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ABSTRACT  
Objectives: To investigate the effects of exercise on intelligence, executive functions, 
academic performance and brain outcomes in children with overweight/obesity. In 
secondary analyses, we explored potential mediators and moderators of the exercise 
effects. 
Methods: A total of 109 children (8-11.9y) with overweight/obesity were randomized 
(intention-to-treat) and 90 (82.6%) completed the post-exercise evaluation and attended 
≥70% of the exercise sessions (per-protocol). Participants in the control group 
continued with their usual routines and received lifestyle recommendations, whereas 
the exercise group attended 3 sessions/week of aerobic plus resistance training during 
20 weeks. Intelligence, executive functions (cognitive flexibility, inhibition, working 
memory) and academic performance were assessed with standardized tests; and 
hippocampal volume with magnetic resonance imaging (MRI).  
Results: In per-protocol analyses, the exercise intervention improved intelligence and 
cognitive flexibility (medium-large effect sizes observed, 0.4-0.7 SDs). These main 
effects were consistent in intention-to-treat analyses and after multiple-testing 
correction. Moreover, we found a positive, small-magnitude (i.e., 0.2-0.3 SDs) effect 
of exercise on academic performance (total, mathematics and problem solving), which 
was partially mediated by cognitive flexibility. Inhibition, working memory, 
hippocampal volume, and other brain MRI outcomes studied were not affected by our 
exercise program. Our intervention increased cardiorespiratory fitness performance 
(0.4 SDs) and these changes in fitness mediated some of the effects. Effects were mostly 
consistent across the studied moderators, except for larger improvements for 
intelligence in boys compared to girls. 
Conclusion: Exercise positively impacts intelligence and cognitive flexibility during 
development in children with overweight/obesity, without changes in the structural and 
functional brain outcomes studied.  
 
Trial Registration: ClinicalTrials.gov Identifier: NCT02295072 
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SUMMARY BOX 

What is already known on this topic  
- Pediatric obesity is associated not only with poorer physical health but also with 
poorer cognitive and brain development. 
- Previous exercise interventions have mostly focused on executive functions and other 
dimensions of cognition, yet is largely unknown the extent to which exercise can 
improve intelligence during childhood, and actually, at any period of life.  
- Studies integrating effects of exercise on behavioral and brain magnetic resonance 
outcomes in a single article are scarce.  
-  A in-depth study of the exercise characteristics (mode) and intensity, potential 
compensatory/contamination effects and role of potential mediators and moderators of 
the exercise effects is warranted.  

What this study adds  
- A 20-week randomized controlled trial of exercise improved intelligence and 
cognitive flexibility in preadolescent children with overweight/obesity.  
- Moreover, we found a positive, small-magnitude effect of exercise on academic 
performance, which was partially mediated by cognitive flexibility.  
- Cardiorespiratory peak performance mediated some yet not all the exercise effects 
observed.  
- The structural and functional brain outcomes studied were not affected by 
participation in the exercise program.  

How this study might affect research, practice or policy  

Our investigation suggests that exercise can positively impact intelligence and 
cognitive flexibility during a sensitive period of brain development in childhood. This 
stimulus can positively affect academic performance, as shown in our study, indicating 
that an active lifestyle during preadolescent development may lead to more successful 
life trajectories. This is particularly important in children with overweight/obesity who 
are known to be at higher risk of poorer physical and brain health.  
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INTRODUCTION 
The prevalence of overweight/obesity in youth has quadrupled worldwide from 1975 
to 2016 (from 4 to 18%)1. Emerging evidence suggests that obesity might negatively 
impact brain health (i.e., cognitive and brain development)2–4. It is therefore necessary 
to identify effective strategies to attenuate these adverse consequences. In this context, 
physical exercise is a candidate to produce such positive stimuli, as it exerts multi-
systemic benefits on human organs, including the brain5,6. Existing exercise-based 
interventions have mostly targeted executive functions and other dimensions of 
cognition (e.g., processing speed, language, etc.)7–9, yet evidence on the effect of 
exercise on intelligence and its components, i.e., crystallized and fluid,10 is lacking. 
Against traditional beliefs, the notion that intelligence is “malleable” despite its high 
heritability is gaining support11; yet more research is warranted. 
While most previous studies focused on behavioral outcomes (e.g., executive functions 
and other dimensions of cognition), only a few randomized controlled trials (RCTs) in 
children have investigated the effects of exercise on brain structure and function 12–20. 
There is a need for high-quality RCTs that combines behavioral and brain imaging 
outcomes, as well as a better characterization of the exercise dose administered in the 
interventions21,22. Moreover, previous studies in animals23 and in older adults23–25 have 
pointed to hippocampal volume as a critical brain outcome affected by exercise. 
Although the hippocampus is not a brain region directly linked to intelligence, it is a 
central hub in networks that support executive function and memory. The effects of 
exercise on this brain region during a period of brain growth remain under investigated. 
Further, a comprehensive investigation, including a broader set of magnetic resonance 
imaging (MRI) outcomes, is needed to understand the overall effect of exercise on brain 
structure and function.  
The ActiveBrains RCT26 included a broad set of both behavioral and MRI outcomes, 
and was designed to test the effects of exercise on brain health in pediatric obesity. Our 
primary aim (a priori-planned) was to investigate the effects of a 20-week exercise 
program on behavioral outcomes, including intelligence, executive function (i.e., 
cognitive flexibility, inhibition and working memory) and academic performance, as 
well as on hippocampal volume as a primary region of interest in children with 
overweight/obesity.  
In secondary analyses (a posteriori-planned), we explored potential mediators and 
moderators of the main exercise effects observed in this intervention. First, we 
investigated cardiorespiratory fitness (CRF) as the main candidate mediator27,28,37,38,29–

36; and explored other specific brain regions of interest (e.g.,  prefrontal cortex due to 
its relationship with intelligence and cognitive flexibility39–41), and broader brain 
structural and functional changes (hypothesis-free analyses) as potential mediators. 
Second, we tested potential moderators (sex, age, maturation, socioeconomic status and 
baseline performance) of the intervention effects42. Third, we interrogated potential 
compensatory and contamination effects on the daily activity levels assessed with 
accelerometers. Lastly, we analyzed the exercise dose, i.e., the actual volume and 
intensity of the intervention via heart rate (HR) monitoring, as this might have a direct 
impact on the magnitude of intervention effects.  
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METHODS  
A brief description of the material and methods is discussed below. Further details are 
provided in Extended Methods in Supplement 1. 

Study design, participants 
The ActiveBrains trial26 is a parallel-group RCT conducted in children aged 8-11 years 
with overweight/obesity. A total of 109 participants were randomly allocated into a 
control or an exercise group. All pre- and post-exercise data were collected from 
November 2014 through June 2016, with neuroimaging data processing and analyses 
being conducted during 2017-2021. The parents or legal guardians signed an informed 
consent to participate in the study. The CONSORT (Consolidated Standards of 
Reporting Trials) checklist is presented as Supplement 2. 
 
Intervention and control 
The participants in the control group continued with their usual routines. Both control 
and exercise groups were provided with information about healthy nutrition and 
physical activity recommendations at the beginning of the study. The exercise group 
was instructed to attend at least 3 (out of 5 offered) supervised sessions/week. Sessions 
lasted 90 min (60 min aerobic plus 30 min resistance exercises). To increase motivation 
and adherence, exercise sessions were based on games and playful activities that 
involved coordinative exercises.  

Outcome measurements 
Intelligence 
Crystallized, fluid and total (i.e., crystallized plus fluid) intelligence was assessed by 
the Spanish version of the Kaufman Brief Intelligence Test (K-BIT)43.  

Executive function  
Cognitive flexibility was assessed using the Design Fluency Test and the Trail Making 
Test. Inhibition was evaluated with a modified version of the Stroop test (paper-pencil 
version) 44–46. Working memory was measured by a modified version of the Delayed 
Non-Match-to-Sample (DNMS) computerized task47.  
Academic performance 
Academic performance was assessed by the Spanish version of the Woodcock-Johnson 
III Tests of Achievement48. 
Brain MRI outcomes 
The structural and functional MRI outcomes studied are summarized in Figure 1. The 
MRI acquisition and the specific processing steps for each analysis are individually 
detailed in Extended Methods in Supplement 1. 
Cardiorespiratory fitness 
CRF was evaluated under laboratory conditions using a gas analyzer (General Electric 
Corporation) while performing a maximal incremental treadmill (hp-cosmos 
ergometer, Munich, Germany) test49.  
Biological maturation  
Peak height velocity (PHV) is a common indicator of maturity in children and 
adolescents50. PHV was calculated through Moore’s equations51. 
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Socioeconomic status 
Parents self-reported their highest educational level attained and current occupation, as 
described elsewhere26,52. 

Overall physical activity assessment before and during the intervention 
Activity patterns at baseline and during the intervention (week 10) were assessed with 
accelerometers worn at hip and wrist (GT3X+, ActiGraph, Pensacola, FL, US) as 
described elsewhere53. 

Statistical analyses 
We report the findings from the per-protocol analysis in the main article and the 
intention-to-treat analyses in Supplement 1 based on two reasons: 1) We aimed to 
study the efficacy of the program rather than the effectiveness; and 2) in the field of 
neuroimaging it is rarely done and technically difficult to apply imputation methods on 
images.  The analyses of the effects of the intervention were tested using analysis of 
covariance (ANCOVA) with behavioral outcomes as well as on a set of MRI outcomes 
(with hippocampal volume as a primary region of interest) as dependent variables in 
separate models, group (exercise versus control) as fixed factors and baseline of the 
study variable as covariate. The intervention effects are presented as z-scores of change, 
which indicate how many standard deviations (SDs) the post-exercise program values 
changed with respect to the baseline mean and SD. Therefore, it can be interpreted as a 
standardized effect size of the change54. Results in raw units of measure are also 
provided in eTables in Supplement 1. We report significant findings according to the 
classic P-value threshold of 0.05. Additionally, we applied multiple testing corrections 
on the primary outcomes55. A posteriori-planned analyses consisted on exploring 
potential mediators and moderators. Our mediation analyses are in line with the 
AGReMA (A Guideline for Reporting Mediation Analyses: https://agrema-
statement.org/) statement and the corresponding checklist is provided as Supplement 
3. The statistical procedures were performed using the SPSS software (version 25.0, 
IBM Corporation) and R software (v. 3.1.2, https://www.cran.r-project.org/ ).  
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RESULTS 
Baseline characteristics of the study sample are presented in eTable 1 in Supplement 
1. The flowchart of the study is presented in Figure 2. Out of the 109 randomized 
participants, 96 completed the study (12% attrition rate) and 90 met the criteria for per-
protocol analyses (83% of the original sample).  A graphical illustration of the a priori- 
and a posteriori-planned analyses on brain health outcomes conducted in the current 
study is presented in Figure 1. Additional details are provided in Extended Results in 
Supplement 1. 

1. A priori-planned analyses. Effects of the exercise intervention on primary 
outcomes: intelligence, executive functions, academic performance and hippocampal 
volume. 
The largest effect size observed in the ActiveBrains exercise program was for 
crystallized intelligence, with the exercise group improving from pre- to post-exercise 
compared to the control group 0.72 SDs (P=0.0000003, Figure 3 and eTable 2 in 
Supplement 1). Total intelligence also improved significantly more in the exercise 
group than in the control group (0.62 SDs, P=0.00008). In addition, exercise positively 
affected a composite score of cognitive flexibility, derived from two cognitive 
flexibility tests (0.42 SDs, P=0.005). Within this composite, the largest improvement 
was observed for performance on the cognitive flexibility test 1 (i.e., Design Fluency 
Test) (0.5 SDs, P=0.003). The exercise program had a null effect on the other two 
dimensions of executive function: inhibition and working memory (│0.04│ SDs and 
P=0.8, for both outcomes). 
For academic performance (Figure 3 and eTable 3 in Supplement 1), exercise 
significantly improved total academic performance and, particularly, mathematics, 
problem solving and academic skills. Overall, the effect sizes observed for academic 
performance were all of small magnitude, ranging from 0.21-0.36 SDs (P-values ranged 
from 0.035-0.007). The exercise program had a small, non-significant effect on reading 
and writing skills and a null effect on academic fluency. In exploratory analyses, we 
observed that the positive impact of exercise on total academic performance, 
mathematics and academic skills was mediated (30-39% of mediation) by exercise-
induced improvements in cognitive flexibility (eFigure 1A-C in Supplement 1). 
Moreover, we observed that the improvements in academic problem solving were 
mediated (15% of mediation) by improvements in exercise-induced changes in fluid 
intelligence (eFigure 1D in Supplement 1). Alternatively, our exercise program did 
not have an effect on overall hippocampal volume (Figure 3 and eTable 4 in 
Supplement 1).  
 After correction for multiple comparisons on the primary outcomes (the 17 
outcomes shown in Figure 3), the larger effects on intelligence (crystallized and total) 
and cognitive flexibility persisted with corrected P≤0.001 and P=0.02 respectively. 
Likewise, the effects observed on problem solving persisted significant (corrected 
P=0.02), whereas became borderline non-significant for mathematics, academic skills 
and total academic performance (all corrected P=0.07). 
 

2. A posteriori-planned analyses on brain MRI outcomes 
As shown in Figure 1 we explored the effects of the intervention on a set of brain MRI 
outcomes , including volumetric analyses of hippocampus subregions and prefrontal 
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cortex (eTables 4 and 5 in Supplement 1), cortical thickness and surface area of 
prefrontal cortex and subregions (eTables 6 and 7 in Supplement 1), functional 
connectivity between hippocampus and prefrontal cortex (eTables 8 to 13 in 
Supplement 1). Moreover, we studied the effects of the intervention using a broader 
brain approach, including: gray matter volumes of subcortical brain structures (eTable 
14 in Supplement 1), morphologic (shape) analysis of subcortical brain structures 
(eFigure 2 in Supplement 1), total brain volumes (eTable 15 in Supplement 1), 
whole-brain voxel-wise volumetric analysis and whole-brain structural covariance 
network analysis (eFigure 3 in Supplement 1). In short, our intervention did not have 
significant effect in any of these MRI outcomes studied. 

3. Effects of the intervention on CRF and its role as mediator 
The exercise program improved CRF as indicated by treadmill time-to-exhaustion, with 
0.42 SDs larger improvement in the exercise vs. control group (P=0.04) (eTable 17 in 
Supplement 1). A consistent improvement, yet smaller and non-significant, was 
observed in peak oxygen consumption (VO2peak) expressed in mL/kg/min (0.29 SDs, 
P=0.13). The effects of the exercise program on crystallized intelligence, problem 
solving and total academic performance were significantly mediated by improvements 
in CRF (i.e., time-to-exhaustion), with a mediation effect of 10-20% (Figure 4).  

4. Moderators of the intervention effects 
Figure 5 shows that the effect sizes of the exercise program were consistent across sex, 
age and maturation for most of the primary outcomes studied, except for crystallized 
intelligence, wherein the exercise program was more effective in boys as well as in 
younger and less mature participants. The sex differences observed could be partially 
explained by the finding that boys spent more time at high intensity zones (i.e., over 
their individualized anaerobic threshold monitored with heart rate) (eTable 18 in 
Supplement 1). Finally, we also observed that children with lower socioeconomic 
status (i.e., low parental educational and occupational levels) showed larger 
improvements in fluid and total intelligence, as did children with a lower performance 
at baseline in the intelligence test (eFigure 4 in Supplement 1). 

5. Other exploratory analyses related to the interpretation of the intervention effects 
(See further details in Extended Results in Supplement 1) 
Intention-to-treat and dropout analyses 
The main effects of this intervention observed in intelligence and cognitive flexibility 
remained significant in intention-to-treat analyses (eTables 19-21 in Supplement 1), 
indicating the robustness of the main findings. Moreover, participants dropping out 
during the study did not differ from those completing the study in any of the behavioral 
outcomes studied (eTable 22 in Supplement 1). 
Testing potential compensatory and contamination effects  
We observed that the exercise group significantly increased their activity levels 
(P<0.001) during the time frame of the day in which children were participating in the 
exercise program without reductions (i.e., no compensation) in other moments of the 
day (Figure 6 and eFigure 5 in Supplement 1, results from the hip- and wrist-attached 
accelerometer, respectively). The control group kept the same levels of daily activity 
(i.e., no contamination).  
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Characterization of the actual volume and intensity of the exercise program 
We observed an average intensity of 138 bpm (SD=8bpm) per session, indicating that 
the children trained for more than 1 h at 70% of their maximum HR. In addition, the 
children accumulated on average 38% of the session time (i.e., 25min) at high 
intensities over the 80% of their maximum HR (eFigure 6 in Supplement 1). As an 
additional feature of exercise volume received by our participants, we present in 
eFigure 7 in Supplement 1 the distribution of the attendance to the exercise sessions. 
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DISCUSSION 
The ActiveBrains trial contributes to the existing literature with a number of novel 
findings: 1) a 20-week aerobic+resistance exercise program with a coordinative 
component, at relatively high intensity for more than 1h, 3 times per week, improved 
total and crystallized intelligence, cognitive flexibility and academic performance in 
children with overweight/obesity. We rely mainly on the effects observed on 
intelligence, particularly on crystallized intelligence, as well as on cognitive flexibility, 
given the effect sizes and significance observed56. In fact, the effects on intelligence 
and cognitive flexibility outcomes were consistent and robust, persisting after applying 
multiple test correction as well as in both per-protocol and intention-to-treat analyses. 
Alternatively, our exercise program had a null effect on other executive functions such 
as inhibition and working memory, and on hippocampal volume. 2) We did not observe 
significant effects of exercise on any of the brain MRI outcomes studied (a posteriori-
planned analyses) and we could not therefore investigate whether changes in brain 
structure or function mediated the effects observed on behavioral outcomes. 3) The 
effects of the exercise program on crystallized intelligence, total academic performance 
and problem solving were partially mediated by exercise-induced improvements in 
CRF (10-20%, small mediation effect). Interestingly, improvements in most academic 
performance indicators were largely mediated (⁓30-40% of mediation) by exercise-
induced changes in cognitive flexibility. 4) The exercise effects were rather consistent 
across sex, age, socioeconomic status and baseline level subgroups for most of the study 
outcomes, except for a few cases and particularly for intelligence outcomes that 
improved more in boys than in girls. An Extended Discussion in the context of 
previous evidence is provided in Supplement 1. 
 
The interpretation of the results described above should be made in conjunction with 
the characteristics of the exercise intervention. We did not observe either compensatory 
or contamination effects on the daily physical activity levels (a phenomena known to 
occur sometimes in exercise trials57,58), based on our accelerometer analyses. In 
addition, it is important to highlight that our participants in the exercise group received 
a relatively high dose of exercise, based on the detailed HR data presented above. It is 
of utmost importance to investigate the potential compensatory/contamination effects, 
as well as the difference between planned and actual intensity achieved in the exercise 
program, since these factors can have a direct impact on the trial’s effects. Further, 
although our exercise program consisted mostly of aerobic exercise, roughly one third 
of the actual training time was devoted to resistance training. In this context, recent 
meta-analyses showed similar benefits on cognition from both aerobic and resistance 
training59,60, as well as for coordinative exercise (yet fewer studies are available for this 
type of exercise)42. Of note, during both the aerobic and resistance training components, 
the characteristics of the program embedded a definitive coordinative/motor 
component. This included playful balance, bilateral coordination, hand–eye 
coordination, and leg–arm coordination exercises as well as spatial orientation and 
reaction to moving objects/people, and the use of balls, skipping ropes, speed ladders 
and balloons as the equipment, which together have been defined in previous trials as 
coordinative/motor exercise61. The results from the ActiveBrains trial should therefore 
be interpreted as the combined effect of aerobic, resistance, and coordinative/motor 
exercise. Lastly, the exercise program was centered on games that required cooperation 
with other participants as well as on behaviors modification consistent with rules and 
instructions. Thus, our exercise program had clear cognitive and social components 
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beyond simply aerobic exercise (e.g. treadmill walking/running or stationary cycling). 
It has been suggested that adding game elements to an exercise program to make it more 
cognitively challenging could enhance the effects on executive functions62–65. 
Nevertheless, whether exercise interventions based on active games with higher 
cognitive demands, like ours, can have a larger impact on brain health outcomes than 
others with lower cognitive and social demands (e.g., stationary running/biking) needs 
to be further investigated using RCTs specifically designed to address these research 
questions. 
 
We acknowledge the limitations of this study. It is unknown whether longer 
interventions than ours are needed to elicit structural or functional changes in the brain 
(in Supplement 1 further discussion on this). Further, although several protocols were 
adopted to reduce the risk of bias in the evaluations (e.g., randomization after baseline 
assessment, physical trainers not involved in the evaluations), some of the project staff 
involved in the post-exercise evaluations were not blinded to the group allocation due 
to practical reasons, which could add potential bias to the post-intervention 
measurements. Even assuming an attenuation of the effect sizes after correcting for 
potential bias, we believe that the main exercise effects on intelligence and cognitive 
flexibility observed would remain significant given their magnitude, yielding it unlikely 
to change the study conclusions. Finally, the extent to which the findings from our study 
conducted in children with overweight/obesity applies to other populations of different 
characteristics is unknown.  
 
CONCLUSION 
The findings of this study support that intelligence and cognitive flexibility are 
improved by 20 weeks of exercise of relatively high intensity for more than 1 h, 3 times 
per week, and during a sensitive period of life, childhood, when the brain is growing 
and developing. However, we failed to detect which structural or functional changes in 
the brain may underlie these exercise effects on behavioral outcomes. Alternatively, we 
observed that exercise-induced changes in CRF explain some of the exercise benefits, 
yet not most of them. Moreover, our exercise program had small, yet consistent with 
the literature, effects on academic performance indicators (i.e., mathematics, problem 
solving and total academic performance), which were mediated by exercise-induced 
improvements in cognitive flexibility and fluid intelligence. Finally, the intervention 
effects were generally consistent across the moderators studied, with some exceptions, 
particularly for intelligence outcomes in which larger effects were observed in boys 
than in girls. The present study provides a comprehensive investigation on the effects 
of exercise on cognitive outcomes and academic achievement during growth in the 
presence of overweight and obesity. However, the brain mechanisms that might explain 
those effects remains unknown. 
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Figure 1.  Graphical illustration of the a priori-planned main analyses of the study, as well as the a 
posteriori-planned exploratory analyses conducted on different brain health outcomes. 
ROI indicates region-of-interest 
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Figure 2. CONSORT flow diagram.   
ADHD = Attention-deficit hyperactivity disorder. ITT = Intention-to-treat. For final ITT analyses, those 
participants who left the study during the intervention or did not complete the post-exercise program 
assessments were imputed (see Statistical analysis section). 
Nmax = Maximum sample size included in the analyses. The actual N for each variable can be seen in 
eTables in Supplement 1. 
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Figure 3. Per-protocol effects of the ActiveBrains exercise program on the main brain health 
outcomes. 
Dots represent the between-groups difference in z-score values of change, i.e., post-exercise outcomes 
with respect to the baseline mean and standard deviation. Bars represent 95% confidence intervals (CIs). 
Each analysis was adjusted for baseline outcomes. 
Bold font indicates significant effect at P<0.05 (or by the 95% CI not including zero). 
Each color represents one of the four main brain health dimensions (i.e., intelligence, executive function, 
academic performance, or brain structure). 
Intelligence outcomes (i.e., Crystallized intelligence, Fluid intelligence, and Total intelligence) were 
measured by the Kaufman Brief Intelligence Test. 
Cognitive flexibility test 1 refers to the Design Fluency Test output. Cognitive flexibility test 2 refers to 
the Trail Making Test output. Cognitive flexibility composite z-score was calculated as the re-normalized 
mean of the z-scores for Cognitive flexibility test 1 and Cognitive flexibility test 2. Inhibition was 
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measured by the Stroop Color-Word Test. Working memory was measured by the Delayed Non-Match-
to sample computerized task. Executive function composite z-score was calculated as the re-normalized 
mean of the z-scores for Cognitive flexibility, Inhibition, and Working memory. 
Academic performance outcomes were obtained from the Spanish version of the Woodcock Johnson III 
Test of Achievement. Academic skills are the sum of components based on basic skills such as reading 
decoding, mathematics calculation, and spelling. Academic fluency is the sum of tests based on reading, 
calculation and writing fluency. Problem solving is the sum of the components based on solving 
academic problems in reading, mathematics, and writing. Total academic performance is the overall 
measure of the academic performance based on reading, mathematics, and writing. 
Hippocampal volume was obtained using the FMRIB’s Integrated Registration and Segmentation Tool 
(FIRST). 
Two of the cognitive tests, i.e., the cognitive flexibility test 2 (Trail Making Test) and the inhibition test 
(Stroop Color-Word Test), are originally expressed inversely, which means that lower scores indicate 
better performance. To simplify the visual interpretation of the main findings in this Figure, we inverted 
these two scores so that they can be interpreted in the same fashion as the rest of outcomes (i.e., higher 
score better performance). On the other hand, we express these cognitive tests in their original units and 
not inverted in eTables 2 and 19 in Supplement 1. 
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Figure 4. Cardiorespiratory fitness’ change mediation models of the intervention effects (i.e., exercise vs. control) on 
intelligence, cognitive and academic performance outcomes in children with overweight/obesity. 
Each analysis was adjusted by the respective intelligence, cognitive or academic performance outcomes at baseline. Bold font 
indicates significant indirect effect at P<0.05. B indicates unstandardized regression coefficient and ß indicates standardized 
regression coefficient. CI indicates Confidence Interval. 
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Delta (∆) cardiorespiratory fitness expresses the change in total completion time (min) of the treadmill test at post-exercise 
program with respect to the total completion time (min) at baseline, since it was the main cardiorespiratory fitness outcome 
influenced by the exercise program. 
Crystallized intelligence was measured by the Kaufman Brief Intelligence Test. 
Cognitive flexibility composite z-score was calculated as the re-normalized mean of the z-scores for Design Fluency Test and 
Trail Making Test. 
Academic skills are the sum of components based on basic skills such as reading decoding, mathematics calculation, and 
spelling. 
Problem solving is the sum of the components based on solving academic problems in reading, mathematics, and writing. 
Total academic performance is the overall measure of the academic performance based on reading, mathematics, and writing. 
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Figure 5. Per-protocol effects of the ActiveBrains exercise program on the main brain health outcomes by sex (A), age (B) and biological maturation (C).  
Each analysis was adjusted by baseline outcomes. Dots represent the between-groups difference in z-score of change, i.e., post-exercise outcomes with respect to the baseline 
mean and standard deviation. Bars represent 95% confidence intervals.  
To express biological maturation, years from peak height velocity (PHV) were calculated by subtracting the age of PHV from the chronological age. The difference in years 
was utilized as a measure of maturity. PHV was dichotomized using the median.  
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Intelligence outcomes (i.e., Crystallized intelligence, Fluid intelligence, and Total intelligence) were measured by the Kaufman Brief Intelligence Test. 
Cognitive flexibility test 1 refers to the Design Fluency Test output. Cognitive flexibility test 2 refers to the Trail Making Test output. Cognitive flexibility composite z-score 
was calculated as the re-normalized mean of the z-scores for Cognitive flexibility test 1 and Cognitive flexibility test 2. Inhibition was measured by the Stroop Color-Word 
Test. Working memory was measured by the Delayed Non-Match-to sample computerized task. Executive function composite z-score was calculated as the re-normalized mean 
of the z-scores for Cognitive flexibility, Inhibition, and Working memory. 
Academic performance outcomes were obtained from the Spanish version of the Woodcock Johnson III Test of Achievement. Academic skills are the sum of components based 
on basic skills such as reading decoding, mathematics calculation, and spelling. Academic fluency is the sum of tests based on reading, calculation and writing fluency. Problem 
solving is the sum of the components based on solving academic problems in reading, mathematics, and writing. Total academic performance is the overall measure of the 
academic performance based on reading, mathematics, and writing. 
Hippocampal volume was obtained using the FMRIB’s Integrated Registration and Segmentation Tool (FIRST). 
Two of the cognitive tests, i.e., the cognitive flexibility test 2 (Trail Making Test) and the inhibition test (Stroop Color-Word Test), are originally expressed in an inverse way, 
which means that lower scores indicate better performance. In order to make the visual interpretation of the main findings in these Figure easier, we inverted these two scores 
so that they could be interpreted in the same fashion as the rest of outcomes (i.e., higher score better performance). On the other hand, we express these cognitive tests in their 
original units and not inverted in eTables 2 and 19 in Supplement 1. 
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Figure 6. Comparison of the 24 h physical activity patterns derived from aggregated raw accelerations (i.e., 
Euclidean Norm Minus One accelerations) measured with an accelerometer attached at the right hip at baseline 
(i.e., black line) and in the middle of the exercise program (i.e., orange line) in exercise and control groups. 
The hypothesis test shows the threshold (t* = 3.593) at which there are significant physical activity patterns’ differences 
between baseline and during-exercise periods. 
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