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Abstract 

Background: Significant immune escape by the Omicron variant, along with the 

emergence of widespread worry fatigue, have called into question the robustness of the 

previously observed relation between population mobility and COVID-19 incidence. 

Methods: We employed principal component analysis to construct a one-dimensional 

summary indicator of six Google mobility categories. We related this mobility indicator to case 

incidence among 111 of the most populous U.S. counties during the Omicron surge from 

December 2021 through February 2022. 

Results: Reported COVID-19 incidence peaked earlier and declined more rapidly among 

those counties exhibiting more extensive decline in mobility between December 20 and January 

3. Based upon a fixed-effects, longitudinal cohort model, we estimated that every 1-percent 

decline in mobility between December 20 and January 3 was associated with a 0.63 percent 

decline in peak incidence during the week ending January 17 (95% confidence interval, 0.40-

0.86 percent). Based upon a cross-sectional analysis including mean household size and 

vaccination participation as covariates, we estimated that the same 1-percent decline in mobility 

was associated with a 0.36 percent decline in cumulative reported COVID-19 incidence from 

January 10 through February 28 (95% CI, 0.18-0.54 percent). 

Conclusion: Omicron did not simply sweep through the U.S. population until it ran out of 

susceptible individuals to infect. To the contrary, a significant fraction managed to avoid 

infection by engaging in risk-mitigating behaviors. More broadly, the behavioral response to 

perceived risk should be viewed as an intrinsic component of the natural course of epidemics in 

humans. 
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Background 

Prior to the emergence of the Omicron variant of SARS-CoV-2, numerous studies in 

various countries documented an association between a decline in population mobility and a 

subsequent reduction in reported case incidence [1-7]. The principal objective of the present 

study is to begin to assess whether this mobility-incidence relationship similarly prevailed during 

the more recent Omicron-driven wave. 

There are several critical reasons why the mobility-incidence relationship observed for 

the ancestral strain and prior variants of SARS-CoV-2 may not apply equally to Omicron. More 

than any other variant, Omicron exhibited significant immune escape against vaccination and 

prior infection [8], though vaccines continued to protect against serious disease [9]. Omicron 

appears to have been about twice as transmissible as the Delta variant [10], with the larger 

proportion of asymptomatic Omicron infections likely enhancing the prevalence of super 

spreaders [11]. While home testing rose markedly in response to the initial news of the variant 

[12], later reports of Omicron’s tendency to spare the deep tissues of the lung [13] may have 

alleviated fears of serious illness that drive voluntary risk-mitigation behavior [14]. There is the 

further concern that frequently changing news reports and public health guidance induced “worry 

fatigue” [15], especially when perceptions of risk and compliance with such guidance are 

themselves subject to herd transmission [16, 17]. 

Mobility is a multidimensional concept that has been variously gauged by such diverse 

measures as smartphone visits to bars and restaurants [18], traffic patterns [7], and television 

watching as a proxy for time spent at home [19]. Here, following the lead of two key papers [20, 

21], we employ the statistical technique of principal component analysis to collapse the six-

dimensional Google Mobility Reports [22] into a single mobility indicator. Further adhering to a 

recent study of reported case incidence and hospitalization in relation to vaccination rates during 

the Delta surge [23], we restrict our analysis to the most populous counties in the United States, 

together comprising approximately 44 percent of the total U.S. population. Such an approach 

avoids the potential pitfalls of comparing small rural counties with large urban centers. We focus 

on the wave of reported cases from December 2021 through Feb 2022, during which Omicron 

was far and away the dominant variant. 
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Methods 

Data: Most Populous Counties 

We confined our analysis to the most populous counties in the United States. From an 

initial sample of all 112 counties with population exceeding 600,000, we excluded one county 

(Johnson County KS, population 602,000) as a result of missing data on one of the mobility 

measures to be described below. Our analytic sample thus consisted of 111 counties, together 

comprising 146.5 million persons or about 44 percent of the entire U.S. population. Supplement 

Fig. A maps the locations of all 112 counties in the initial sample, identifying the excluded 

county as well. 

Data: Google Mobility Reports 

We relied upon Google Mobility Reports [22] to assess changes in mobility in each of the 

111 counties in our analytic sample. Compiled from data on the movements of mobile devices, 

these reports provided daily measures of mobility for six distinct categories of places: retail & 

recreation; grocery & pharmacy; parks; transit stations; workplaces; and residential [24]. Based 

upon the number of visits to and length of stay in the places in each category, the reports showed 

activity as a percent of baseline, where the baseline represented the median value for the 

corresponding day of the week during the 5-week period from January 3 – February 6, 2020. For 

each of the 111 counties in the analytic sample and each of the six categories of mobility, we 

computed weekly mean values of mobility for the week ending Monday, February 24, 2020, 

through the week ending Monday, February 28, 2022. We chose a weekly ending date of 

Monday solely to be conformal with the available data on COVID-19 case reports, to be 

described below. 

Data: Community Profile Reports 

We relied upon the COVID-19 Community Profile Reports, issued regularly by the 

White House COVID-19 Team [25], for data on the reported number of COVID-19 cases in each 

county for each week, starting with the week ending December 6, 2021, and continuing through 

the week ending February 28, 2022. We also relied upon this data source for estimates of each 

county’s population, from which we computed COVID-19 incidence rates, as well as two 

county-specific demographic characteristics: the U.S. Center for Disease Control’s social 

vulnerability index [26], and the average household size. We included the latter characteristic to 

capture the important influence of intra-household transmission on COVID-19 incidence [1]. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 28, 2022. ; https://doi.org/10.1101/2022.03.16.22272523doi: medRxiv preprint 

https://doi.org/10.1101/2022.03.16.22272523
http://creativecommons.org/licenses/by-nc-nd/4.0/


J.E. Harris Mobility and COVID-19 Incidence During the Omicron Surge                      26-Mar-2022 

 4 

Data: County-Specific Vaccination 

In addition to the foregoing county-specific demographic variables, we relied upon a 

database of COVID-19 vaccination participation rates, compiled by the U.S. Centers for Disease 

Control and Prevention [27]. These data showed the percentage of each county’s population who 

completed a one- or two-dose series of vaccinations, as well as the cumulative number of booster 

doses per 100 population, as of December 15, 2021, the earliest date for which both measures 

were available.  

Principal Component Analysis of Google Mobility Categories 

We relied upon the data on the six weekly Google mobility measures in the 111-county 

database, covering the 106-week period from the week ending February 24, 2020, through the 

week ending February 28, 2022, to compute the first principal component as a summary measure 

of mobility [20, 21]. This summary measure, which we refer to here as our mobility indicator, 

represents the linear combination of the six individual mobility categories that captures the 

largest fraction of the overall variance of the data [28]. Denoting by 𝑔!"# the observed value of 

Google mobility category 𝑘 in county 𝑖 during week 𝑡, we thus computed the indicators	𝑥"# = 

∑ 𝜁!𝑔!"#
$
!%& , where the estimated coefficients 𝜁! were not necessarily positive, but where 

∑ 𝜁!'
$
!%&  = 1. 

County-Specific Changes in Mobility 

Having relied upon the entire database of multidimensional Google mobility categories 

from the week ending February 24, 2020, onward to compute our unidimensional mobility 

indicator, we then focused on the narrower 13-week period from the week ending December 6, 

2021 through the week ending February 28, 2022, which encompassed the Omicron surge in the 

United States [29]. 

As described in detail in the Results below, we determined that our mobility indicator 𝑥"# 

(where 𝑖 = 1, ... ,111 and 𝑡 = 1, … ,13) declined primarily during the interval between the week 

ending December 20, 2021 (that is, 𝑡 = 3) to the week ending January 3, 2022 (that is, 𝑡 = 5). For 

each county 𝑖, we thus computed the change in the mobility indicator ∆𝑥" = 𝑥"( − 𝑥"). Since 

mobility declined overall during the 13-week analysis period, the quantities ∆𝑥" were negative. 

We then divided the sample of counties into the lower half and upper half of the distribution of 

the absolute values |∆𝑥"|, denoting counties in the lower half as less extensive mobility decline 
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and those in the upper half as more extensive mobility decline. We defined the binary variable 𝑋" 

to equal 0 if county 𝑖 was in the lower half of the distribution (less extensive decline) and 1 if 

county 𝑖 was in the upper half of the distribution (more extensive decline). 

Longitudinal Cohort of Counties 

The available data, described above, thus allowed us to construct a longitudinal cohort of 

111 counties, indexed 𝑖 = 1, …, 111, covering the 13-week period running from the week ending 

December 6, 2021 (𝑡 = 1) through the week ending February 28, 2022 (𝑡 = 13). For each county 𝑖 

and week 𝑡, we had data not only on our constructed mobility indicator 𝑥"#, but also on 𝑦"#, the 

incidence of reported cases of COVID-19 per 100,000 population. 

To examine the qualitative relationships between changes in mobility and changes in 

COVID-19 incidence, we first plotted the population-weighted mean values of 𝑥"# and 𝑦"# over 

time for the two groups of counties with less extensive and more extensive declines in mobility. 

For example, the population-weighted mean mobility indicator among less-extensive-decline 

counties at week 𝑡 would equal ∑ 𝑟"𝑥"#*!%+ ∑ 𝑟"*!%+/ , where 𝑟" is the population of county 𝑖 and 

where the summations are only over those counties 𝑖 for which 𝑋" = 0. The other conditional 

means were computed analogously. 

To examine the quantitative relationships between changes in mobility and changes in 

COVID-19 incidence, we estimated a fixed-effects longitudinal cohort model with the following 

specification: 

𝑦"# = 𝜇 + 𝛼" + 𝛾# + 𝛽#∆𝑥" + 𝜀"#        (1). 

In equation (1), the parameter 𝜇 was an overall mean, while 𝛼" and 𝛾# were county-specific and 

time-specific fixed effects, respectively. The parameters of interest 𝛽# gauged the impact of 

county-specific changes in mobility on a week-by-week basis. Finally, 𝜀"# were assumed to be 

spherical error terms. This fixed-effects model was estimated by ordinary least squares. 

 Cross-Sectional Analyses 

To further study the quantitative relationships between changes in mobility and changes 

in COVID-19 incidence, we defined the cumulative incidence for each county 𝑖 during the period 

from week ending January 10, 2022 (𝑡 = 6) through the week ending February 28, 2022 (𝑡 = 13) 

as 𝑌" = ∑ 𝑦"#
&)
#%$ . We then ran the cross-sectional model: 
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log 𝑌" = 𝜂 + 𝜃	∆𝑥" + ∑ 𝜆,𝑍",,  + 𝜈"        (2). 

In equation (2), the parameter 𝜂 was an overall mean, while the parameters 𝜆, captured the 

effects of county-specific covariates 𝑍",. The parameter of interest 𝜃 gauged the proportional 

impact the change in mobility during the period between December 20, 2021, and January 3, 

2022, on the subsequent cumulative reported incidence of COVID-19 from the week ending 

January 10, 2022, onward. Finally, 𝜈" were assumed to be uncorrelated error terms. This cross-

sectional model was estimated by population-weighted least squares. 

Test for Joint Causation 

 An alternative interpretation of the findings of models (1) and (2) was that both the 

change in mobility ∆𝑥" between December 20 and January 3 and the subsequent path of reported 

incidence 𝑦"# during January were jointly determined by the initial rate of acceleration of cases. 

If so, then inclusion of the initial acceleration rate in the model would attenuate any observed 

correlation between changes in mobility and subsequent changes in incidence. To address this 

possibility, we tested the following cross-sectional model: 

∆𝑦" = 𝜅 + 𝜆	∆𝑥" + 𝜉	∆𝑦"- + 𝜐"         (3). 

In equation (3), ∆𝑦" = 𝑦". − 𝑦"$ denotes the change in incidence between January 10 and 17, 

when cases were peaking, while ∆𝑦"- = 𝑦"( − 𝑦"/ denotes the initial acceleration of incidence 

between December 27 and January 3. As in the previous models, 𝜅, 𝜆, and 𝜉 were unknown 

parameters, while the 𝜐" were assumed to be uncorrelated error terms. As in model (2), equation 

(3) was estimated by population-weighted least squares. If the initial acceleration of COVID-19 

cases in each county ∆𝑦"- jointly determined both the mobility response ∆𝑥" and the subsequent 

path of reported incidence ∆𝑦", then inclusion of the term ∆𝑦"- as an explanatory variable in 

equation (3) would result in an estimate of 𝜆 = 0. 

Results 

Mobility Indicator 

Supplement Table A displays the estimated coefficients of the first principal component 

of the six Google mobility categories. The Google Retail & Recreation category of mobility had 

the largest contribution to the overall variance of our computed mobility indicator, while the 

Parks category had the smallest contribution. The Residential category had a negative estimated 
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coefficient, inasmuch as increases in visits to and duration of stay in residences reflected a 

decrease in overall mobility.  

Fig. 1 illustratively graphs the six Google mobility categories specifically for 

Philadelphia County, Pennsylvania (population 1,584,000), during the period from the week 

ending December 6, 2021 (𝑡 = 1), through the week ending January 31, 2022 (𝑡 = 9). Each of the 

colored piecewise linear plots shows the evolution of one of the original Google mobility 

categories 𝑔!"#. The thicker black plot shows the corresponding evolution of our unidimensional 

mobility indicator 𝑥"#, calculated from the coefficients in Supplement Table A. The path of this 

overall mobility indicator shows a significant decline during the two-week interval between the 

week ending December 20, 2021 (𝑡 = 3) and the week ending January 3, 2022 (𝑡 = 5). 

 

 
 

Fig. 1. Construction of Mobility Indicator as First Principal Component of Six Google Mobility Categories, 
Philadelphia County, Pennsylvania, Weeks Ending December 6, 2021, Through January 31, 2022. Each 
colored piecewise linear plot shows the evolution of the weekly mean of one of the six Google mobility categories. 
The thicker, black piecewise linear plot shows the first principal component of the six mobility categories as 
calculated for Philadelphia County. The drop in the calculated mobility indicator occurred during the two-week 
interval from week ending 12/20/21 to the week ending 1/3/22. 
 
 

Among the 111 counties under study, we observed a median absolute decline of 31.85 

units in our unidimensional mobility indicator during the two-week interval between the week 
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ending December 20, 2021 (𝑡 = 3) and the week ending January 3, 2022 (𝑡 = 5). Thus, we 

classified counties into the less-extensive-decline group (𝑋" = 0) if their observed absolute 

mobility decline was less than this median value and into the more-extensive-decline group (𝑋" = 

1) if their absolute mobility decline was greater than this median value.  

Fig. 2 displays illustrative paths of our unidimensional mobility indicator for 14 

randomly selected counties in less-extensive-decline group (𝑋" = 0, left panel) and another 14 

randomly selected counties in the more-extensive-decline group (𝑋" = 1, right panel). In both 

panels, we have highlighted the portions of each path covering the 2-week interval from 

December 10, 2021 – January 3, 2022. For the less-extensive-decline (𝑋" = 0) counties on the 

left, nearly all the calculated decline in overall mobility occurred during the first week. For the 

more-extensive-decline (𝑋" = 1) counties on the right, the calculated mobility indicators 

continued to decline during the second week. 

 
 

Fig. 2. Illustrative Paths of Mobility indicator in Counties with Less Extensive and More Extensive Declines 
During the Two-Week Interval Between December 20, 2021, and January 3, 2022. The panel on the left, 
identified as 𝑋" = 0, shows the paths of 14 randomly selected counties with an absolute decline of less than 31.85. 
The panel of the right, identified as 𝑋" = 1, shows the paths of another 14 randomly selected counties with an 
absolute decline more than 31.85. In both panels, the paths of the calculated mobility indicators during the interval 
from 12/20/21 – 1/3/22 have been highlighted. For the less-extensive-decline (𝑋" = 0) counties on the left, nearly all 
the calculated decline in mobility occurred during the first week, that is, during 12/20 – 12/27/21. For the more-
extensive-decline (𝑋" = 1) counties on the right, the calculated mobility indicators continued to decline during the 
second week, that is, during 12/27/21 – 1/3/22. 
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Mobility and Case Incidence 

Fig. 3 illustratively displays the combined paths of the mobility indicator 𝑥"# and the case 

incidence 𝑦"# specifically for Philadelphia County, Pennsylvania. The black-colored plot with 

square datapoints shows the path of the mobility indicator, replotted from the first principal 

component shown in Fig. 1, with the measurement scale along the left axis. The red-colored plot 

with circular datapoints, with measurement scale along the right axis, shows the path of COVID-

19 case incidence in weekly reported cases per 100,000 population. 

For Philadelphia County PA, our computed mobility indicator  𝑥"# declined from –42.15 

during the week ending December 20, 2021, to –75.33 during the week ending January 3, 2022. 

The observed absolute change of |∆𝑥"| = 33.18 thus placed Philadelphia County in the more-

extensive-decline (𝑋" = 1) group. One week later, by the week ending January 10, 2022, reported 

COVID-19 incidence reached a peak of 1,666 cases per 100,000 population and declined 

thereafter. 

 

 
 

Fig. 3. Mobility Indicator (Left Axis) and Reported COVID-19 Cases (Right Axis) in Philadelphia County, 
Pennsylvania, During the Weeks Ending December 6, 2021, Through January 31, 2022.   The black plot with 
square datapoints corresponds to the weekly mobility indicator calculated in Fig. 1. The red plot with circular 
datapoints corresponds to the weekly counts of reported cases of COVID-19 per 100,000 population. Mobility 
declined during the interval from the week ending 12/20/21 through the week ending 1/3/22. The rise in reported 
cases peaked during the week ending 1/10/22 and declined thereafter. 
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Longitudinal Cohort Analysis 

For the less extensive and more extensive decline groups separately, Fig. 4 graphs the 

temporal paths of the population-weighted mean mobility indicator and population-weighted 

mean COVID-19 incidence during the 13-week study period. Both mobility and incidence have 

been computed as the change from the week ending December 6, 2021. Changes in mobility 

(square datapoints, measured on the left axis) are identified by the labels “∆ Mobility,” while 

changes in incidence (circular datapoints, right axis) are identified by the labels “∆ Incidence.” 

 

 
 

Fig. 4. Changes in Mobility Indicators (∆ Mobility, Left Axis) and Changes in Reported COVID-19 Cases 
(∆ Incidence, Right Axis) in Less Extensive and More Extensive Mobility Decline Counties, Weeks Ending 
December 6, 2021, Through February 28, 2022. Less extensive mobility decline counties are identified as 𝑋 = 0, 
while more extensive mobility decline counties are identified as 𝑋 = 1. For both mobility and incidence, the figure 
plots the change from the week ending 12/6/21. Among less-extensive-decline (𝑋 = 0) counties, incremental 
incidence peaked during the week ending 1/17/22. Among more-extensive-decline (𝑋 = 1) counties, incremental 
incidence peaked earlier during the week of 1/10/22 and declined earlier. 
 
 

Both the less extensive and more extensive decline counties followed essentially the same 

mobility path through the week ending December 27, 2021. During the subsequent week ending 

January 3, 2022, however, the two groups diverged, with the more-extensive-decline (𝑋 = 1) 

group exhibiting a larger continuing drop in mobility. These differences in mobility are reflected 
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in the divergent paths of incremental COVID-19 incidence. Among less-extensive-decline (𝑋 = 

0) counties, incidence peaked during the week ending January 17, while among more-extensive-

decline (𝑋 = 1) counties, incidence reached a lower peak one week earlier. 

Supplement Table B shows our estimates of the parameters of the fixed-effects model of 

equation (1). Fig. 5 below graphs the estimates of the key parameters of interest 𝛽# for each week 

from 𝑡 = 2, …, 13, as derived from that model. Since 𝑡 = 1 (ending December 6, 2021) was the 

reference category, the parameter 𝛽& was necessarily constrained to equal 1. The estimates of 𝛽# 

from the week ending January 17 (𝑡 = 7) through the week ending February 14 (𝑡 = 11) are all 

positive and significant at the 5-percent level. For the peak week ending January 17, 2022, the 

estimated parameter was 𝛽. = 37.7 with 95% confidence interval 23.9–51.4 (p < 0.001). That is, 

an additional one-point drop in our mobility indicator was associated with an incremental decline 

of 37.7 weekly reported cases of COVID-19 per 100,000 population. 
 

 
 

Fig. 5. Estimates of the Interaction Parameters 𝜷𝒕 in the Longitudinal Model of Equation (1). Except for the 
reference week ending 12/6/21, each week 𝑡 has its own interaction parameter 𝛽$, which measures the marginal 
impact of a change in the mobility indicator from 12/20/21 to 1/3/22 (∆ Mobility) on the incremental reported 
incidence of COVID-19 cases per 100,000 population (∆ Incidence). The error bars surrounding each estimate are 
95% confidence intervals. Starting with the week ending 1/17/22 and continuing through the week ending 2/14/22, 
the estimated parameters were positive and the null hypothesis of no association with changes in mobility could be 
rejected at the 5-percent level. 
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Based upon the observed sample means, we can reinterpret this estimated peak marginal 

effect 𝛽. as an elasticity. With a population-weighted mean reported incidence of 1,729 cases per 

100,000 during the week ending January 17, each one-point drop in mobility is thus associated 

with a 37.7 1729⁄  = 2.18 percent drop in incidence (95% CI, 1.38–2.97 percent). At the 

population-weighted mean value of ∆𝑥 equal to –29.04, each one-point decrease represents a 

1 29.04⁄  = 3.44 percent decline in mobility. Thus, we obtain an estimated elasticity of 

2.18 3.44⁄  = 0.63 with a 95% confidence interval of 0.40–0.86. 

Cross-Sectional Results 

Supplement Table C displays our estimates of the parameters of the cross-sectional model 

of equation (2). The estimated parameter 𝜃 was significantly different from zero in a bivariate 

specification on the change in mobility (specification A) as well as in multivariate specifications 

(B and C) that included demographic covariates and vaccination participation rates. Apart from 

the change in mobility, average household size was the only other explanatory variable 

exhibiting a statistically significant association with cumulative reported COVID-19 incidence. 

Fig. 6 plots the cumulative cases per 100 population between the week ending January 

10, 2022, and the week ending February 28, 2022 (that is, the variable 𝑌" in equation (2)) against 

the change in our calculated mobility indicator (∆𝑥") between December 20, 2021, and January 

3, 2022 (that is, the variable ∆𝑥"). In accordance with the log-linear specification of equation (2), 

the vertical axis is measured on a logarithmic scale. The size of each datapoint reflects the 

county population.  

The superimposed line represents the population-weighted least squares fit to the data. 

This corresponds to the bivariate regression of log 𝑌" versus ∆𝑥" without additional covariates 𝑍", 

shown as specification A in Supplement Table C. The estimate of the slope parameter 𝜃 was 

0.0124, with 95% confidence interval 0.0060–0.0.187. We can similarly reinterpret this 

cumulative marginal effect as an elasticity. Thus, every additional one-point decrease in our 

calculated mobility indicator was associated with a 1.24 percent decline in cumulative case 

incidence. At the population-weighted mean value of ∆𝑥 equal to –29.04, each one-point 

decrease represents a 1 29.04⁄  = 3.44 percent decline in mobility. Thus, we obtain an estimated 

elasticity of 1.24 3.44⁄  = 0.36 with a 95% confidence interval of 0.18–0.54. 
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Fig. 6. Cumulative Reported COVID-19 Cases per 100 Population During January 10 Through February 28, 
2022 (∆ Incidence) Versus the Change in the Mobility Indicator During December 20, 2021, Through January 
3, 2022 (∆ Mobility), Plotted for 111 Counties. The size of each datapoint reflects the county population. 
Cumulative reported COVID-19 cases are plotted on a logarithmic scale. The weighted least squares fitted line is 
shown in red. The estimated slope, corresponding to the parameter 𝜃 in equation (2) was 0.0124 with 95% CI 
(0.0060, 0.0187). That is, every additional 1-point reduction in the mobility indicator was associated with a 1.24 
percent decline in cumulative reported cases per 100 persons. The outlier in the plot is identified as Cuyahoga 
County, Ohio. The vertical axis plots cumulative case incidence from the week ending January 10 onward. 
Cumulative incidence for the entire Omicron wave, from the week ending December 6, 2021, averaged 9 per 100 
population. 
 

Test of Joint Causation 

Supplement Table D displays the estimates of our joint causation model (3). We found 

that the estimated coefficient 𝜉 of the initial acceleration of reported incidence ∆𝑦"-  was 

negative. That is, early acceleration of COVID-19 incidence during the week after December 27 

was associated with a decline from peak incidence during the week after January 10. However, 

inclusion of the covariate ∆𝑦"-	in the cross-sectional model did not materially affect the 

significant positive coefficient 𝜆 of the change in mobility ∆𝑥" . Supplement Fig. B further shows 

graphically how the inclusion of the additional covariate ∆𝑦"-	resulted in no material change in 

the fitted linear model relating the change in incidence ∆𝑦" between January 10 and January 17 

to the change in mobility ∆𝑥" between December 20 and January 3. 
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Discussion 

Interpreting Elasticities 

For each one-percent decline in our unidimensional measure of mobility, we have 

estimated a 0.63-percent decline in peak reported case incidence (95% confidence interval, 0.40 

to 0.86 percent) and a 0.36-percent decline in cumulative reported case incidence (95% 

confidence interval, 0.18 to 0.54 percent). That the short-term elasticity of peak incidence turns 

out to be greater than the longer-term elasticity of cumulative incidence is hardly unexpected. As 

the prevalence of infection falls beyond the peak of epidemic wave, the effectiveness of risk-

avoidance measures would be expected to decline. The declining marginal effects derived from 

the longitudinal cohort model, as seen in Fig. 5, are consistent with this interpretation.  

Nor is it unexpected that the estimated mobility-incidence elasticity should be less than 1 

even at the peak of the Omicron wave. For it implies that there were some sources of infection 

whose risks could not be mitigated through the available mobility-reduction strategies. Consider, 

for example, an individual whose only source of infection was taking public transport to work. If 

she cut back her exposure through this modality by 𝑥 percent, her risk of infection would 

likewise decline by 𝑥 percent, and the mobility-incidence elasticity would be 1. If, on the other 

hand, intrahousehold transmission from family members was a second, independent source of 

infection, then her cutting back on public transport by 𝑥 percent would lower her infection risk 

by less than 𝑥 percent, and the corresponding elasticity would be less than unity. Our finding that 

average household size was a significant determinant of county-specific Omicron case incidence 

(Supplement Table C) suggests that this example is more than hypothetical. 

Change in Behavior as an Intrinsic Feature of Course of Epidemics in Humans 

Our results belie the hypothesis that Omicron simply swept through the population until 

the variant ran out of susceptible individuals to infect. For the entire Omicron surge, cumulative 

reported incidence averaged approximately 9 cases per 100 population (Fig. 6). If only one-

fourth of all Omicron infections were reported by public authorities [30], then approximately 36 

percent of the population became infected during the Omicron surge. In view of Omicron’s 

documented capacity for immune escape from vaccination and prior infection [8], there had to be 

no small fraction of susceptible individuals who, by engaging in risk-mitigating behaviors, 

managed to avoid infection. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 28, 2022. ; https://doi.org/10.1101/2022.03.16.22272523doi: medRxiv preprint 

https://doi.org/10.1101/2022.03.16.22272523
http://creativecommons.org/licenses/by-nc-nd/4.0/


J.E. Harris Mobility and COVID-19 Incidence During the Omicron Surge                      26-Mar-2022 

 15 

Our findings reinforce the broader conclusion that the behavioral response to perceived 

risk needs to be regarded as an intrinsic component of the course of epidemics in humans. Quite 

apart from the evidence now accumulated in the ongoing COVID-19 pandemic, such behavioral 

responses have been documented for HIV in developing countries [31], the SARS outbreak in 

Hong Kong [32], the swine flu outbreak [33], the H1N1 influenza outbreak [34], and sexually 

transmitted diseases generally [35]. 

The Decline in Mobility Began Before the Peak in Disease Incidence. 

Theoretical treatments of the human behavioral response during an epidemic have 

generally adopted the ad hoc strategy of making the contact frequency between susceptible and 

infected persons an inverse function of the contemporary prevalence of infection [36-39]. The 

difficulty with this approach is that, as shown in Figs. 2–4, the decline in mobility occurred 2-3 

weeks before the peak in reported incidence. One possible explanation is that changes in 

behavior were a response to extensive news about the upcoming surge in infections, rather than 

the surge itself. 

 Omicron emerged on the world scene in late November 2021 essentially as an 

unanticipated shock. The initial reaction to this shock was a wave of news reports through the 

first three weeks of December, bracing the country for the coming surge of cases and 

hospitalizations [40-45]. According to Google Trends data for the U.S. [46, 47], searches for 

“omicron” initially rose at the end of November and then surged during the third week of 

December, reaching a peak on December 21, while searches for “covid omicron symptoms” 

subsequently peaked on December 27, 2021. Robust models of changes in behavior during an 

epidemic need to account for the critical intervening role of the media [48-51]. 

The Dynamics of a Natural Experiment 

Our findings can be thus interpreted as the result of a natural experiment precipitated by 

the unanticipated shock of Omicron’s emergence. The widespread decline in mobility across 

multiple counties, observed in Fig. 2, was a reaction to the rapid, nationwide diffusion of the 

news about the new variant. While these mobility reactions were closely aligned temporally, 

their magnitudes varied nontrivially. As a result of these geographic variations in the extent of 

mobility decline, we observed subsequent variations in the depth of the variant’s penetration 

across communities. Thus, an initial shock across an entire country produced responses of 
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variable magnitude intended to modulate the shock, which in turn led to dynamic variations in 

the ultimate impact of the shock. 

The Argument for Reverse Causation 

The principal objection to this interpretation is that the near-coincident declines in 

mobility were not random and, accordingly, our study design cannot demonstrate a purely causal 

relation between mobility and the incidence of infection. To the contrary, the argument goes, the 

observed declines in our unidimensional mobility indicator between the week ending December 

10, 2021, and the week ending January 3, 2022, could also have been an early response to the 

emerging Omicron wave. One might conjecture, in fact, that the somewhat greater COVID-19 

incidence in high-mobility-decline counties seen in Fig. 4, especially during the week ending 

January 3, was in fact the stimulus for the inhabitants of those counties to continue to engage in 

mobility-reducing behaviors. Such an interpretation would seem to square with the significant 

negative estimate of the parameter 𝛽( in Fig. 5. 

In view of such reverse causation, our estimates of the parameters 𝛽. through 𝛽&) in Fig. 

5, covering the period from the week ending January 13 onward, may indeed be biased upward, 

as is our cross-sectional slope parameter 𝜃 in Fig. 6. However, the results of our joint causation 

model (Supplement Table D and Fig. B) suggest that the magnitude of this bias is likely to be 

small. In short, the striking temporal relation between the extent of the mobility reductions 

observed through the week ending January 3 and the subsequent divergence in COVID-19 

incidence, as seen in Fig. 4, cannot readily be explained by reverse causation. 

Policy Endogeneity 

It would have been preferable, some might contend, to instead construct predictor 

variables based upon the extent of policy restrictions on mobility imposed in each county, such 

as renewed requirements on indoor mask use. In principle, such restrictions would be regarded as 

exogenous instruments to identify the unbiased effect of the endogenous mobility indicator that 

we have relied upon here [52]. The problem with this approach is that policies intended to 

restrict mobility are likewise endogenous. A public authority’s decision to impose a mask 

mandate may just as well be a response to news of rising COVID-19 cases as an individual’s 

uncoerced decision not to take the subway. 

There is little basis to suppose, in any event, that declines in mobility such as those 

consistently observed in Figs. 1 through 4 are necessarily responses to coercive measures by 
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public authorities. The near collapse of subway ridership in New York City during the second 

week of March 2020 was followed within 1–2 weeks by the flattening of the COVID-19 

incidence curve. Yet no government authority ordered New Yorkers to stop taking the subway en 

masse [2]. 

Appropriateness of a Unidimensional Mobility Indicator 

The data in Figs. 1 through 4 make a strong case in favor of the suitability of our 

unidimensional summary indicator of the six Google mobility categories. In the illustrative plot 

in Fig. 1, we saw how five of the individual categories tended to move together, while the 

residential category tended to move in the opposite direction. Our principal component analysis 

(Supplement Table A) confirmed these observations and further demonstrated that visits to retail 

establishments captured a larger fraction of the overall variance of the six categories. In the 

illustrative plot of Fig. 2, we saw how the resulting unidimensional indicator consistently 

captured changes in mobility during the two-week interval from the week ending December 20 

to the week ending January 3. In Figs. 3 and 4, we saw how the temporal path of our 

unidimensional mobility indicator during that interval was followed by a peaking in reported 

Omicron cases 2-3 weeks later. 

Cross-Sectional Analysis with Covariates 

In our longitudinal cohort analysis of equation (1), we relied on the statistical technique 

of fixed effects to capture other, persistent unobserved characteristics of individual counties. In 

the cross-sectional analysis of equation (2), by contrast, we relied upon county-specific 

demographic variables and indicators of vaccination participation. Unfortunately, we did not 

have county-specific data on booster vaccinations before December 15, 2021. Consequently, our 

data may include a nontrivial number of recent vaccinations in response to emerging news about 

the coming Omicron wave. 

In contrast to our longitudinal study of a cohort of 111 counties over 13 successive 

weeks, our cross-sectional analysis encompassed only 111 county-specific observations on 

cumulative reported COVID-19 incidence. As already noted, reported cases of Omicron may 

have constituted no more than one-quarter of all incident cases [30]. This observation raises the 

possibility that the degree of underreporting in a particular county was related to the magnitude 

of the observed decline in mobility. To the extent that counties with a higher perceived risk and 
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greater self-imposed declines in mobility also reported more cases, our cross-sectional estimates 

would understate the strength of the mobility-incidence relationship. 

Conclusion 

This study documented a striking dynamic relationship between declines in mobility and 

subsequently reported reductions in case incidence during the Omicron surge in the most 

populous counties in the United States. The mobility-incidence relation prevailed despite the 

high degree of immune escape by the Omicron variant, as well as the potentially dissuasive 

effects of so-called worry fatigue on risk-mitigating behavior. Our findings imply that a 

significant fraction of the population managed to avoid infection by engaging in risk-mitigating 

behaviors. More broadly, the behavioral response to perceived risk should be viewed as an 

intrinsic component of the natural course of epidemics in humans. 
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