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Abstract

Objective: We aimed to use mathematical models of SARS-COV-2 to assess the
potential efficacy of non-pharmaceutical interventions on transmission in the parcel
delivery and logistics sector.

Methods: We developed a network-based model of workplace contacts based on data
and consultations from companies in the parcel delivery and logistics sectors. We used
these in stochastic simulations of disease transmission to predict the probability of
workplace outbreaks in this settings. Individuals in the model have different viral load
trajectories based on SARS-CoV-2 in-host dynamics, which couple to their
infectiousness and test positive probability over time, in order to determine the impact
of testing and isolation measures.

Results: The baseline model (without any interventions) showed different workplace
infection rates for staff in different job roles. Based on our assumptions of contact
patterns in the parcel delivery work setting we found that when a delivery driver was
the index case, on average they infect only 0.14 other employees , while for warehouse
and office workers this went up to 0.65 and 2.24 respectively. In the LIDD setting this
was predicted to be 1.40, 0.98, and 1.34 respectively. Nonetheless, the vast majority of
simulations resulted in 0 secondary cases among customers (even without contact-free
delivery). Our results showed that a combination of social distancing, office staff
working from home, and fixed driver pairings (all interventions carried out by the
companies we consulted) reduce the risk of workplace outbreaks by 3-4 times.

Conclusion: This work suggests that, without interventions, significant transmission
could have occured in these workplaces, but that these posed minimal risk to customers.
We found that identifying and isolating regular close-contacts of infectious individuals
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(i.e. house-share, carpools, or delivery pairs) is an efficient measure for stopping
workplace outbreaks. Regular testing can make these isolation measures even more
effective but also increases the number of staff isolating at one time. It is therefore more
efficient to use these isolation measures in addition to social distancing and contact
reduction interventions, rather than instead of, as these reduce both transmission and
the number of people needing to isolate at one time.

Author summary

During the COVID-19 pandemic the home-delivery sector was vital to maintaining
people’s access to certain goods, and sustaining levels of economic activity for a variety
of businesses. However, this important work necessarily involved contact with a large
number of customers as well as colleagues. This means that questions have often been
raised about whether enough was being done to keep customers and staff safe.
Estimating the potential risk to customers and staff is complex, but here we tackle this
problem by building a model of workplace and customer contacts, from which we
simulate SARS-CoV-2 transmission. By involving industry representatives in the
development of this model, we have simulated interventions that have either been
applied or considered, and so the findings of this study are relevant to decisions made in
that sector. Furthermore, we can learn generic lessons from this specific case study
which apply to many types of shared workplace as well as highlighting implications of
the highly stochastic nature of disease transmission in small populations.

Introduction 1

Demand for home-delivery services spiked globally during the COVID-19 pandemic, as 2

people stayed at home to reduce transmission [1]. In the UK, non-essential retail shops 3

were closed for much of 2020 and 2021, increasing the demand for online retail and 4

home delivery. Additionally, stay-at-home orders brought new demand for large items 5

such as furniture and white goods as many people adjusted to spending more time at 6

home [2]. This new and displaced demand has, on the whole, been successfully absorbed 7

and managed by the delivery and logistics sector, due in no small part to the efforts of 8

the key workers in those sectors to keep business moving, while adapting to a changing 9

work environment. Meanwhile, key workers in all sectors were disproportionately 10

exposed to transmission of SARS-CoV-2 [3]. In the delivery sector, drivers and 11

warehouse workers were also at risk, given their exposure to a large number of contacts, 12

the likelihood of asymptomatic transmission in SARS-CoV-2, and the potential 13

economic impact of absence due to the prevalence of flexible or zero-hours contracts in 14

this sector. Furthermore, studies from other countries indicate that delivery drivers 15

there could be at much greater risk [4] than the general population, and so is a sector 16

that requires greater attention. 17

Mathematical models have been central to understanding transmission of 18

SARS-CoV-2 and in predicting the impact of various interventions. As more data has 19

become available, models have been developed for a number of specific settings, 20

including schools, hospitals, prisons and workplaces [5–8], to take into account the 21

nuances and unique features of each setting. In this paper we present a model of 22

delivery sector that has been uses to assess the impact of various measures that some 23

companies have taken, as well as measures that were under consideration. One unique 24

feature of these settings is the high number of brief contacts that delivery drivers have 25

with members of the public, who themselves may otherwise have very limited contacts. 26

Another feature in the delivery of heavy or large items is the safety requirement for 27
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employees to handle and deliver goods in pairs, often requiring prolonged close contact 28

and entry into customers’ properties. Finally, there is still the poorly understood route 29

of fomite transmission that has the potential to be important in this setting, due to the 30

large volume of packages being handled. The model we present considers all of these 31

aspects, and where data is unavailable or uncertain (e.g. for risk of fomite transmission), 32

we consider a wide range of possible scenarios. 33

We have developed an agent-based network model with stochastic transmission. 34

Therefore, each realisation of the simulation represents a possible chain of transmission 35

within a workplace, and so conclusions can only be drawn from the aggregated results of 36

many simulations. There are commonalities with several models in the literature, 37

including the network models for COVID-19 transmission in workplaces [8]. The 38

stochastic infection and isolation model is similar to other agent-based and branching 39

process models [7, 9]. The model was developed based on a combination of 40

epidemiological data and qualitative information gained from consultations with 41

companies in the logistics sector in the UK. 42

With global rollout of SARS-CoV-2 vaccines, the most severe impacts of COVID-19 43

on public health to be curtailed and so have most of the restrictions and measures in 44

place to reduce transmission. However, containing the spread of new variants is likely to 45

require good surveillance testing. There has been considerable debate around the 46

usefulness of Lateral Flow Device (LFD) antigen tests that can be self-administered and 47

give rapid results [10–12]. Primarily, this centres around the lower sensitivity of LFD 48

antigen tests against Polymerase Chain Reaction (PCR) testing, particularly at low 49

viral loads [13], and the potential impact of false positives. However, recent data 50

suggests that LFD antigen test specificity may be at least 99.9% [14], suggesting that 51

false positives will have a negligible impact. Furthermore, culturable SARS-CoV-2 virus 52

is only found, at most, in the first 8-10 days following symptom onset [15–17], when 53

viral load is higher. This suggests that lower sensitivity tests may still be useful at 54

detecting people when they are most infectious. However, the way tests are performed 55

(e.g. self-administered vs. trained tester) can have an impact on sensitivity [18], plus the 56

method of rollout (e.g. supervised vs. unsupervised testing) can affect the adherence to 57

the testing policy. The model we present accounts for these various factors. 58

The aim of this paper is to estimate the efficacy of different workplace interventions 59

with a model particularly tailored to the home-delivery sector. We considered several 60

interventions and scenarios based on formal consultations with company representative 61

from this sector. A secondary aim is to estimate the potential impact of presenteeism 62

(working while sick) with COVID-19 symptoms. Flexible or ‘gig’ contracts are common 63

in the home delivery sector, as well as the use of self-employed couriers, all of which are 64

factors associated with increased presenteeism [19], so this is an important factor to 65

consider. 66

Materials and methods 67

The project was reviewed and approved by the University Research Ethics Committee 68

at University of Manchester, Ref: 2020-9787-15953. Consent to participation was 69

verbally obtained before the commencement of the interviews. Written informed consent 70

for participation was not required for this study in accordance with the national 71

legislation and the institutional requirements. 72

Data Collection and Company Consultations 73

We carried out recorded consultations via teleconference with representatives from six 74

companies between July and August 2020 (Round 1), and May and June 2021 (Round 75
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2), three of these companies were interviewed in both rounds. Companies were recruited 76

via engagement e-mails (via University of Manchester Business Engagement Services). 77

Companies that volunteered then elected representatives to participate in the studies. 78

Participants’ contact details were retained by the researchers for communication 79

purposes but no other personal information was collected or stored. Each 80

semi-structured interview lasted 60-90 mins and was based around a set of open-ended 81

questions regarding how the pandemic had impacted on the operations of the business 82

and what measures had been put in place to protect staff and customers. As part of 83

these consultations we asked questions regarding the number of staff working at typical 84

sites and the frequency of contacts between employees and the public. Additionally, two 85

companies provided data on staff numbers and deliveries, which are detailed in 86

Supplementary Text S1.1. A summary report was sent to each company for comments 87

and corrections to verify that we had interpreted their answers accurately, and the data 88

correctly. Further details on the consultations are published in [2]. Fitted data regarding 89

the number of deliveries per day over time from these companies is displayed in figure . 90

We also used data from an online contact survey aimed at delivery drivers in the 91

UK [20], which received 170 responses (104 of which were from the workers involved in 92

the delivery of small packages and/or large items). This survey was elective so was not 93

statistically representative. The results of this survey are to be published elsewhere but 94

a few results are utilised in this paper. Namely, only 5.3% reported working while 95

having symptoms of COVID-19 or with a member of their household having a suspected 96

or confirmed case of COVID-19. Conversely, 17.2% reported having isolated with 97

symptoms of COVID-19 or due to a member of their household having a suspected or 98

confirmed case of COVID-19. This suggests approximately 1 in 4 failing to isolate for 99

one of these reasons. For this reason we consider two pisol values (0.5 and 0.9) as ‘low’ 100

and ‘high’ isolation rates, noting the likely caveat of reporting biases. Staff reported 101

large numbers of daily contacts (mean 15.0) at their place of work, which, tallying with 102

the results of consultations, we interpreted as a result of repeated interaction within a 103

work cohort (with only rare random interactions on top). Hence our assumed cohort 104

size for drivers of ≈ 13. 105

Finally, fitted community incidence levels for March-June 2020 were used to mimic 106

workplace ingress rates during an active pandemic, see Supplementary Fig. S2. 107

Workplace Network Model 108

In this section we present an overview of the model details, with further details supplied 109

in Supplementary Text S1.2. The model we use is a stochastic agent-based network 110

model of disease transmission. The parameters and symbols used in the following 111

section are all described in table 1. 112

The model is parameterised to represent two archetypal delivery workplaces, a Small 113

Parcel Delivery Depot (SPDD) and a Large-items Delivery Depot (LIDD). These 114

represent depots that ship directly to customers. The SPDD is representative of a 115

typical depot for (inter)national couriers shipping small packages that can be handled 116

by a single person. The LIDD case represents a depot for logistics companies that 117

specialise in items such as furniture and white goods, and may also offer 118

installation/assembly of the products as part of delivery. As shown in table 1, the LIDD 119

model has fewer staff, longer delivery times (as the deliveries tend to be more spatially 120

separated), longer customer contact durations (because items tend to be delivered into 121

the home and may be assembled/installed) and thus an order of magnitude fewer 122

deliveries per day than the SPDD model. 123
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Table 1. Model parameters for workplace contacts and transmission. The values given
are the values used unless otherwise stated for a given figure or section. The “perceived
uncertainty” is simply to indicate the level of confidence we have in the parameter
values – Low: based on primary data or peer-reviewed sources; Moderate: based on
literature reviews, surveys, or specific consultation questions; High: assumed or
extrapolated from consultation answers.

Parameter Description Value Source
Perceived
uncer-
tainty

ND, NL,
NO

Total number of
drivers, pickers, and
office staff employed in
the workplace respec-
tively.

SPDD:
{50, 25, 15}

LIDD:
{20, 10, 5}

Company
data and

consultation
Low

TD, TL,
TO

Total number of driver,
picker, and office staff
cohorts/teams.

SPDD: {3, 2, 1}
LIDD: {2, 2, 1}

Consulations
and survey

Moderate

nD(t),
nL(t),
nO(t)

Number of drivers,
pickers, and office
staff working on day t
respectively.

Variable
Company
data and

consultation
Low

DP (t)
Total number of pack-
ages delivered on day t.

Variable
Company

data
Low

pc

Probability of two indi-
viduals at work having
a random F2F contact
in a given day.

2/(ND +NO +
NL)

Consultation
and survey

High

ρD

For contacts including
drivers, pc is scaled by
this factor.

0.05 Consultation Moderate

fc

Cohort flux rate. The
probability each day of
a worker switching to a
different cohort.

0.01 per day Consultation High

βF2F

Infection rate for F2F
contact at 1m distance
while speaking (with a
person with unit infec-
tiousness)

0.15 h−1

A plausible
range of
0.03–0.24

was inferred
from [21–23]

Moderate

ci

Modifier for exposure
due to type of contact
i

1 (inside,
talking) ×0.2
(outside) ×0.2
(not talking)

[21] Moderate

βSS

Infection rate via room-
sharing (with a per-
son with unit infectious-
ness)

0.002 h−1
See Supple-
mentary
Text S1.4

High

xss

Effective distance for
room-sharing interac-
tion

4.3m (shared
spaces), 3.6m

(office)

see Supple-
mentary
Text S1.4

Moderate
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βFOM

Package-mediated
fomite infection rate
(from a person with
unit infectiousness) if
time between handling
is 0.

0.001 per
contact

Assumed Very high

λ
Half-life of virus de-
posited on packages.

3 h−1 [24] Low

τoffice

Time office staff spend
in shared office each
day.

6 h Consultation Low

τbreak

Time office and picker
staff spend in shared
break rooms

1 h Consultation Moderate

H

Average number of em-
ployees per employee
household minus 1
(H = 0 means no em-
ployees live together,
H = 1 means the
average household has
two employees)

0.05, 0.5 Assumed High

C
Number of cars/shared
commutes per house-
holds minus 1.

0.05, 0.5 Assumed High

Jk[Vk(t−
tk])

Relative infectiousness
of person k with viral
load Vk infected at time
tk.

See
Supplementary

Text S1.3,
Figure Fig. S3,

and [25]

[26] Moderate

Sk(t− tk)
Relative susceptibility
of person k infected at
time tk.

Sk(t− tk < 0) =
1 Sk(t− tk ≥

0) = 0

Basic SIR
model

assumption
Low

psymp

Probability that an in-
dividual develops symp-
toms relevant for self-
isolation guidance.

0.5 [3]

Moderate
(is age,
variant,
and

guidance
depen-
dent).

pisol

Probability that an in-
dividual adheres to self-
isolation guidance.

0.5, 0.9
[19] and
Survey

Moderate.

pmiss

Probability that an ‘ad-
herent’ person misses a
test.

0.4

Based on
adherence
rates in the
UK public
sector.

Moderate.

The model considers contacts between all employees working in a home delivery 124

depot (i.e. engaged in business-to-consumer delivery or B2C) that has a warehouse and 125
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onsite offices. The workplace is populated by 3 groups: drivers, who deliver packages 126

from the warehouse to customers; pickers, who transport and load packages within the 127

warehouse; and office/admin staff, who work in the same building but in shared offices. 128

There exists a pool of ND drivers , NL pickers and NO office staff available for work 129

each day. Workforce turnover is ignored, as it is assumed negligible over the time scales 130

considered, however it may play a role over long time periods. 131

Employee work schedules 132

The model network consists of all within-workplace contacts between employees, as well 133

as contacts between employees due to house-sharing or carpooling, in order to simulate 134

workplace outbreaks in detail. Thus we assume, unless they share a household, 135

employees only make contact with other employees if they are both at work on that day. 136

We use an idealised model for the work schedule, whereby the number of employees in 137

work depends on the day of the week, this pattern was calculated from data from two 138

UK logistics firms (see Supplementary Text S1.1 for details). For all pickers and drivers, 139

we randomly assign consignments (i.e. deliveries/packages) for loading and delivery (as 140

detailed in Supplementary Text S1.4). We assume that each consignment is first 141

handled by pickers, then subsequently by drivers, and finally by the customer. Drivers 142

are the only group of employees that have direct contact with members of the public 143

while on shift. For simulation efficiency, repeat interactions with customers are not 144

considered (as contacts via this route have a very low probability of infection, so double 145

counting of infections is very unlikely), but these contacts are simulated and infection 146

ingress/egress through this route is included in the model. 147

We also consider the case where drivers and pickers work in pairs (i.e. large goods 148

delivery), we round the number of staff required in these roles to the nearest even 149

number, and then assign pairings randomly each day. One intervention simulated is 150

fixed pairings; in this case, these are assigned a priori and we pick the pairs working on 151

a given day at random from those available. A pair is unavailable if either worker in 152

that pair is isolating, therefore this intervention is always used alongside “pair 153

isolation”, where one member of the fixed pair isolates for the same period as their 154

partner (whether or not they develop symptoms). 155

Workplace contacts and infections 156

Infections are modelled to occur via three routes; face-to-face (F2F) contact with 157

infectious individuals, indirect contact via sharing a space with infectious individuals, 158

and fomite transmission via goods handling. 159

The model generates direct F2F contacts between employees through three different 160

mechanisms, summarised in table 2. Table 2 also lists the parameters for the different 161

contact routes simulated. Contacts made via these routes are assumed to be dominated 162

by face-to-face transmission. 163

Indirect aerosol-mediated transmission is taken to occur on a one-to-all basis. Given 164

the well-ventilated nature of warehouses, we assume that this kind of transmission only 165

occurs in offices, or in lunch/break rooms. Finally, fomite transmission via package 166

handling is simulated as a decaying random process, such that the probability of onward 167

transmission depends on the time between package handling events by infectious and 168

susceptible individuals. See Supplementary Text S1.4 for the justification of the various 169

transmission parameters used. 170
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Table 2. Summary of the direct contact routes simulated and the associated
transmission rate modifier, duration of contact, and contact distance. These are the
values used in all simulations in the main text unless explicitly stated otherwise. Note
that this table does not include fomite transmission routes, which are simulated and are
described in detail Supplementary Text S1.4.

Contact-
type

Description
Transmission
modifier (ci)

Duration (τi) Distance

Cohort

F2F contacts that occur
within a team or cohort
(see Supplementary Text
S1.5 for more informa-
tion).

0.4 (either
indoor or
“loud-talking”
outdoors, 25%
of time)

Drivers:
τcoh = 15min
Pickers/Office:
τcoh = 1h

1m

Random

F2F contacts that occur
randomly in the workplace
with weighted probability
towards contacts between
same job roles (see Sup-
plementary Text S1.5 for
more information).

0.4 (25% of time
talking)

τrand = 15
min

1m

Large-
item

handling

Time spent lifting and
moving packages in pairs
(see section Supplementary
Text S1.5 for more informa-
tion).

0.08 (outdoor,
25% of time
talking)

τhan = 5 min
per delivery

1m

Pair
delivery

Contact via sharing a
cabin while delivering
large-items (see Supple-
mentary Text S1.5 for
more information).

0.4 (window
closed)
0.08 (window
open)

τcab = 10
min per deliv-
ery

1m

Pair
dropoff

Contact between driver
pairs during dropping
large-item off at cus-
tomer’s property (see
Supplementary Text S1.5
for more information).

0.4 (25% of time
talking)

τdrop = 5
min per deliv-
ery

1m

Customer
Contact between driver(s)
and customer during item
delivery

SPDD: 0.08
(outside, talking
25% of time)
LIDD: 0.24
(Inside 50% of
time, talking
25% of time)

SPDD: 30s
per delivery
LIDD: 5min
per delivery

1m

Room-
share

Aerosol-mediated contact
in poorly ventilated rooms

0.2 (no talking)
τoff = 6h
τlun = 1h

∼ 6m (see
Supple-
mentary
Text S1.4
based on
[27–29])

Car-share
Contact via carpooling to
and from work.

0.4 (25% of time
talking)

0.5h 1m
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House-
share

Contact via shared accom-
modation.

1 0.5h

1m (see
Supple-
mentary
Text S1.4
based
on [21,30–
32]))

The transmission routes between different groups are illustrated in fig 1.

Fig 1. Sketch of workplace staff groups and the potential transmission routes between
them. Blue lines indicate face-to-face contacts, with dashed lines indicating
transmission routes with either a lower contact rate or less contact time. Orange arrows
are fomite transmission routes (via packages) and green indicates aerosol transmission in
shared rooms. Arrows indicate direction of transmission.

171

Individual characteristics: viral load, infectiousness, and test 172

positivity 173

Viral load trajectories are generated from the individual level data in [26]. The 174

algorithm to generate individual viral load and infectiousness profiles is described in 175

further detail in Supplementary Text S2 and in [33] is available at [34]. The method is 176

detailed in [25] and summarised in Supplementary Text S1.3. 177

Simulation algorithm 178

The simulations employ an individual-based network model approach with daily contact 179

networks randomly generated using the parameterisations in table 2. The algorithm 180

updates contacts and infection events at discrete intervals of one day. This was chosen 181

as the most natural option because the contact network changes from day-to-day. 182

Additionally, the data collected to parameterise the model (including viral load data) is 183

all defined at the scale of 1 measurement per day. However, this “synchronous” 184
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updating does introduce some error into the dynamics of the simulated epidemiology. It 185

is known that in generic individual-based models synchronous updating can cause 186

spurious oscillations in the dynamics compared to asynchronous methods such as a 187

Gillespie algorithm or Markov Chain model [35]. Here a synchronous method was 188

employed to make the model more transparent and generalisable (e.g. to non-Markovian 189

processes), and to avoid the complexity of specifying the timings of shift and contact 190

patterns over the course of a single day. This is similar to other recent network or IB 191

epidemic models [5, 7, 9]. We justify this by reasoning that the error introduced is likely 192

to be insignificant for transmission of SARS-CoV-2 as a newly infected individual is 193

effectively non-infectious for the first day. Therefore, events where one worker is 194

infected and then infects a co-worker within the same shift, which are missed by the 195

synchronous update model, are vanishingly rare. Thus, there is no mechanism to trigger 196

oscillations in this system at the timescale of the discretisation. Also, any potential 197

effects of the artificial periodicity introduced by the simultaneous updates are obscured 198

by the population-scale heterogeneity in infectiousness as a function of time since 199

infections. The algorithm is outlined in detail in Supplementary Text S2. 200

We use the model to simulate two types of scenario: 201

• Point-source outbreak: A single index case is chosen and we assume that there 202

are no other introductions during the simulation. All other employees are 203

susceptible at the simulation start (i.e. zero prevalence). The simulation 204

terminates when there are no infectious cases remaining. This type of scenario is 205

modelled in Impact of mass testing on point-source outbreaks and in 206

Supplementary Text S3. 207

• Continuous-source outbreak: No index cases are chosen initially and 208

introductions occur randomly (Poisson process) based on the community incidence 209

and prevalence in March-June 2020 (see Supplementary Fig. S2). The simulation 210

runs for a fixed time window, and the number of customer contacts and packages 211

delivered follow the pattern of demand experienced during that period of time (see 212

Supplementary Fig. S1). This scenario is modelled in Impact of interventions in a 213

real-world context. 214

In the point-source outbreak scenarios, in order to define a ‘successful’ outbreak we 215

arbitrarily set a threshold of a final attack rate of 5%. Note that we choose this as it is 216

a low-threshold, like the epidemiological definition of an outbreak as a single linked 217

secondary case. However, by defining it as a percentage of workplace size this makes the 218

results from the two different settings more comparable. Therefore, if 219

R− 1 > 0.05(ND +NL +NO), where R is the number of recovered individuals at the 220

end of the simulation, then we record this simulation as a successful outbreak. The 221

fraction of simulations where a successful outbreak occurs is then used as an estimate of 222

the probability of an index case resulting in an outbreak. 223

For continuous-source outbreaks, there is random ingress of new cases, so instead we 224

compare the number of workplace infections (ignoring introductions) as well as the 225

number of isolation days to measure impacts on productivity. Introductions can occur 226

in these simulations through two routes: 227

• Community ingress: Each susceptible individual in the workplace has 228

probability I(t) of being infected outside of work, where I(t) is the community 229

incidence at time t. 230

• Customer ingress: For each delivery a driver makes, there is probability P (t) 231

that the customer is currently infectious, where P (t) is the community prevalence 232

at time t. When a susceptible driver interacts with an infectious customer, there 233

is probability pcust = 1− exp(−ciβF2F τdoorstep) of an infection. 234
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This is a very simple model of case ingress and does not account for household structure, 235

the geographical/individual variability in the wider population, or repeat deliveries to 236

customers. 237

The testing strategy we model here is non-directed mass testing, i.e. all employees 238

are tested regularly every τp days. A random day in the period [1,τp] is drawn as the 239

first test day, and all subsequent test days follow sequentially τp days after the previous. 240

Following a positive test, an individual cannot be tested again for τpause days after their 241

positive test. Other testing strategies may be beneficial, particularly if looking to reduce 242

the burden on employees or because of affordability, and we address some of these in the 243

discussion. 244

The simulation follows an SIR-type structure, such that individuals who have 245

previously been infected cannot be re-infected. This is a reasonable assumption over the 246

timescales of up to 3 months that we consider here. An example visualisation of a single 247

realisation of the simulation is shown in figure 2. The source code for the simulations 248

can be found at [36]. 249
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Fig 2. Example outbreak in a SPDD workplace, where the simulation terminates when
no infectious cases remain. (a) The evolution of the number of recovered, infectious and
quarantined (isolated) people in the model on each day (dashed and dotted lines
indicate the same quantities for each subgroup as labelled). (b) Example network of the
“cohort” contacts, each cohort has edges between all member nodes, additionally each
driver cohort (blue D nodes) is supervised by a member of staff from the warehouse (red
P nodes). Office staff are disconnected (green O nodes), but make contact through
random interactions, break rooms, and house/car sharing arrangements.

Results 250

The baseline transmission rates are summarised in Supplementary Fig. S4 and Fig. S5, 251

which show a breakdown of the mean number of staff infected by the various infection 252

routes of the SPDD and LIDD model respectively. 253

Supplementary Fig. S6 shows the effect of the choice of work cohort size in the 254

SPDD setting, where we predict that office size and occupancy is a more important 255

potential factor in workplace outbreaks than transmission between drivers at the 256

workplace, even though office workers are in the minority. 257

In the LIDD setting, close-contact working pairs (primarily delivery pairs, who share 258

a vehicle for much of the day) were predicted to be very important, and keeping these 259

pairs fixed had a significant impact on reducing workplace spread (Supplementary Fig. 260
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S7(a)). Supplementary Fig. S7(b) shows that this is also predicted to have a knock-on 261

effect for customer infections, making them approximately as rare as in the SPDD 262

setting. 263

Finally, we also present the effect of presenteeism, which in this model we define as 264

workers with symptomatic COVID-19 attending work, which we find can have a notable 265

effect on transmission, particularly when coupled with other measures to isolate 266

close-contacts of symptomatic individuals (Supplementary Fig. S8 and Fig. S9). 267

Supplementary Fig. S10 compares the effect of presenteeism on different transmission 268

routes and how this interacts with the fixed pairings policy. 269

These results (Supplementary Fig. S4 through to Fig. S10) are summarised in 270

greater detail in Supplementary Text S3. 271

Furthermore, Supplementary Fig. S11 through to Fig. S14 show the sensitivity of 272

the outbreak size to various model parameters that have significant uncertainty (namely 273

aerosol and F2F transmission rates, fomite transmission rates, workplace size, and 274

mixing rates between job roles). These results are summarised in Supplementary . 275

In this following section, we focus on the impacts of testing and the combination of 276

different workplace interventions to analyse their potential effectiveness. 277

Impact of mass testing on point-source outbreaks 278

Given the long incubation period of COVID-19 (compared to flu) and the significant 279

proportion of asymptomatic cases, regular mass testing has been proposed and deployed 280

in various settings to screen asymptomatic and pre-symptomatic cases. Figures 3 and 4 281

show the reduction in outbreak probability resulting from testing at different 282

frequencies with different test types in the SPDD and LIDD work settings respectively. 283

Overall, the results show that LFD antigen tests have a similar effect to PCR with a 284

2-day turnaround (given that lab turnaround targets were 24h in the UK, a 2-day 285

turnaround was typical for much of the pandemic). Therefore, considering the relative 286

low cost of LFDs, this suggests that they are a better option for mass testing [37]. Note 287

this estimate for the sensitivity of LFD antigen tests is based on estimates sensitivity in 288

phase 3b testing in [18] adjusted for the relative error induced by self vs. trained 289

swabbing (see [25] for further details). 290

In each figure, two cases, representing idealised behaviours, are shown. In the first 291

case testing is voluntary meaning 90% of people do 60% of the required tests on average 292

(missing tests at random), while the other 10% do no tests (3(a) and 4(a)). This 293

therefore reduces the potential benefits of testing. In the second case testing is 294

enforced(3(b) and 4(b)) meaning that all workers test and report their results. This is 295

the theoretical maximum effect that we could expect testing to have. 296

Comparing figures 3 and 4(a)-(b) shows that testing has a similar proportional 297

impact in the LIDD setting. However, in the LIDD case testing has a more noticeable 298

effect even when performed as infrequently as 14 days. With total compliance to testing, 299

the probability of outbreaks in both workplaces is reduced by approximately 80%, by 300

LFD antigen tests every 4 days (which have been deployed in other sectors), see 4(c). 301

Note that this intervention is not as effective in the LIDD setting when fixed-pairing 302

and pair isolation policies are not in place (approximately 75% reduction from a higher 303

baseline without the fixed pairings policy, 4(c)). Therefore, targeted isolation policies 304

can improve the efficacy of testing, as well as reducing transmission rates. 305

To conclude, we have found that regular testing, particularly in combination with 306

close-contact isolation, can have a very significant effect on workplace transmission. 307

Any testing intervention needs to be weighed against potential costs, at low community 308

prevalence the vast majority of tests are likely to be negative, and those that are positive 309

are more likely to be false positives and so the intervention may not represent good 310

value for money. Alternatively, at high community prevalence, testing and close-contact 311
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Fig 3. Probability of an outbreak in the model SPDD setting from a single
introduction (selected at random), where the black line is the mean baseline case (no
testing, estimated from 10,000 simulations). Each coloured marker shows the mean
result of 10,000 simulations with the labelled testing intervention. In (a) testing is not
enforced so pmiss = 0.4 and and in (b) it is so pmiss = 0.0 and all people isolate with a
positive test. In both cases we use pisol = 0.9 for symptomatic isolation.

isolation could result in many isolations, some of which are only precautionary, which 312

can have a huge impact on business. The latter case is not well described by the 313

point-source outbreak considered in this section, as introductions into the workplace are 314

more likely to occur in quick succession. Therefore in the following section we look at 315

the impacts of a range of interventions in the case of a continuous-source outbreak. 316

Impact of testing in the presence of household transmission 317

There are a number of confounding factors in reality that mean testing interventions 318

may not be as effective as outlined in the previous section. One of these is the potential 319

for household transmission between co-workers who share accommodation. In the 320

previous sections we have considered 5% of worker households in the model to be 321

shared, which is a significant fraction but not enough to have a large effect on 322

transmission dynamics. It was suggested in consultations that it is likely that this will 323

vary widely by workplace location and recruitment. Therefore, in this section we test 324

what effects changing this fraction has on these predictions. 325

Figure 5 shows that increasing the household sharing factor H from 0.05 to 2.0 326

increases transmission but the relative effect of testing (regular LFD antigen testing 327

every 3 days) remains approximately unchanged. Interestingly, a household isolation 328

policy (i.e. the whole household isolates if one member isolates due to symptoms or a 329

positive test) only has a minor effect for H < 0.5 and this is because we assume that a 330

household transmission event between two cohabiting employees can still occur even if 331

both are isolating (and this still contributes to the total number of infections). In reality 332

it is likely that this risk of household transmission may reduce during the shared 333

isolation period if the cohabiting employees are able to remain physically separate, 334

however it is also possible the risk will increase as they would spend more time in the 335

shared accommodation during isolation. At very high rates of house sharing (H > 1 i.e. 336

2 or more employees in the average household), household isolation has a larger impact 337

as this mode of transmission is prominent enough to dominate the workplace chains of 338
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Fig 4. (a) and (b) show the probability of an outbreak in the model LIDD setting from
a single introduction (selected at random), where the black line is the mean baseline
case (no testing, estimated from 10,000 simulations). Each coloured marker shows the
mean result of 10,000 simulations with the labelled testing intervention assuming that
the fixed pairings and pair isolation interventions are in place for drivers and loaders. In
(a) testing is not enforced so pmiss = 0.4 and and in (b) it is so pmiss = 0.0 and all
people isolate with a positive test. In both cases we use pisol = 0.9 for symptomatic
isolation. (c) Bar graph comparing the outbreak of LFD antigen testing every 4 days in
this setting showing both voluntary and enforced cases and both when the fixed pairings
and pair isolation policies are and are not in place.

transmission and household isolation can break a significant fraction of those 339

transmission chains. 340

To conclude, we see that in cases where there is high rates of household-sharing (or, 341

more generally, any contacts between employees outside of work during isolation) then 342

this can continue to drive transmission between employees and is difficult to distinguish 343

from workplace transmission. Nonetheless, for all values simulated, regular mass 344

asymptomatic testing has a sizeable effect on transmission rates. 345

Impact of interventions in a real-world context 346

In this section we model each workplace in the context of realistic community 347

SARS-CoV-2 incidence rates. We used incidence rates inferred from deaths and 348

hospitalisations in the UK during the period 1st March 2020 until 31st May 2020 (see 349

Supplementary Text S1.2). We then applied ran simulations with different interventions 350

in place, for each scenario we added an extra intervention to the ones applied before, 351

the interventions are: 352

1. Symptom isolation only: People who develop symptoms self-isolate with 353

probability pisol = 0.5. 354

2. Improved isolation: To mimic the impact of pandemic messaging, isolation 355

probability is increased to pisol = 0.9. 356

3. Distancing: All F2F interactions, except those involved in pair work, have 357

interaction distance x = 2m. 358

4. Cohort Size Reduction: In the SPDD setting, the number of cohorts for all job 359

types is doubled. 360

5. House share isolation: All employees who share a household isolate when one 361

self-isolates. 362

6. Fixed-pairings: In the LIDD setting, driver and picker pairs are fixed and both 363

self-isolate if one self-isolates. 364
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Fig 5. Mean number of secondary cases resulting from a single random introduction
plotted against the house share factor H. Different colour lines show the different
intervention scenarios as labelled where “Testing” means LFD antigen testing every 3
days (with default adherence rates) and “HS isol.” means that the household isolation
policy was implemented. (a) and (b) show the results for the two workplace types, as
labelled. Each point plotted shows the mean of 10,000 simulations, with shaded error
region estimated using a bootstrapping process [38].

7. Office WFH: Office staff do not enter work, they only make contact other 365

employees if they share a household. 366

8. Testing: Twice weekly lateral flow testing is introduced for all employees. 367

9. Enforced testing: Testing becomes mandatory so no tests are missed. 368

10. Car share isolation: If a person travels to work with someone who self-isolates, 369

they self-isolate. 370

11. Cohort isolation: If one member of the cohort isolates, all people in the cohort 371

isolate. 372

In the model, introductions due to customer interactions only had a small but 373

noticeable effect meaning that drivers were slightly more exposed than other employees 374

(mean 0.11 introductions per driver for both work settings, averaged over all scenarios 375

vs. 0.09 for other staff respectively). Nonetheless, over the period, around 10% of the 376

workforce is infected purely due to the imposed prevalence and incidence. 377

Figure 6 shows the cumulative impact of interventions on secondary cases and 378

isolations in the SPDD setting. The interventions are applied in approximately the 379

sequence that was reported by companies we consulted. The intervention “Distancing” 380

increases all “cohort” and “random” contacts to 2m interactions and has a large effect. 381

Reducing cohort size and office staff working from home (“Office WFH”) have a big 382

impact on reducing transmission since this model predicts that outbreaks are most 383

likely to start in this group. Interventions beyond “enforced testing” are predicted to 384

increase isolation levels without much greater impact on transmission, particularly 385

“cohort isolation” which likely causes a great deal of disruption despite these groups 386

being unlikely to be infected. Note this becomes a much more viable option though if 387

cohorts are much smaller, which is one major benefit of reducing cohort size if possible. 388

Comparing the two graphs in 6 we see that is a slightly more efficient to have contact 389

reduction measures in place before adding isolation-based measures, as these reduce the 390

number of workers who will need to isolate. When isolation measures are implemented 391
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Fig 6. Boxen plots [38] of the number of secondary cases divided by the number of
introductions in a SPDD workplace over a 3 month period. Each distribution shows all
the simulations (from 10000) with more than one introduction. The labels on the x-axis
indicate the addition of an intervention (in-tandem with all the interventions to the left).
In (a) the measures restricting contacts are introduced first and in (b) the
isolation-based measure.

alone, we see an increase in the predicted number of isolations even though the relative 392

reduction in transmission is similar. 393

As shown in Impact of mass testing on point-source outbreaks, moving from 394

voluntary to mandatory testing has a sizeable impact on transmission risk and this is 395

reproduced here (compare “testing” to “enforced testing” in figures 6 and 7). 396

Interestingly, we also see it has only a small impact on the number of isolations. This is 397

because the reduction in transmission means fewer cases, which acts to counteract the 398

increased rate of people entering isolation. This effect is even more stark if testing is 399

enforced in the absence of other measures (see figure 8). In that case, the imapct of 400

testing is significant enough to mean that the number of isolations actually reduces by 401

switching from voluntary to mandatory testing. 402

The impact of interventions in the LIDD setting is very similar (see figure 7). We see 403

that the “fixed pairings” intervention (which includes pair isolation) has a marked effect 404

on transmission. The extra benefit gained from testing is clearly visible too, but again 405

isolation measures beyond this appear have little further effect. 406

To conclude, figures 6 and 7 demonstrate some of the trade-offs for different 407

intervention measures in terms of their impact on transmission and their impact on the 408

number of isolating employees. Certain interventions act to reduce both (social 409

distancing, Office staff WFH) but potentially have other costs for business/feasibility 410

issues that need to be considered. When there are employees that still need to be in 411

close-contact (e.g. driver and picker pairs in this model) the combination of fixed 412
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Fig 7. Boxen plots [38] of the rates of onward transmission (number of secondary cases
divided by the number of introductions, top) and rates of isolation (number of isolation
day divided by scheduled work days, bottom) in a LIDD workplace over a 3 month
period. Each distribution shows all the simulations (from 10000) with more than one
introduction. The labels on the x-axis indicate the addition of an intervention
(in-tandem with all the interventions to the left). In (a) the measures restricting
contacts are introduced first and in (b) the isolation-based measures.

pairings, pair isolation, and regular testing is highly effective for reducing transmission. 413

Discussion 414

In this paper we have developed a stochastic model of SARS-CoV-2 spread in 415

small/medium size workplaces. The contact patterns simulated were designed to 416

represent warehouses/depots in the home-delivery sector, particularly those focusing on 417

B2C delivery. To our knowledge this is the first model to consider SARS-CoV-2 418

transmission in this sector specifically. While the parameterisation of these models has 419

significant uncertainty, we have been able to test the relative impact of various 420

interventions that companies in this sector deployed to reduce SARS-CoV-2 421

transmission over a range of scenarios and parameter regimes. 422

The results predict that workplace transmission in this sector is modest, due to the 423

bulk of the staff, drivers, working alone most of the day. Without any interventions 424

there is predicted to be a small risk to customers for an individual delivery, but in 425

workplaces undergoing an outbreak, home-installation of items can pose a risk to 426

customers without other interventions. The companies we consulted discontinued 427

home-installation during in the spring of 2020, but later re-introduced it with social 428

distancing measures. Parcel delivery companies switched to “contactless” delivery, 429

March 23, 2023 17/27

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 23, 2023. ; https://doi.org/10.1101/2022.03.17.22272414doi: medRxiv preprint 

https://doi.org/10.1101/2022.03.17.22272414
http://creativecommons.org/licenses/by/4.0/


0

5

10

15

20

S
ec

on
da

ry
 c

as
es

/in
tro

du
ct

io
ns (a) Parcel Delivery Workplace

0

5

10

15

20
(b) Large-ItemDelivery Workplace

N
o 

In
te

rv
en

tio
n

Im
pr

ov
ed

 is
ol

at
io

n

D
is

ta
nc

in
g

H
ou

se
 S

ha
re

 Is
ol

at
io

n

O
ffi

ce
 W

FH

Te
st

in
g

E
nf

or
ce

d 
te

st
in

g

C
ar

 S
ha

re
 Is

ol
at

io
n

C
oh

or
t I

so
la

tio
n

Interventions

0.00

0.05

0.10

0.15

0.20

Is
ol

at
io

n 
D

ay
s/

W
or

k 
D

ay
s

N
o 

In
te

rv
en

tio
n

Im
pr

ov
ed

 is
ol

at
io

n

D
is

ta
nc

in
g

H
ou

se
 S

ha
re

 Is
ol

at
io

n

Fi
xe

d 
P

ai
rin

gs

O
ffi

ce
 W

FH

Te
st

in
g

E
nf

or
ce

d 
te

st
in

g

C
ar

 S
ha

re
 Is

ol
at

io
n

C
oh

or
t I

so
la

tio
n

Interventions

0.00

0.05

0.10

0.15

0.20

Fig 8. Boxen plots [38] of the rates of onward transmission (number of secondary cases
divided by the number of introductions, top) and rates of isolation (number of isolation
day divided by scheduled work days, bottom) over a 3 month period in (a) the SPDD
work setting and (b) the LIDD work setting. Each distribution shows all the simulations
(from 10000) with more than one introduction. Each distribution represents the case
with application of a single intervention, as labelled on the x-axis.

meaning that signatures are no longer required, essentially eliminating the only route of 430

transmission to customers. Overall, this suggests that this sector played a key role in 431

reducing community transmission of SARS-CoV-2, as it allowed people to stay at home 432

during periods of high-prevalence. Quantifying this impact is more difficult though as 433

the counterfactual situation (i.e. how people would have behaved if this sector failed to 434

keep up with increased demand or shops had remained open) is unknown. 435

Safeguarding the key workers in this sector was a broader challenge and companies 436

reported implementing multiple measures based on government guidelines and their own 437

judgement. A key result of this paper is that identifying high-risk contacts (due to e.g. 438

shared accommodation or work tasks requiring prolonged close-contact) is very 439

important and forms the basis of contact-tracing interventions. Workplaces have an 440

extra advantage over contact-tracers in that they have control and knowledge over some 441

of the contacts that employees are required to make in their line of work. In this case, 442

high-risk contacts can be limited by using fixed pairs for large-item delivery, reducing 443

then number of people sharing an office, and reducing the occupancy in shared spaces. 444

This then allows efficient isolation policies to be implemented based on knowledge of the 445

limited number of high-risk contacts people have made (e.g. workers are given paid 446

isolation leave if they share accommodation or work in a delivery pair with an employee 447
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who has tested positive or reported COVID-like symptoms). Supplementary figure S7 448

and figure 4 show that this combination can be very effective in small workplaces. 449

Rates of presenteeism, which in this case we define as those who do not self-isolate 450

when they develop symptoms, has been shown to be much less likely if fully-paid sick 451

leave is offered [39,40]. Therefore, in order to be effective, such isolation policies could 452

incur considerable costs to a business as well as reducing productivity. Similarly, 453

company-backed testing and isolation interventions will incur further costs and mean 454

that asymptomatic cases are detected, potentially resulting in even more isolations. 455

Therefore, companies may be apprehensive about deploying such strategies. Here, we 456

showed that these strategies are more efficient when close-contacts of index cases can be 457

identified and isolated too, particularly when such contacts are necessary for the job. 458

This can mean that chains of transmission are quickly shut down, and outbreaks are 459

much less likely to occur. Furthermore, combining these measures with social distancing, 460

WFH, and similar interventions that reduce transmission (e.g. masking) can reduce the 461

number of isolations since workplace outbreaks become less likely. Combining testing 462

measures with these can reduce risk of infection in the workplace and therefore reduce 463

the costs of employee isolation (as fewer people will need to isolate). 464

The model developed has several limitations which are important for the 465

interpretation of the results presented. First, the contact model has been developed 466

based on a mix of quantitative (survey data, staff numbers and demand levels) and 467

qualitative data (consultations). Novel insight was gained by speaking directly to 468

representatives from the sector, but their position was not objective and so there may 469

have been implicit biases in the descriptions of the nature of workplace contacts and 470

some potential routes of infection contacts could have been missed. Furthermore, 471

simplifying assumptions, such as all contact durations being identical for the same mode 472

of contact, mean that this model is idealised compared to reality. This could be 473

improved if data were available from e.g. wireless proximity sensors, as have been used 474

in other studies to reconstruct social contact networks [41,42], including in 475

workplaces [43]. These provide much more high-fidelity data but when data is collected 476

during an epidemic or while restrictions are in place, these devices can themselves affect 477

behaviour and encourage greater distancing/policy adherence with a number of devices 478

deployed during the pandemic actively designed to have this effect [44,45]. Therefore, 479

empirical contact networks in the absence and presence of restrictions are difficult to 480

ascertain. Third, the transmission rate and the modifiers used for different types of 481

contact are uncertain, and is based on a combination of peer-reviewed [22,23,29] and 482

non-peer-reviewed literature [21]. Improvements to this transmission model from the 483

adaption of more mechanistic modelling approaches that predict explicitly the infectious 484

dose associated with different modes of contact [23,29,46–52], as well as updating with 485

data on new variants and vaccines, will mean that this model could be applied to 486

numerous future workplace scenarios to test the impact of different non-pharmaceutical 487

interventions. 488

There are also some complicating factors we choose to ignore in this model, that may 489

be important to consider when interpreting these results. First, we do not model severe 490

illness, which can impact results by increasing the time away from work of individuals 491

with COVID-19. Second, we do not model the complex relationship between 492

interventions and behaviour. It is possible that as more interventions are introduced, 493

adherence with other interventions wanes so the expected impact of combined 494

interventions may not be as high as predicted. This behavioural change is difficult to 495

predict, and so would need to be monitored by companies to gauge whether 496

interventions are working as expected. Furthermore, even with high adherence there is 497

no guarantee that people will use the test as intended. For example, people may be 498

inclined to test more regularly when feeling ‘run down’ or ‘paucisymptomatic’, i.e. 499
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exhibiting very mild COVID-19 symptoms, whereas in the absence of testing they may 500

have simply isolated from work. In this case, much of the benefit of testing can be 501

lost [53] because asymptomatic carriers will be less likely to be detected while 502

symptomatic carriers who would have otherwise isolated may be given a false negative 503

and choose not to. For this reason, in some sectors, mandatory regular testing (i.e. 504

carried out by trained swabbers at the workplace) may be the preferred option, because 505

with the adherence rates assumed in this paper, one mandatory test per week has a 506

similar impact to two voluntary ones (see figures 3 and 4). To address this shortcoming 507

of the model, surveys of staff or test reporting rates in relevant sectors where regular 508

testing has been deployed may inform changes. In particular, data around when and 509

how tests were being used would be useful (as well as rates of symptomatic isolations). 510

Survey information regarding contact frequency with other employees while off-work or 511

in isolation would also inform the model assumptions around the effectiveness of 512

isolation measures in reducing contacts. Finally, data from workplaces that monitor 513

adherence to other intervention policies (such as mask-wearing) could inform the 514

adherence rates simulated here. However with all behavioural and survey data, there is 515

the risk of reporting bias and behavioural changes in response to observation. 516

One major benefit of the model presented here is that it incorporates the dynamics 517

and variability in individual viral load, and simulates its impact on test sensitivity and 518

infectiousness. This, means that the correlation between test-positivity and 519

infectiousness is incorporated, meaning that impacts of these interventions can be more 520

accurately estimated. Thus we were able to estimate not only the effect on average 521

transmission rates, but also the frequency of rare superspreading events. This has 522

highlighted the importance of stacking interventions that reduce transmission through 523

different mechanisms. The source code is open access [36] and the underlying network 524

transmission model is malleable enough to be applied to any small closed populations. 525

Conclusion 526

This paper has shown that the multiple interventions put in place by the logistics and 527

home delivery sector during the early stages of the pandemic are likely to have reduced 528

the risk of workplace transmission and onward transmission into the community by 529

safeguarding customers and staff. The availability of lateral flow tests is another 530

valuable layer of protection that could have been added, and that this would have been 531

most effective when combined with isolation measures that target the most high-risk 532

contacts. 533

Supporting information 534

Text S1 Sector-specific data collected and derivation of parameters. Details 535

the data collected and used in the simulations and derivations of the model parameters. 536

Text S2 Simulation Algorithm. Outlines the discretisation and simulation 537

methods used to compute the model results. 538

Text S3 Baseline Modelling Results. Describes the results of simulations in the 539

baseline scenario with no interventions. 540

Text S4 Sensitivity Analysis. Shows the sensitivity of the model results to a 541

number of key parameters and assumptions. 542
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Fig. S1 Parcel and large-item delivery data. (a) Smoothed demand curves, 543

fitted using a linear GAM, to company-wide figures for number of consignments from 544

the parcel and logistics companies. The figures are given relative to their value at 545

01/03/20. (b) Weekday dependence for number of drivers and deliveries fitted using 546

negative binomial regression. Each point shows the number of deliveries or drivers 547

relative to the number on a Friday. 548

Fig. S2 Rates of infection ingress. Community incidence rates assumed for the 549

3-month period simulated in the continuous-source outbreak scenario. 550

Fig. S3 Model viral load, infectiousness, and test-positive probability 551

trajectories Each figure shows 50 randomly generated profiles of (a) RNA viral load 552

(log10 copies/ml) and their associated (b) infectiousness (normalised units) and (c) 553

test-positive probability. The red lines show the mean of 10,000 generated individuals at 554

each time point (where a missing value is taken as 0). 555

Fig. S4 Breakdown of mean secondary cases by infection route in a SPDD 556

work setting Stacked bar charts of the mean number of simulated secondary infections 557

resulting from a single index case in (a) a driver, (b) a picker, or (c) an office worker in 558

the SPDD work setting. Each bar shows secondary infections in each group of staff 559

broken down by transmission route, as recorded in table 2. Note that the “shared 560

spaces” contacts does not include contacts from sharing an office, these are counted as 561

“cohort” interactions for office staff. 562

Fig. S5 Breakdown of mean secondary cases by infection route in a LIDD 563

work setting Stacked bar charts of the mean number of simulated secondary infections 564

resulting from a single index case in (a) a driver, (b) a picker, or (c) an office worker in 565

the LIDD setting. Each bar shows secondary infections in each group of staff broken 566

down by transmission route, as recorded in table 2. Note that the “shared spaces” 567

contacts does not include contacts from sharing an office, these are counted as “cohort” 568

interactions for office staff. 569

Fig. S6 Baseline outbreak probability in a SPDD work setting Estimated 570

probability of outbreak (defined as more than 3 secondary cases) resulting from a single 571

index case plotted against the cohort flux fc in days−1. Each marker shows the mean of 572

10,000 simulations, with shaded error region estimated using a bootstrapping 573

process [38]. Point-source outbreaks where the source case was (a) a driver, (b) a picker; 574

(c) an office worker. Each line in each figure compares simulations with different 575

numbers of teams used for that job role, shown as the number of workers per team on 576

average. In each figure, the job roles not shown have the default team size and 577

pisol = 0.9 is assumed. 578

Fig. S7 Baseline outbreak probability in a LIDD work setting (a) Simulated 579

probability of an outbreak (defined as more than 2 secondary cases). Four scenarios are 580

shown: no intervention (staff are randomly paired each day); driver pairs travel with 581

window open (transmission rate constant reduced to 1/5 of original value in this 582

setting); fixed pairs (people always work with the same partner); and both of these 583

interventions simultaneously (fixed pairs and windows open). Each bar represents 584

10,000 simulations, error bars indicate uncertainty in the mean, estimated via a 585

bootstrapping method [38]. (b) Boxen plots of the number of customers infected per 586

point-source outbreak simulation in the LIDD setting with either no or both 587

interventions and the parcel delivery setting with default parameters. 588
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Fig. S8 Effects of presenteeism on transmission in the SPDD work setting 589

model. Dependence of simulated outbreak probability on the self-isolation adherence 590

probability pisol. The different curves show the effect of increasing the house-sharing 591

factor H as labelled. 592

Fig. S9 Effects of presenteeism on transmission in the LIDD work setting 593

model. Dependence of mean number of simulated secondary cases from a single index 594

case on the self-isolation adherence probability pisol. The different curves show the effect 595

of adding a fixed-pairs isolation intervention. 596

Fig. S10 Breakdown of transmission routes for varying presenteeism in the 597

LIDD work setting model. Mean number of infected drivers per simulation with a 598

single driver index case plotted against symptomatic isolation probability pisol. The 599

infections are broken down by those cased by close contact pair work, and all other 600

contact routes. (a) The case with no fixed pairing intervention so pairs switch randomly 601

each day. (b) The case with fixed pairings a pair isolation policy. Dots show the mean 602

number of infections while shading shows 95% confidence in the mean calculated via 603

bootstrapping methods. 604

Fig. S11 Sensitivity to face-to-face and aerosol mediated transmission 605

rates. Histograms of secondary cases resulting from a single index case in the two work 606

settings simulated for different rates of F2F and aerosol transmission. The top row 607

shows the parcel work setting, while the bottom row is the large-item setting. For each 608

set of simulations, the transmission rate for F2F contacts is multiplied by “F2F scale 609

factor”, and the transmission rate for aerosol contacts is multiplied by “Aerosol scale 610

factor”. Note that for the large-item workplace we assume that the fixed-pair isolation 611

intervention is applied and in both cases pisol = 0.9. We also assume that the index case 612

is selected randomly. 613

Fig. S12 Sensitivity to fomite mediated transmission rates. The mean 614

number of secondary cases resulting from a single index case in the two workplace types 615

plotted for 3 values of βFOM at varying levels of demand for deliveries (x-axis). Note 616

that for the large-item workplace we assume that the fixed-pair isolation intervention is 617

applied and in both cases pisol = 0.9. 618

Fig. S13 Sensitivity to workplace size. The mean number of secondary cases 619

resulting from a point-source outbreak in the two workplace types plotted against 620

workplace scale factor. Note that for the large-item workplace we assume that the 621

fixed-pair isolation intervention is applied and in both cases pisol = 0.9. We assume the 622

index case is selected at random. 623

Fig. S14 Sensitivity to mixing rates between workers in different job roles. 624

Histograms of the number of secondary cases resulting from a single index case in the 625

two workplace types plotted for different scalings of pc(ND +NL +NO). The top row 626

shows the parcel delivery setting, while the bottom row is large-item setting, and each 627

column is for the index-case labelled. Note that for the large-item workplace we assume 628

that the fixed-pair isolation intervention is applied and in both cases pisol = 0.9. Note 629

also the logarithmic scale. 630
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