 

Given the dysregulation of monocytes in SSc and the increased prevalence and severity of disease in African 

Americans, it is important to identify the mechanisms underlying this dysregulation and their potential 

contribution to the ethnic disparity. In this study, we undertook a systems-level approach, integrating DNA 
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methylation and transcriptional data, to assess the relationship between DNA methylation and gene expression 

in classical monocytes from African American patients with SSc.  

 

Results 

Subject characteristics  

Given the sex and ethnic disparities in SSc this study focused on African American women, a health 

disparity population for SSc. All participants were self-reported African American female, and all patients met the 

2013 ACR/EULAR classification criteria for SSc [39], most presenting with diffuse cutaneous SSc (dcSSc), interstitial 

lung disease (ILD), and being on current immunosuppressive therapies. No participants reported current infections 

or malignancy at the time of study visit. Additional clinical and demographic characteristics of the SSc patients and 

healthy controls are summarized in Table 1. Classical monocytes (CD14++CD16-) were isolated from the study 

participants using fluorescence activated cell sorting (FACS). 

 

Table 1 Demographic and clinical characteristics of the study participants. 

 DNA Methylation Gene Expression 
 Patients (n=12) Controls (n=12) Patients (n=16) Controls (n=18) 
Age at enrollment (mean ± SD) 52.17 ± 12.1 48.58 ± 15.6 51.75 ± 12.3 49.28 ± 13.9 
Female, n (%) 12 (100%) 12 (100%) 16 (100%) 18 (100%) 
dcSSc, n (%) 6 (50%) NA 10 (62.5%) NA 
lcSSc, n (%) 5 (41.7%) NA 4 (25%) NA 
ssSSc, n (%) 1 (8.3%) NA 1 (6.25%) NA 
Raynaud's Phenomenon, n (%) 12 (100%) NA 16 (100%) NA 
Disease duration (mean ± SD) 11.08 ± 6.27 NA 8.88 ± 7.78 NA 
mRSS (mean ± SD)1 13 ± 6.18 NA 13 ± 6.18 NA 
ILD, n (%) 8 (66.7%) NA 10 (62.5%) NA 
PH/PAH, n (%) 5 (41.7%) NA 5 (31.3%) NA 
Overlap MCTD, n (%) 0 (0%) NA 1 (6.25%) NA 
Overlap SLE, n (%) 0 (0%) NA 1 (6.25%) NA 
Immunosuppressive medications, n (%) 8 (66.7%) NA 12 (75%) NA 
Antihypertensive medications, n (%) 9 (75%) NA 13 (81%) NA 
Smoker at enrollment, n (%)2 2 (16.7%) 0 (0%) 2 (12.5%) 2 (11.1%) 
SSc: systemic sclerosis; dcSSc: diffuse cutaneous SSc; ssSSc: sine SSc; mRSS: modified rodnan skin score; ILD: interstitial 

lung disease; PH/PAH: pulmonary hypertension/pulmonary arterial hypertension; MCTD: mixed connective tissue disease; 

SLE: systemic lupus erythematosus. Immunosuppressive medications include oral steroids, mycophenolate mofetil, or 
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hydroxychloroquine; antihypertensive medications include diuretics, calcium channel blockers, alpha blockers, beta 

blockers, ACE inhibitors, or angiotensin receptor antagonists.   1: Assessed for 4 patients with dcSSc within 3-18 months of 

enrollment; 2: Disclosed for all participants except one control in the Gene Expression group. 

 

 

Differentially methylated sites and genes are enriched for metabolic processes 

 To gain insights into functional and molecular alterations of monocytes in African American patients with 

SSc, over 850,000 CpG sites were tested for differential methylation between self-reported African American 

female patients with SSc and controls.  

The differences in methylation levels between patients and controls were modest. A total of 19 

differentially methylated CpGs (DMCs), which corresponds to 0.002% of all cytosines tested, meet an FDR-

adjusted p-value < 0.4 (Table 2). The rationale for the FDR setting was guided by the desire to perform a system-

level analysis and include as many CpGs sites as possible, as well as previous studies demonstrating that this 

threshold permits a sensitive analysis at a system level of genes that are relevant to the underlying biology of the 

trait [40, 41]. A P-P plot of CpG association testing results supports that using –log(p) > 4 is a reasonable empirical 

threshold of significance (Additional file 1: Fig. S1) for systems-level analyses. 

In addition to CpGs near several pseudogenes, top differentially methylated CpGs included those near the 

genes that encode the centrosomal protein ninein (NIN, aka Glycogen Synthase Kinase 3 Beta-Interacting Protein), 

the selenoprotein T (SELENOT), the synthetase OAS3, or the melanoprotein T-Cell Surface Glycoprotein CD5 (Table 

2; Additional file 1: Figs. S2 and S3).  

 

Table 2 Top differentially methylated CpGs between female African American patients with SSc and controls 
ranked by absolute effect size. 

CpG Gene Chr Position 
(kb) 

Relation 
to Island 

Control 
β 

SSc 
β Difference p-value Adjusted 

p-value 

cg22805491 NIN 14 51,172 OpenSea 0.44 0.53 0.09 2.99E-08 0.02 
cg24073653 SLC41A2 12 105,221 OpenSea 0.61 0.69 0.08 2.92E-06 0.2 
cg19933320 ZNF107 7 64,125 N_Shore 0.33 0.4 0.08 8.20E-06 0.35 
cg06548512 LOC728989 1 146,522 Island 0.63 0.7 0.07 1.32E-07 0.05 
cg00832928 SELENOT 3 150,329 Island 0.61 0.68 0.07 4.58E-07 0.11 
cg08653580 CD5 11 60,862 OpenSea 0.66 0.73 0.07 1.21E-06 0.16 
cg12601237 ST8SIA6 10 17,429 OpenSea 0.71 0.78 0.07 3.69E-06 0.21 
cg14115740 FANCC 9 98,055 Island 0.57 0.64 0.07 4.74E-06 0.24 
cg22167498 RAB11B-AS1 19 8,451 N_Shelf 0.57 0.62 0.06 1.00E-06 0.16 
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cg23596249 MARCHF1 4 165,110 Island 0.51 0.57 0.06 1.85E-06 0.19 
cg13704629 DCAF4 14 73,396 S_Shelf 0.56 0.62 0.06 2.73E-06 0.2 
cg11652329 P2RX6P 22 21,399 N_Shore 0.61 0.67 0.05 4.74E-06 0.24 
cg26715639 S100A11 1 151,986 OpenSea 0.6 0.65 0.05 6.43E-06 0.31 
cg23493751 CCR3 3 46,205 OpenSea 0.75 0.8 0.05 7.64E-06 0.34 
cg08288426 ZSCAN29 15 43,651 OpenSea 0.8 0.76 -0.04 1.51E-06 0.17 
cg18507060 OAS3 12 113,399 OpenSea 0.77 0.81 0.04 5.48E-07 0.11 
cg10044900 CFAP44 3 113,058 OpenSea 0.76 0.8 0.04 2.55E-06 0.2 
cg14929421 ACTR3BP2 2 92,318 OpenSea 0.52 0.55 0.03 2.80E-06 0.2 
cg04331667 CCDC71L 7 106,171 OpenSea 0.8 0.83 0.03 3.21E-06 0.2 
CpGs are shown, along with nearest gene, annotation, averaged methylation levels (β), methylation difference, 
unadjusted and adjusted p-values. 

 

We sought to investigate any potential enrichment (or conversely, underrepresentation) of DMCs in 

defined genomic regions (Fig. 1). Among the top 100 DMCs, there was an overrepresentation of DMCs in exon 

boundaries (OR = 4.9, p < 0.0001), while there was a depletion of DMCs in the vicinity of transcription start sites 

(OR = 0.2, p < 0.005). 

 

 

Fig. 1  Genomic location of the top 100 differentially 
methylated CpGs (DMC). Odds ratio (OR), 95% confidence 
intervals (CI), and p-values were computed against the 
general distribution of the CpGs using GraphPad Prism v9. 
Error bars represent the 95% CI. OR indicates the 
enrichment or depletion of DMCs in each region. * p<0.05; 
** p<0.005;  **** p<0.0001. TSS: transcription start site. 
TSS200: 0–200 bases upstream of the transcriptional start 
site (TSS). TSS1500: 200–1500 bases upstream of the TSS. 
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 To better understand the chromatin context and functional role underlying the disease-associated CpG 

sites, we performed integrative epigenomics analyses using the eFORGE 2.0 framework [42-44] to assess whether 

these SSc-associated CpGs reside within regulatory regions across the genome in diverse tissues and cell types. 

Using the top 100 DMCs associated with SSc showed an enrichment of H3K9me3 (a histone mark associated with 

heterochromatin regions, important for repressing repetitive elements, non-coding portions of the genome, and 

silencing lineage-inappropriate genes) in several fetal cells (blue in Fig. 2), and an enrichment of H3K36me3 (a 

transcription-associated histone mark important in maintaining gene expression stability and regulation of DNA 

damage repair) in several blood, stem and fetal cells (pink in Fig. 2). Overall, these findings suggest that most 

epigenetic changes are present in non-transcribed regions. 

 

 

 

Fig. 2  Enrichment of differentially methylated CpGs in H3K9me3 and H3K36me3 histone marks among various cell and 
tissue types using Roadmap Epigenomics project data. Statistically significant enrichment outside the 99.9th percentile 
(−log10 binomial p-value ≥ 3.38) is colored red on the vertical axis. 

 

 

We first used the DAVID Functional Annotation Tool 6.8 [45, 46] to uncover the biological significance of 

the genes in the regions of the differentially methylated cytosines shown in Table 2. Although not significant, the 

top Gene Ontology (GO) terms were related to Metabolic Processes (GO:0008152; p = 0.4), driven by OAS3, DCAF4, 
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FANCC, S100A11, ST8SIA6, RNF24, SELENOT, ZSCAN29, and ZNF107. Close to half of the genes harboring DMC are 

phosphoproteins: OAS3, CCR3, S100A11, CFAP44, CCDC71L, SLC41A2, ZSCAN29, CD5, NIN. 

Next, we used Enrichr [47, 48] to explore the Biological Processes and KEGG pathways associated with the 

genes harboring the top DMCs in Table 2. As shown in Fig. 3, the top Biological Processes were related to metabolic 

processes, including those of RNA (GO:0060700, p = 4.9E-03 (driven by the ribonuclease OAS3)) and protein 

(GO:0032069, p = 5.9E-03 (driven by the selenocysteine SELENOT)) metabolic processes, as well as hormone 

secretion (GO:0060124, p = 5.9E-03 (driven by OAS3 and SELENOT)). No pathways showed significant enrichment. 

 

 
Fig. 3  Metabolic process enrichment among the genes harboring 
the top DMCs. The x-axis shows the − log10(p-value) of the 
Biological Process enrichment obtained from Enrichr. The length 
of the bar represents the significance of that specific term. 

 

 

Differentially expressed genes are enriched for metabolic processes 

Differential gene expression analysis revealed a total of 1,272 transcripts differentially expressed between 

African American female patients with SSc and controls at an FDR-corrected p < 0.4 (Additional file 1: Fig. S4). 

These differentially expressed transcripts correspond to 5.0% of all 25,369 transcripts tested. The rationale for the 

FDR setting was the same as described above for the DNA methylation analysis. The top differentially expressed 

transcripts are shown in Table 3. 

The top differentially expressed genes (DEGs) include the collagen COL9A2, the endoplasmic reticulum 

transmembrane channel-like TMC8 gene, the heparinase HPSE, the proto-oncogene nuclear ubiquitin ligase 

MDM2, the vesicular trafficking cytohesin CYTH4, the phospholipase PLD1, and the Kruppel-like transcription 

factor KLF6 (Table 3). 
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Table 3 Top 20 differentially expressed transcripts between female African American patients with 
SSc and controls ranked by absolute effect size. 

Gene Chr Start (kb) End (kb) Strand logFC logCPM p-Value Adjusted 
p-value 

COL9A2 1 40,766 40,883 - -1.18 3.04 1.26E-04 0.25 
OBSCN 1 228,296 228,495 + -1.13 2.13 5.01E-04 0.25 
PPP1R14B 11 64,012 64,114 - -0.65 2.53 2.17E-04 0.25 
GDAP1 8 75,163 75,279 + 0.57 4.1 3.66E-04 0.25 
TMC8 17 76,027 76,139 + -0.54 6.38 5.50E-05 0.25 
ZNF654 3 88,088 88,194 + 0.43 4.19 2.37E-04 0.25 
KYNU 2 143,535 143,735 + 0.43 7.52 3.25E-04 0.25 
KLF6 10 3,818 3,927 - 0.42 9.52 1.94E-04 0.25 
INSIG2 2 118,746 118,868 + 0.41 3.65 2.79E-04 0.25 
SLC35B3 6 8,413 8,536 - 0.41 4.39 3.10E-04 0.25 
POT1 7 124,470 124,670 - 0.41 4.64 4.27E-04 0.25 
HIVEP3 1 42,284 42,484 - -0.4 5.13 2.65E-04 0.25 
HPSE 4 84,216 84,356 - 0.4 6.6 6.95E-05 0.25 
MDM2 12 69,102 69,239 + 0.37 7.08 1.42E-04 0.25 
ABHD5 3 43,632 43,764 + 0.36 5.8 4.49E-04 0.25 
RNF146 6 127,488 127,610 + 0.36 5.85 4.66E-04 0.25 
IVD 15 40,598 40,714 + -0.34 5.67 2.20E-04 0.25 
SMARCA4 19 10,972 11,172 + -0.31 7.93 2.97E-04 0.25 
PLD1 3 171,428 171,628 - 0.27 5.99 1.78E-04 0.25 

CYTH4 22 37,578 37,711 + -0.26 7.88 1.71E-04 0.25 

Genes are shown, along with location, strand, logarithm fold change (logFC), logarithm of counts per million 
reads (logCPM), unadjusted and adjusted p-values. 

 

 

Gene Ontology analysis of the top transcripts (Table 3) using DAVID 6.8 showed many genes that 

participate in metabolic processes (GO:004423; p = 2.70E-02 (KLF6, MDM2, SMARCA4, ABHD5, GDAP1, HPSE, 

HIVEP3, INSIG2, IVD, KYNU, OBSCN, PLD1, POT1, PPP1R14B, RNF146, SLC35B3, ZNF654)), especially catabolic 

processes (GO:0044248; p = 2.0E-02 (MDM2, ABHD5, HPSE, IVD, KYNU, PLD1, RNF146), and sulfur compound 

metabolic process (GO:0006790; p = 8.0E-03 (GDAP1, HPSE, KYNU, SLC34B3)).  

Enrichr analysis of the top differentially expressed genes in Table 3 revealed an enrichment of several 

biological processes related to metabolic processes (e.g., GO:0006654, p = 1.0E-03), as well as an enrichment of 

the KEGG endocytosis pathway (p = 1.9E-03) (Fig. 4A and B). Relaxing the threshold and including the 450 
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transcripts with FDR-corrected p < 0.3 in the comparison between cases and controls revealed an involvement of 

immune biological processes and pathways (Fig. 4C and D). 

 

 

a b 

  
c d 

  
Fig. 4  Metabolic and immune process and pathway enrichment among differentially expressed genes. Biological 
processes (a) and KEGG pathways (b) enriched for the top 20 DEG; biological processes (c) and KEGG pathways 
(d) enriched for the top 450 DEG. The x-axis shows the − log10(p-value) of enrichment obtained from Enrichr. The 
length of the bar represents the significance of that specific term. 

 

 

Expression quantitative trait methylation (eQTM) analysis 

To investigate the potential mechanistic relationship between DNA methylation and gene expression variation in 

classical monocytes, we leveraged RNA-sequencing data from the same individuals and computed an expression 

quantitative trait methylation (eQTM) analysis to identify CpGs associated with changes in gene expression. Table 

4 shows the top eQTM loci, which include the transcriptional repressor homolog PCGF1, the RNA helicase DDX27, 
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and the splicing factor SF3B2. About half the eQTM loci showed a negative correlation between DNA methylation 

and gene expression levels, while the other half displayed a positive correlation (Table 4). 

 

 

Table 4 Top 25 eQTM loci 

CpG Gene CpG 
CpG 

Chr 

Position 

(kb) 

Transcript 

Gene 
Coefficient p-value 

CCDC142 cg00402980 2 74,701 PCGF1 191.93 0.001 

CSE1L cg06719602 20 47,696 DDX27 -111.63 0.001 

CFL1 cg03252697 11 65,623 SF3B2 -682.91 0.005 

CCDC142 cg00402980 2 74,701 DCTN1 -892.47 0.011 

KIAA0895L cg10031648 16 67,211 E2F4 -126.96 0.028 

KIAA0319 cg11457367 6 24,646 C6orf62 849.33 0.036 

LOC100289230 cg16525244 5 98,273 CHD1 656.51 0.062 

IP6K1 cg27076861 3 49,762 RNF123 -270.99 0.068 

KLHDC10 cg02630604 7 129,782 KLHDC10 203.05 0.093 

BCR cg23436282 22 23,665 BCR -153.94 0.106 

KIAA0319 cg11457367 6 24,646 TDP2 193.28 0.111 

PCGF2 cg18826743 17 36,901 MLLT6 -205.72 0.114 

B4GALT7 cg05174883 5 177,038 DDX41 126.69 0.122 

RAB11B-AS1 cg22167498 19 8,451 RAB11B -45.50 0.135 

ITPK1 cg21166544 14 93,604 BTBD7 54.13 0.166 

ZNF628 cg12450907 19 55,993 U2AF2 -61.93 0.200 

PCARE cg20836546 2 29,298 CLIP4 299.96 0.209 

ACADSB cg07971827 10 124,772 FAM24B -4.48 0.241 

GIMAP7 cg01444712 7 150,211 GIMAP2 200.96 0.248 

ITPKB cg22444124 1 226,868 ITPKB -122.24 0.277 

NOTCH4 cg26950898 6 32,164 PBX2 -275.47 0.387 

CD40 cg06282353 20 44,738 MMP9 513.29 0.412 

METTL5 cg02173085 2 170,678 UBR3 123.62 0.419 

KYNU cg11805548 2 143,634 KYNU 209.42 0.422 

ZNF768 cg01174674 16 30,543 DCTPP1 9.04 0.430 

 

 

These 25 genes whose expression is associated with DMCs are enriched for cellular metabolic processes 

according to DAVID (GO:0044237, p = 6.50E-03 (driven by BCR, DDX27, DDX41, E2F4, MLLT6, PBX2, RAB11B, 

U2AF2, CHD1, DCTPP1, ITPKB, KYNU, MMP9, PCGF1, RNF123, SF3B2, TDP2, UBR3)). In addition to microtubule 
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cytoskeleton organization processes, other metabolic processes like RNA splicing and processing were also 

unveiled by Enrichr (Fig. 5). The top KEGG Pathway was vasopressin-regulated water reabsorption (Fig. 5). 

 

  

  

Fig. 5  Biological processes (a) and KEGG pathways (b) enrichment among genes associated with eQTM loci. The 
x-axis shows the − log10(p-value) of enrichment obtained from Enrichr. The length of the bar represents the 
significance of that specific term. Terms displayed in gray are not significant. 
 

 

Discussion 
 This study is to our knowledge the first to evaluate and integrate analysis of DNA methylation and gene 

expression in classical monocytes from African American patients with SSc on a genome-wide scale. We show 

modest differences in DNA methylation and gene expression between patients and controls, and an enrichment 

of genes involved in metabolic processes.  

The differential methylation analysis showed that the top DMCs were enriched for H3K9me3 and 

H3K36me3, markers associated with heterochromatic regions in several fetal tissues. This is consistent with the 

recent finding that several tissue-specific repressed genomic regions are enriched for disease-associated GWAS 

variants, and suggests that DMC may also have tissue-specific effects in repressive regions [44]. Previous analyses 

of DNA methylation in other blood cell types and in largely European-descent groups [22, 49-54] report a larger 

difference in DNA methylation patterns between cases and controls, and an enrichment of genes involved in 

immune and inflammatory processes. In our study, only OAS3 and CD5 have been previously reported as 

differentially methylated in CD4+ T cells from Spanish patients with SSc [54]. OAS3 is an interferon-induced, 

dsRNA-activated antiviral enzyme which plays a role in cellular innate antiviral response and the immune response 

to the interferon pathway [55, 56]. Its expression can be increased in SSc patients [57]. CD5 is a type-I 

transmembrane glycoprotein found on the surface of thymocytes, T lymphocytes, and a subset of B lymphocytes. 
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CD5 is upregulated in B cells from patients with SSc [58]. Among other genes harboring top DMCs, the centrosomal 

protein NIN has a role in promoting angiogenesis [59], which is dysregulated in SSc. Antibodies against NIN are 

present in sera from several patients with SSc and other autoimmune disorders [60], which further supports a role 

for NIN in SSc. Interestingly, NIN may also be regulated by GSK-3β, a key regulator of the canonical Wnt signaling 

in fibroblasts whose inhibition results in fibroblast activation and increased release of collagen [61]. 

Multiple analyses of gene expression patterns in different blood cell types from mostly European-derived 

populations consistently report a prominent upregulation of genes involved in immune and inflammatory 

processes in SSc patients [38, 62-75]. This includes the only analysis of classical monocytes to date [38], and 

contrasts with the weaker upregulation of inflammatory and immune genes we observed in classical monocytes 

from African American SSc patients. Multiple DEGs found in our analysis have been previously reported as 

differentially expressed in different blood cells from patients with SSc, including the endoplasmic reticulum 

transmembrane channel-like TMC8 [76], the collagen COL9A2 [67], the Kruppel-like transcription factor KLF6 [38, 

62, 76], the zinc finger ZNF654 [76], the insulin-Induced INSIG2 [76], the transcription regulator SMARCA4 [76], 

the kynureninase KYNU [38, 63, 64, 69], the telomere regulator POT1 [76], and the hydrolase ABHD5 [64, 69]. 

However, when we focus on classical monocytes, our results are consistent in significance and directionality of 

effect to those reported by Makinde and colleagues for HPSE, CYTH4, KLF6, KYNU, C6orf62, and TUBB4B [38], 

providing support for their potential dysregulation in SSc. 

The variable correlation between methylation patterns and gene expression is well established, being 

either positive or negative, and being tissue and context specific, in that the local DNA sequence and genomic 

features largely account for local patterns of methylation [34, 77-83]. In our eQTM analysis we found that about 

half of the DMCs have a positive and half a negative correlation with gene expression levels. Several of the genes 

whose expression was associated with eQTM have been previously reported as differentially expressed in 

different blood cells from patients with SSc, lending further support for their dysregulation in SSc patients. These 

include DDX27 [76], C6orf62 [76], CHD1 [66], BCR [76], TDP2 [76], MLLT6 [76], RAB11B [76], CLIP4 [76], PBX2 [76], 

MMP9 [71], and KYNU [38, 63, 64, 69]. 

Our results provide support for the involvement of dysregulated metabolic processes in SSc, consistend 

with previous studies reporting that dysregulated metabolism is associated with SSc [84]. Different metabolic 

perturbations are expressed in different patients, reflecting the clinical heterogeneity of SSc [84]. Our enrichment 

of genes involved in metabolic processes contrasts with the prominent enrichment of genes involved in immune 

and inflammatory processes consistently reported in both DNA methylation [22, 49-53, 76] and gene expression 

analyses in multiple blood cell populations and in largely European-descent groups [38, 62-75]. This is not 

surprising, given that previous studies have focused on blood (a heterogeneous tissue) or lymphoid cell 

populations, while our focus was on a myeloid cell population. The distinct racial category of the participants 
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might appear as another explanation for this difference. However, we caution against a simplistic explanation 

solely based on self-reported race. Race is an imperfect proxy for social determinants of health such as racism and 

discrimination, economic stability, healthcare access and quality, education access, and environmental exposures. 

These social and environmental determinants are differentially experienced across groups and geography, 

resulting in health disparities. We postulate that these sociocultural factors experienced by our study participants 

are one of the reasons underlying our results. The other reason that can explain the lack of replication across 

populations is genetic ancestry. Differences in DNA methylation are known to exist between individuals of African 

and European ancestry [21, 28, 34, 85-89], due to both variation in genetic ancestry and environmental factors 

[21]. These differences help explain the new findings and minimal overlap with previous reports. 

Several other reasons and important limitations of this study might underlie the modest differences in 

DNA methylation and gene expression we observed in our study focused on classical monocytes from self reported 

Black women.  First, although this study is the first to evaluate DNA methylation and gene expression patterns in 

monocytes of African Americans, the sample size is very small. This study has virtually no power to detect the DNA 

methylation differences herein reported, but is powered to detect a reasonable fraction of the differentially 

expressed transcripts between cases and controls. Nevertheless, with 16 total SSc cases, it is comparable to 

sample sizes from previous studies that assessed genome-wide DNA methylation and gene expression primarily 

in European Americans [16, 38, 90, 91]. Also, our results are consistent with the heightened monocyte activation 

previously reported in African American patients with SSc [30, 31].  

Second, we do not have DNA available on these study participants to allow us to estimate their genetic 

ancestries, and this study relies on self-reported race. Although we observed no evidence of population structure 

and adjusted for population stratification, to mitigate against the limitations of this study it is essential that future 

studies genotype and including multiple African groups to fully capture African genetic diversity. 

Third, SSc is a rare disease with a prevalence of only 49,000 US adults [92], there is currently no existing 

cohort or repository of samples from African American patients that can be leveraged to enable large-scale 

studies, to replicate, and to validate our results. Given our small sample size, we tried to balance our desire to 

increase discovery at the cost of additional loci being false positive results, which is a reasonable premise to pursue 

systems-level analyses.  

Fourth, most of the patients in our study presented with more severe SSc and were on current 

immunosuppressive therapies that can impact their epigenetic and transcriptional patterns. Although the modest 

sample size of this study precludes a robust statistical adjustment for immunosuppressive drug use, and these 

medications affect the methylation levels of several CpGs, we also show that their use does not cause a substantial 

bias in our study (Additional file 1: Figs. S6 and S7). Interestingly, in their transcriptional analysis of classical 
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monocytes in SSc patients, Makinde et al [38] which included participants of different self-reported racial groups, 

note the substantial variability in the transcriptional profiles of the patients, with several patients, especially those 

on current immunosuppressive therapies, more closely resembling controls. This observation is consistent with 

our results where African American patients, who tend to have more severe disease and be on 

immunosuppressants, show modest differences in gene expression relative to controls.  

Fifth, and inherent to all epigenomic studies, we cannot exclude the possibility of reverse causation, or 

whether the DNA methylation and gene expression changes are a cause or an effect of SSc. Future longitudinal 

studies will help to elucidate the role of DNA methylation in disease etiology. Sixth, it is possible that the DNA 

methylation changes are due to genetic variation, but we lack genotypic data on these samples. Seventh, SSc is a 

very heterogeneous disorder, which can also explain the inconsistent and sometimes disparate results observed 

in different studies, including the lack of association between gene expression signatures and clinical 

characteristics [e.g., [93, 94]]. Similarly, African Americans are a heterogeneous category of individuals with 

diverse cultural and genetic backgrounds [95].  

Finally, we recognize that it is difficult to account for all lifestyle factors that could affect DNA methylation 

[18]. Unless studies account for all the genetic, clinical, demographic, behavioral, social, and environmental 

characteristics of their participants, limited reproducibility is not unexpected. Future studies including diverse 

individuals with measures of genetic ancestry as well as environmental and social determinants of health 

responsible for the health disparities will ensure the validity and relevance of these findings for patients of all 

backgrounds. Despite these limitations, the findings in this study further support the need to continue to 

investigate the regulatory architecture of different cell types in diverse SSc patients. 

 

Conclusions 
Our study suggests that classical monocytes from African American female patients with SSc display modest 

changes in DNA methylation and gene expression relative to healthy controls. The genes associated with the 

DMCs, DEGs, as well as eQTM loci, show an enrichment of metabolic processes, and only a weak upregulation of 

immune processes and pathways. These differences relative to previous reports of differential methylation and 

gene expression in patients with SSc epitomize the clinical, biological, social, and environmental heterogeneity of 

SSc patients. This study underscores the importance of research in patients with diverse clinical and 

sociodemographic characteristics, and of integrating genetic and social factors, to enable a thorough 

understanding of the different roles of DNA methylation and gene expression variability in the dysregulation of 

classical monocytes in different populations. 
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Methods 

Subjects  

A total of 34 self-reported Black or African American females were recruited for this study: 16 patients with SSc 

and 18 healthy controls. All patients met the 2013 ACR/EULAR classification criteria for SSc [39]. Cases and controls 

were age-balanced within five years.  

 

Classical monocyte isolation 

Peripheral blood (40 ml) was drawn by venipuncture into EDTA tubes and stored at 4°C overnight. Peripheral blood 

mononuclear cells (PBMCs) were isolated using Sep-Mate tubes and Lymphoprep (Stem Cell Technologies, 

Cambridge, MA, USA) according to manufacturer guidelines. After isolation, any residual red blood cells were 

depleted via red blood cell lysis (144 mM NH4Cl and 17 mM Tris, pH 7.6), washed twice with 1X PBS, and stored at 

−80°C in 90% Fetal Bovine Serum (FBS)/10% dimethyl sulfoxide (DMSO). After thawing, PBMCs were stained with 

CD-14 Brilliant violet 421 (1:100) and CD-16 Brilliant violet 605 (1:100). Cells were incubated with antibodies for 

30 min on ice in the dark. Both antibodies were purchased from Biolegend (San Diego, CA, USA). Viability was 

assessed using Near-infrared Live/Dead Fixable Dead Cell stain (Life Technologies, Carlsbad, CA, USA) at a 

concentration of 50 µl/ million cells. CD14++/CD16- cells were collected with a FACSAria III cell sorter (BD 

Biosciences, San Jose, CA, USA). 

 

MethylationEPIC Assays, Quality Control and Batch Normalization 

DNA was extracted using DNeasy kits (Qiagen, Germantown, MD, USA) according to manufacturer protocols from 

classical monocytes (CD14++CD16-) isolated from 12 female African American SSc patients and 12 female African 

American controls. DNA methylation was assessed using Illumina’s MethylationEPIC BeadChip (Illumina, San 

Diego, CA, USA). 500 ng of each sample was bisulfite converted using an EZ DNA Methylation Kit (Zymo, Tustin, 

CA, USA), amplified, hybridized and imaged. DNA methylation data for over 850,000 CpGs were generated per 

sample and preprocessed using GenomeStudio in the form of beta values, which is the estimate of the proportion 

of methylation in a cell population. GenomeStudio also produced detection p-values, which is the probability that 

the intensity is due to background noise rather than a true signal. After filtering out background noise, ComBat 

[96] was used as an empirical Bayes approach to correct for differences between batches. A single array containing 

12 samples and approximately 20,000 CpGs separated at random was used to describe a batch to be normalized 

on our in-house, high-performance computing cluster at the HudsonAlpha Institute for Biotechnology. After 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 10, 2023. ; https://doi.org/10.1101/2022.03.17.22272588doi: medRxiv preprint 

https://doi.org/10.1101/2022.03.17.22272588
http://creativecommons.org/licenses/by-nc-nd/4.0/


17 
 

correcting for batch effects, beta values between the two probe types, Infinium I & Infinium II, were normalized 

by using the equation: 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇  𝐼𝐼𝐼𝐼 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇 = Υ + 𝛽𝛽1 ∗  𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇  𝐼𝐼𝐼𝐼 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇 +  𝛽𝛽2 ∗  𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇  𝐼𝐼𝐼𝐼 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇
2. The 

intercept and beta coefficients were calculated by fitting a second order polynomial to beta values from paired 

Infinium I and Infinium II CpGs that were within 50 bp of each other as described previously [97].  

Only good quality samples (successful probe ratio >0.1) were included. CpG probes with detection p-

values over 0.01 were removed. The R package ChAMP [98] was used to exclude non-CpG probes, probes that 

have been previously reported to bind to multiple locations [99], and probes with a bead count less than 3 in  ≥ 5% 

of samples per probe.  

Given the lack of genetic ancestry estimates we used EPISTRUCTURE, a method for the inference of 

ancestry from methylation data that relies on reference data in which both genotype and methylation data are 

available [100]. The PCA plot generated using EPISTRUCTURE shown in Additional file 1: Fig. S5 shows no evidence 

of population structure. Smoking is known to affect methylation across the genome, therefore CpGs known to be 

associated with smoking were removed prior to analysis [101]. After pre-processing and filtering of the 

methylation data, 817,938 CpGs remained for downstream analysis. Genome-wide data methylation analysis was 

then performed using the R statistical suite (version 3.6.3) [102] 

 

Genome-wide DNA Methylation Regression Analysis 

Linear regression analyses were performed at each CpG using the stats package in R [102] to test whether that 

particular CpG was associated with SSc by examining DNA methylation differences between patients and controls. 

Principal components were calculated using the built-in R function prcomp() from the stats package and used in 

our regression model to correct for unknown potential sources of variance such as admixture. In our model, 

disease status was considered the random effect, and the first two principal components were considered fixed; 

due to age being known to influence DNA methylation, it was also placed as a covariate: 

 

Methylation Beta Value ~ β1 ∗ Disease Status +  β2 ∗ Age at Collection +  β3 ∗ PC1 +  β4 ∗ PC2 +  ε 

 

The associated CpG p-values were then corrected using the Benjamini-Hochberg False Discovery Rate 

(FDR) method. Given the paucity of differentially methylated cytosines identified with FDR-corrected p < 0.05, 

cytosines with an FDR-corrected p < 0.4 are reported. The rationale for the FDR setting was guided by the desire 

to perform a system-level analysis and include as many CpGs sites as possible, as well as previous studies 
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demonstrating that this threshold permits a sensitive analysis at a system level of genes that are relevant to the 

underlying biology of the trait [40, 41]. The premise that most CpGs have sufficient quality, coupled with the desire 

to increase discovery at the cost of additional loci being false positive results, is a reasonable premise for intitial 

studies to pursue pathway and network analyses. To further select an empirical threshold for significance using a 

data-informed approach, we generated the P-P plot to see the point of departure where the CpGs start deviating 

from the null (Additional file 1: Fig. S1). As shown in Additional file 1: Fig. S1, fitting a linear regression line for the 

theoretical domain of 0 < theoretical –log(p) <3 and extrapolating line beyond 3, suggests that the line departs 

from fitting the empirical –log(p) data approximately at 4. Thus, –log(p) > 4 is a reasonable empirical threshold for 

significance for system level analyses.  

To minimize confounding due to smoking, the 3,348 CpGs reported as associated with smoking in 

Christiansen et al [101] were removed. This included CpGs replicated in American Indian and African American 

samples. Another potential confounder on the DNA methylation patterns is the use of immunosuppressive 

therapies by most patients with SSc. Given the small sample size of this study and the potential risk of overfitting 

if adjusting for immunosuppressive use, we show instead that the use of immunosuppressive therapies does not 

heavily bias the association results, although there are several CpGs that show meaningful increases in beta 

coefficients due to immunosuppressive medication use (Additional file 1: Figs. S6 and S7). The top three CpGs 

most significantly associated with SSc among immunosuppressive users include cg22196946 in the 5’UTR near 

IL15, cg22187722 in the 5’UTR near CPVL, and cg17710334 in an intergenic region. None of these CpGs reaches 

the empirical threshold for significance among all SSc patients (Additional file 1: Fig. S7). 

The power evaluation tool pwrEWAS was used to estimate power as a function of sample size and effect 

size (Δβ) for two-group comparisons of DNAm assessed using Illumina Human Methylation BeadChip technology 

[103]. For a total number of 24 subjects (1:1 case:control ratio), and using liver as a proxy for a homogeneous cell 

population, this study has 4% power to detect differences in up to 6% in CpG-specific methylation across 20 CpGs 

between groups (the median DNA methylation difference between averaged methylation levels between cases 

and controls reported in Table 2), and 6% power to detect differences in up to 8% in CpG-specific methylation 

across 20 CpGs between groups (the maximum DNA methylation difference between averaged methylation levels 

between cases and controls reported in Table 2). Hence, this study is not powered to detect the DNA methylation 

differences reported in Table 2. 

Associated CpGs identified as significant at FDR-corrected p < 0.4 were used to identify the closest gene 

and then those genes were analyzed for common pathways and functions. Given the limited statistical power, 

exploratory analysis of clinical features were not computed. 
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RNA sequencing 

Total RNA was extracted from classical monocytes isolated from 16 female African American patients and 18 

female African American controls using the RNeasy Kits (Qiagen, Germantown, MD, USA) according to the 

manufacturer’s guideline. RNA integrity (RIN) was verified on an Agilent 2200 TapeStation (Agilent Technologies, 

Palo Alto, CA, USA). The RIN values ranged from 1.8 to 9.0 with an average RIN of 5.8. Due to the low RIN, RNA 

sequencing libraries were prepared using Illumina’s TruSeq RNA Exome kit. Total RNA (40 ng) of was used to 

prepare RNA-Seq libraries following the protocol as described by the manufacturer (Illumina, San Diego, CA, USA). 

Libraries were clustered at a concentration to ensure an average of 25 million reads per sample on the cBot as 

described by the manufacturer (Illumina, San Diego, CA, USA). Clustered RNA-seq libraries were single read 

sequenced using version 4 with 1X50 cycles on an Illumina HiSeq2500. Demultiplexing was performed utilizing 

bcl2fastq- v2.19 to generate Fastq files. 

 

Gene expression analysis 

Upon sequencing, data was analyzed by Rosalind, with a HyperScale architecture developed by OnRamp 

BioInformatics. Individual sample reads were aligned to the hg19 reference genome using STAR and quantified 

using HTseq. The subsequent transcript data was imported into R and the edgeR package used to preprocess the 

data. The transcript counts were normalized using the trimmed mean of M values (TMM) method. To account for 

potential non-biological variance in the gene expression data, a quasi-likelihood negative binomial generalized 

log-linear model [104] was used and the data tested for differential expression. FDR p values were then calculated 

for each transcript. Since no differentially expressed transcripts were identified with FDR-corrected p < 0.05, an 

FDR-corrected p < 0.4 was used. The rationale for the FDR setting was guided by the desire to perform a system-

level analysis and include as many transcripts as possible, as well as previous studies demonstrating that this 

threshold permits a sensitive analysis at a system level of genes that are relevant to the underlying biology of the 

trait [40, 41]. 

RNASeqPower (version 1.39.0) was used to estimate the power given 16 cases and 18 controls, coverage 

depth (25 M reads) and a coefficient of variation of 0.4 as recommended for human samples and equivalent across 

groups [105]. Using an α = 0.0001, which based on our experience is a a good approximation to a FDR = 0.05, this 

study has 9%, 70%, and 97% power to detect differential expression or fold change (FC) of 1.5, 2.0, and 2.5 or 

higher, respectively. These FC correspond to logFC >|0.18|, logFC >|0.30|, and logFC >|0.40|, respectively. Given 

the median logFC ~|0.40|, this study is powered to detect a reasonable fraction of the differentially expressed 

transcripts between cases and controls. 
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Expression quantitative trait methylation (eQTM) analysis 

To identify associations between DNA methylation levels and gene expression of nearby genes, a linear regression 

model was created using the top CpGs and transcripts from both analyses, ranked by unadjusted p-value. A total 

of 1,272 differentially expressed transcripts that met an FDR-corrected p < 0.4 were used for this analysis. To 

correct for unknown sources of variation in the methylation beta scores (e.g., admixture, cellular contamination), 

the effects of the first two principal components were regressed out and the residuals used in downstream 

analysis. To correct for the variation in the RNA-seq data, the data was normalized using the TMM. CpGs within 

100 kb of the transcript start or end positions were associated with the respective transcript. The RNA transcript 

was considered the random effect, and the methylation beta value and age of the patient were considered the 

fixed effects: 

 

Transcript Value ~ β1 ∗ CpG Beta Score +   β2 ∗ Age at Collection + ε 

 

 

Functional annotation enrichment analysis 

The position of each CpG was annotated to the corresponding genomic location as provided by Illumina (TSS1500, 

TSS200, 5′ UTR, 1st Exon, Body, Exon boundaries, 3′ UTR, and intergenic). To investigate the distribution of 

differentially methylated CpGs (DMC) in different genomic locations, the top 100 CpGs were used to compare 

their localization in different genomic locations. Odds ratio (OR), 95% confidence intervals (CI), and p-values were 

computed against the general distribution of all CpGs of our dataset using GraphPad Prism (version 9.3.1). For 

regulatory annotation of the differentially methylated CpGs, eFORGE v2.0 (https://eforge.altiusinstitute.org/) [42-

44] was used to identify if the associated CpGs were enriched in cell-specific regulatory elements, namely DNase 

I hypersensitive sites (DHSs) (markers of active regulatory regions) and loci with overlapping histone modifications 

(H3Kme1, H3Kme4, H3K9me3, H3K27me3, and H3K36me3) across available cell lines and tissues from the 

Roadmap Epigenomics Project, BLUEPRINT Epigenome, and ENCODE (Encyclopedia of DNA Elements) consortia 

data. Both the top 100, as well as the top differentially methylated CpGs that met an FDR-adjusted p < 0.4, were 

entered as input of the eFORGE v2.0 analysis and tested for enrichment for overlap with putative functional 

elements compared to matched background CpGs. The matched background is a set of the same number of CpGs 

as the test set, matched for gene relationship and CpG island relationship annotation. One thousand matched 
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background sets were applied. The enrichment analysis was completed for different tissues, since functional 

elements may differ across tissues. Enrichment outside the 99.9th percentile (−log10 binomial p-value ≥ 3.38) was 

considered statistically significant (red in Fig. 2). 

For Gene Ontology (GO) and functional enrichment analysis, the Database for Annotation, Visualization 

and Integrated Discovery (DAVID) v6.8 [45, 46], and the Enrichr [47, 48] tools were used. For GO analysis, DAVID 

v6.8 was used via the web interface (https://david.ncifcrf.gov/) using default settings. The gene lists corresponding 

to the top differentially methylated CpGs, the top differentially expressed transcripts from the RNAseq analysis, 

and top differentially expressed transcripts from the eQTM analysis (shown in Tables 2, 3, and 4, respectively) 

were used. Enrichr was also used via the web interface (https://maayanlab.cloud/Enrichr/), using the default 

settings and the whole genome set as background. The gene lists in Tables 2, 3, and 4 were used for Biological 

Process and Pathway enrichment. As output, results were exported from the GO Biological Process 2021 and the 

KEGG 2021 Pathways databases; p-values are reported. 
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