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Abstract 

PURPOSE. To compare and harmonize accelerometry-based measures of physical activity (PA) to 

increase the comparability, generalizability, and translation of findings from studies using objective 

measures of PA. METHODS. High resolution accelerometry data were collected from 655 participants in 

the Baltimore Longitudinal Study on Aging who wore an ActiGraph GT9X device at wrist continuously 

for a week. Data were summarized at the minute-level as activity counts (AC; measure obtained from 

ActiGraph's ActiLife software) and MIMS, ENMO, MAD, and AI (open-source measures implemented in 

R). The correlation between AC and other measures was quantified both marginally and conditionally on 

age, sex and BMI. Next, each pair of measures were harmonized using nonparametric regression of 

minute-level measurements. A freely available SummarizedActigraphy R package with a unified interface 

for computation of the open-source measures from raw accelerometry data was developed.  RESULTS. 

The study sample had the following characteristics: mean (sd) age of 69.8 (14.2), BMI of 27.3 (5.0) 

kg/m², 54.5% females, and 67.9% white. The marginal participant-specific correlation between AC and 

MIMS, ENMO, MAD, and AI were 0.988, 0.867, 0.913 and 0.970, respectively. After harmonization, the 

mean absolute percentage error for predicting TAC from MIMS, ENMO, MAD, and AI was 2.5, 14.3, 

11.3 and 6.3, respectively. The accuracy for predicting sedentary minutes based on AC (AC > 1853) 

using MIMS, ENMO, MAD and AI was 0.981, 0.928, 0.904, and 0.960, respectively. CONCLUSION. 

Our comparison of accelerometry-based measures of PA enables us to extend the knowledge from the 

thousands of manuscripts that have been published using ActiGraph activity counts to MIMS and other 

metrics by demonstrating their high correlation and comparability.  

 Keywords: Accelerometry, Actigraphy, Activity counts, BLSA 
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Introduction 

 Accelerometer-based activity monitors have become increasingly popular in research studies 

because they provide non-invasive, objective measures of physical activity (PA) that can be collected 

continuously for extended periods of time (Karas et al., 2019). Modern wearable accelerometers measure 

acceleration of a body at high frequency (typically 10-100 Hz). These raw data are then typically 

aggregated into fixed-time epochs, e.g. 1 minute-long. Yet, the choice of epoch-based measures varies 

across studies. For example, the Baltimore Longitudinal Study on Aging (BLSA) used wrist-worn 

accelerometers and summarized data using activity counts (AC) (Neishabouri et al., 2022), a measure 

proposed and implemented by ActiGraph (ActiGraph LLC, Pensacola, FL, USA). The wrist-worn 

accelerometry data collection in the recent NHANES 2011-2014 opted for Monitor-Independent 

Movement Summary (MIMS) (John et al., 2019), an open-source summary characteristic of high-density 

accelerometry data. The UK Biobank study used wrist-worn accelerometers and chose Euclidean Norm 

Minus One (ENMO) (van Hees et al., 2013), a different open-source summary measure of high-density 

accelerometry data. Additional open-source summary measures of acceleration are Mean Amplitude 

Deviation (MAD) (Vähä-Ypyä et al., 2015) and Activity Intensity (AI) (Bai et al., 2014).  

 Given the evolution of processing and analyzing accelerometry data over the past decade, it is of 

utmost importance that we as a field understand how newer (e.g., MIMS) summary measures compare to 

long-established ones (e.g., ActiGraph AC). Further, we recognize the need to harmonize, or map, the 

values of any two PA summaries derived from different algorithms. This enables us to extend the 

knowledge from the thousands of manuscripts that have been published using ActiGraph AC (where no 

repository or access to raw accelerometry data remains available) to MIMS and other measures.  

 To address this problem, high resolution accelerometry data were examined from 655 participants 

in the Baltimore Longitudinal Study on Aging (BLSA) who wore an ActiGraph GT9X Link device at 

wrist continuously for a week. Data were summarized in 1-minute epochs as ActiGraph AC (obtained 

from ActiLife Software), MIMS, ENMO, MAD, and AI (open-source measures implemented in R). The 

correlations between AC and MIMS, ENMO, MAD, and AI were quantified both marginally and 
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conditionally on age, sex, and body mass index (BMI). This provides simple summaries of associations 

and a guide for the strength of these associations in subgroups defined by demographic information. Next, 

ActiGraph AC, one of the most widely used PA measures, was harmonized with each other measure using 

nonparametric smoothing of minute-level data. This allows to: (1) provide a mapping between any two 

PA summary measures; (2) derive cut-points of open-source PA measures that correspond to established 

cut-points to estimate time spent in different PA intensities for ActiGraph AC. Our analysis is especially 

timely given the recent release of physical activity data from NHANES 2011-2014 that uses the open-

source MIMS measure. In the remaining part of the manuscript, "AC" alone is used to denote ActiGraph 

AC. 

Methods 

Study Design And Population 

 Data used in this manuscript were collected as part of the National Institute on Aging’s Baltimore 

Longitudinal Study of Aging (BLSA). The study has been active since 1958 with the aim to describe 

longitudinal physical and cognitive changes related to aging. Participant enrollment criteria and a general 

description of the sample have been reported elsewhere (Kuo et al., 2020). Briefly, participants are 

community dwelling volunteers free of all major chronic conditions and cognitive and functional 

impairment at the time of enrollment. Participants undergo a comprehensive health and functional 

screening evaluation at baseline and are followed for life, attending follow-up visits and extensive health 

testing every 1-4 years depending on age. The study protocol was approved by the Internal Review Board 

of the Intramural Research Program of the National Institutes of Health. The data used in this work were 

collected in all participants who agreed to wear an accelerometer between July 2015 and January 2019. 

Accelerometry Data Collection And Export 

 Data were collected with an ActiGraph GT9X Link device, a tri-axial accelerometer that 

measures time-varying body accelerations in magnitudes ranging ± 8 g (g = 9.81 m/s2). The devices were 

configured to record data at a frequency of 80 Hz. Participants were given the monitor on the last day of 

their clinic visit and were instructed to wear it at all times on their non-dominant wrist for 7 days, except 
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for periods of extended swimming or bathing. Devices were returned to the clinic via a pre-addressed 

envelope. The ActiGraph's ActiLife software (version 6.13.4) was used to: (a) export data into the "gt3x" 

file format1; (b) derive minute-level AC and export them as CSV files; and (c) export raw acceleration 

data as three-dimensional time series in g units together with subsecond-level timestamps into CSV files. 

In AC derivation, the ActiGraph's low-frequency extension was used following the recommendation from 

Cain et al. (2013).  

Raw Accelerometry Data Quality Control 

 Three raw data quality check flags were adapted from a set of nine flags recently introduced by 

the release of the NHANES 2011-2012 wave protocol (NHANES 2011-2012 Data Documentation, 2020). 

The selected flags subset represents intuitive flags that are meant to "determine signal patterns that were 

unlikely to be a result of human movement" but are not aimed at identifying non-wear. The flags 

definitions are given in Appendix A. A raw data observation was flagged as valid if it had none of the 

three flags triggered; otherwise, it was marked as invalid. The R script reference is provided in the 

footnote2. Raw data observation flags were further used to mark data for exclusion at minute-level (see 

Sect. "Minute-level Accelerometry Data Preprocessing" below).  

Open-source Summary Measures of Raw Accelerometry Data   

 The raw accelerometry data were used to derive a set of commonly used minute-level open-

source summary measures: MIMS, ENMO, MAD, and AI. The R script reference is provided in the 

footnote3. Definitions of the measures are specified in Appendix B. The calculate_measures method from 

the SummarizedActigraphy R package (Muschelli, 2021) was used to compute the measures. The 

method's primary contribution is to provide a unified data interface to compute a range of open-source 

 
1 ActiGraph .gt3x file format specification: https://bit.ly/34QllYi 

2 R code script to generate raw data quality check flags: https://bit.ly/3wtHhnB 

3 R code script to compute MIMS, MAD, AI: https://bit.ly/3MYgJ3m; R code script to compute ENMO with calibration: https://bit.ly/3CNcByw 
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measures; it uses references to some of the measures' original software, e.g. the MIMSunit R package 

(Tang et al., 2020) to compute MIMS.  

Minute-level Accelerometry Data Preprocessing 

 To define minute-level sensor wear/non-wear flags, the get_wear_flag method from the arctools 

R package (Karas et al., 2021) was used. The method implements a wear/non-wear detection algorithm 

proposed in Choi et al. (2011); it uses threshold of 0 for the number of nonzero counts allowed during a 

non-wear time interval, and it does not allow "artifactual movement" interval of nonzero counts during a 

non-wear time interval. A recommended value of 90 minutes was used for the minimum time of 

consecutive zero counts for a window to be flagged as non-wear. A minute had a valid raw data flag if no 

quality control flags at raw observation-level were triggered within that minute (see Sect. "Raw 

Accelerometry Data Quality Control" above). Finally, a minute was defined as a valid minute (overall) if 

it had both a wear flag and valid raw data flag positive; otherwise, it was defined as an invalid minute. A 

valid day was defined as a day (12:00am-11:59pm) with no more than 10% (144 minutes) invalid minutes 

(Wanigatunga et al., 2020). Only participants who had at least 3 valid days of data, and only their valid 

days data, were included in further preprocessing and analyses. The R script reference is provided in the 

footnote4.  

 Values of AC, MIMS, ENMO, MAD and AI were winsorized (Hastings Jr. et al., 1947) by first 

computing a measure-specific 0.999 quantile, and then using it to replace the measure's values exceeding 

the quantile's value. As a result, 0.1% of each measure's most extreme values were replaced in the dataset. 

The winsorization reduces the effect of extreme values. 

 Lastly, a separate data set was constructed where values of AC, MIMS, ENMO, MAD and AI 

were imputed for invalid minutes, following the imputation approach previously used in Leroux et al. 

(2020). This data set was used in the summary of daily sums of measure values and in our application 

example where data without missing values were needed. The imputation procedure was conducted 

 
4 R code script to compute valid minute and valid day flags and to filter the participants: https://bit.ly/3MWMHwX 
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separately for each measure. The procedure started by computing a functional principal component 

analysis (FPCA) of functional observations made of all participant- and day-specific minute-level data 

parts, each sorted by time and arranged into a 1440-long vector. A fast implementation of the sandwich 

smoother (Xiao et al., 2013) from fpca.face method in the refund R package (Goldsmith et al., 2020) was 

used to allow for a quick FPCA computation given our dataset volume. The smoothed version of each 

functional observation was obtained from FPCA, and their values were used for data imputation. The R 

script reference is provided in the footnote.5  

Statistical Data Analysis 

 A summary of minute-level measures: AC, MIMS, ENMO, MAD, and AI was computed in two 

different ways: (a) as average daily sum per participant, summarized across participants; (b) as average 

per minute, summarized across all participant-minutes.  

 A Pearson correlation coefficient between four pairs of measures: AC and MIMS, AC and 

ENMO, AC and MAD, and AC and AI, was computed for each participant. Mean correlation values and 

its standard error were quantified via intercept-only linear regression models in which participant-specific 

correlation between a pair of measures was set as an outcome. Next, the demographics effect on 

correlation was estimated via adjusted linear regression models. Participant-specific correlation between a 

pair of measures was set as an outcome, and age, BMI and sex (is male) indicator were set as covariates. 

Significance level alpha = 0.05 was assumed in determining statistical significance of coefficients in the 

adjusted models. For both unadjusted and adjusted models, a separate fit was estimated for each four pairs 

of measures.  

 To derive the harmonization mapping, relationships between measures: AC and MIMS, AC and 

ENMO, AC and MAD, and AC and AI, were estimated with generalized additive models (GAMs) 

separately for each pair of measures. The GAMs were chosen to allow flexible adaptation to the data 

rather than imposing a particular functional form of the fit. In each model, the outcome consisted of 

 
5 R code script to perform data imputation: https://bit.ly/3tgApaY 
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minute-level open-source measure, and predictors were a smooth term of minute-level AC. For the 

smooth term, cubic regression splines with a basis dimension equal to 30 were used to allow a flexible 

relationship between a measure and AC. Models were estimated with nonparametric smoothing 

implemented in gam method in the mgcv R package (Wood, 2021). Smoothness of the non-linear effects 

was enforced via a second derivative penalty with smoothing parameter selection done using cross-

validation (Wood, 2011).  Data from all participants' valid minutes were used in the model fitting except 

minutes which had AC values equal 0. The AC = 0 exclusion was motivated by a large proportion of zero 

values, and the need to estimate the relation for small AC values without it being inflated by the large 

number of zeros. All four relationships were estimated as strictly monotonic (without monotonicity 

having been constrained explicitly). The GAM model-fitted values were used to define two-way 

mappings between AC and each of the four open-source measures. All open-source measurements were 

mapped into AC. For the remainder of the manuscript, we denote AC#!"#$%&"(x)	to be AC value estimated 

via the mapping from x value of a measure, where "measure" stands for one of: MIMS, ENMO, MAD, 

AI.  

 Several steps were taken to assess the mapping accuracy. First, to assess mapping accuracy in 

estimating PA volume statistics, total activity count (TAC; the sum of minute-level values from a day) 

was computed for each participant's day, using both true AC and AC#!"#$%&". The participant- and day-

specific estimation error was defined as the difference between TAC derived from true AC and TAC 

derived from AC#!"#$%&". Participant-specific mean percentage error (MPE) and mean absolute percentage 

error (MAPE) were computed by averaging the error across participant's days. Second, to assess whether 

mapping accuracy depends on participant's activity level, participant-specific MPE were plotted against 

participant's average TAC (similar to a Bland-Altman plot). Third, the mapping utility in classifying 

minutes into sedentary versus active was assessed. In the classification task, for each minute, the minute's 

label was defined based on whether AC > 1853 (Koster et al., 2016) using true AC value, and the 
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prediction value was defined based on whether AC#!"#$%&"	> 1853. Accuracy, sensitivity and specificity of 

prediction were computed for each participant. 

 Minute-level AC and AC#!"#$%&" were used to estimate smoothed 24-hour median activity counts 

across the previously published (Schrack et al., 2013) age groups: < 60-year old, 60- to 67-year old, 68- to 

74-year old, ≥ 75-year old. The similarity between AC-based and AC#!"#$%&"-based estimates were 

summarized using MAPE (sum of absolute value of difference between estimates divided by sum of AC-

based estimates) separately for each measure: MIMS, ENMO, MAD, AI.  

 The project repository containing all code for data preprocessing and analysis is publicly 

available and located on GitHub6.  

Results 

Population Characteristics 

 The final study sample consisted of n=655 individuals whose characteristics are detailed in Table 

1. The mean age was 69.8 (sd = 14.2, range 22-97) years. There was a higher proportion of women 

(54.5%) compared to men (45.5%). The racial composition reflected that of the BLSA enrollment: 68% 

white, 24% black, 7% other (1% not reported). Almost 96% of participants self-reported good, very good 

or excellent health. The prevalence of hypertension, high blood cholesterol, and osteoarthritis was 44%, 

53%, and 48%, respectively. All other chronic conditions were rare with a prevalence of < 15%. 

Participants had a median 6 (range 3-7) days of valid accelerometry data; within these, they had an 

average of 1438 (sd=8) out of 1440 valid minutes per day.  

 

Table 1. Study sample (n = 655) characteristics. Abbreviations used: "qc" -- quality control, "BMI" -- 

body mass index, "MI" -- heart attack, "CHF" -- congestive heart failure, "angina" -- ischemic 

chest pain, "VP" -- vascular procedure, "PAD" -- peripheral artery disease, "TIA" -- transient 

ischemic attack.  

 
6 Project GitHub repository: https://bit.ly/3u35pun 
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 Mean (sd) Median [min, max] 

Age 69.8 (14.2) 72.0 [22.0, 97.0] 

Weight [kg] 77.4 (17.1) 76.3 [41.1, 142.7] 

Height [cm] 168.0 (9.2) 167.3 [143.8, 196.2] 

BMI 27.3 (5.0) 26.6 [17.1, 52.5] 

Accelerometry sensor wear 

Valid days 5.9 (0.4) 6.0 [3.0, 7.0] 

Non-wear minutes/day 2.0 (7.8) 0.0 [0.0, 77.0] 

Invalid raw data qc minutes/day 0.2 (1.4) 0.0 [0.0, 19.2] 

Valid minutes/day 1437.8 (8.0) 1440.0 [1361.7, 1440.0] 

 n (% of n)  

Sex  

Female 357 (54.5)  

Male 298 (45.5)  

Race  

White 445 (67.9)  

Black 157 (24.0)  

Other 44 (6.7)  

Not reported 9 (1.4)  

Self-reported health  

Good/very good/excellent 628 (95.9)  

Fair/poor 22 (3.4)  

Not reported 5 (0.8)  

Medical history  

MI/CHF/angina/VP/PAD 55 (8.4)  

Hypertension 285 (43.5)  

High blood cholesterol 346 (52.8)  

Stroke/TIA 34 (5.2)  

Pulmonary disease 74 (11.3)  

Diabetes 95 (14.5)  

Cancer 191 (29.2)  

Osteoarthritis 316 (48.2)  
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 Table 2 describes minute-level measures: AC, MIMS, ENMO, MAD and AI, computed as an 

average daily sum per participant, and then summarized across participants. Daily AC had mean (sd) 

2,204,169 (600,965), and MIMS, MAD, ENMO and AI had average (sd) 11,299.7 (2766.0), 47.7 (13.3), 

30.9 (9.1) and 4157.6 (1068.8), respectively. Table C1 in Appendix C describes minute-level measures 

summarized as average per minute, across all participant-minutes.  

 

Table 2. Summary of average daily sum of AC, MIMS, ENMO, MAD, and AI. Each value in the table is 

an aggregate -- mean, standard deviation, median, minimum and maximum -- of n = 655 

participant-specific values of average daily sum. The summary was computed based on a data set 

of winsorized, invalid minutes-imputed measures. 

Measure Mean (sd) Median [min, max] 

AC 2204169 (600965) 2157496 [731945, 5071196] 

MIMS 11299.7 (2766.0) 11195.2 [4252.3, 23931.5] 

MAD 47.7 (13.3) 46.3 [16.1, 108.1] 

ENMO 30.9 (9.1) 29.6 [11.8, 75.3] 

AI 4157.6 (1068.8) 4085.5 [1529.7, 9418.6] 
 

Correlations Between Minute-level Summary Statistics 

 Table 3 summarizes participant-specific correlation for pairs of minute-level measures: AC and 

MIMS, AC and ENMO, AC and MAD, AC and AI. Column 2 ("Model unadjusted") shows estimated 

intercept coefficient and its standard error from an unadjusted (intercept-only) regression model. 

Marginally, the AC measure had the highest correlation with MIMS -- estimated mean (se) 0.988 

(0.0002), closely followed by that of AI -- 0.970 (0.0007). Correlation between AC and MAD had mean 

(se) 0.913 (0.0013), and correlation between AC and ENMO -- mean (se) 0.867 (0.0018). 

 Columns 3-6 ("Model adjusted") show coefficient estimates and standard errors from a 

conditional model where participant-specific correlations were quantified while adjusting for age, BMI 

and sex. The model summaries are presented in Code outputs C1-C4 in Appendix C. The estimated effect 
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of age on the correlation was not statistically significant (alpha = 0.05) and had point estimates of 

magnitude less than 0.001 in models except the correlation between AC and ENMO (est. = -0.001, se = 

0.0001, p-value < 0.0001). The estimated effect of BMI on the correlation was statistically significant in 

models for correlation between AC and MAD (est. = 0.001, se = 0.0003, p-value = 0.0013) and AC and 

AI (est. < 0.001, se = 0.0001, p-value = 0.0362). The estimated effect of male sex (compared to female -- 

reference level) was statistically significant in three models: model of correlation between AC and MIMS 

(est. = -0.002, se = 0.0005, p-value < 0.0001), AC and MAD (est. = -0.01, se = 0.0026, p-value < 0.0001), 

AC and AI (est. = -0.01, se = 0.0013, p-value < 0.0001).  

 

Table 3. Summary of Pearson correlation for pairs of minute-level measures: AC, MIMS, ENMO, MAD, 

AI. Correlations were estimated with (a) intercept-only regression model (column 2) and (b) 

conditional regression model (columns 3-6). In all models, participant-specific value of correlation 

was set as an outcome. The "*" symbol is used to denote model coefficients (excluding intercept) 

for which the corresponding p-value was <0.05. Abbreviations used: "BMI" -- body mass index. 

"Response var." -- response variable in a model. "Coef. est." -- model coefficient estimate. "se" -- 

model coefficient standard error.  

 Unadjusted 
model Model adjusted for: age, BMI, sex 

 Intercept Intercept Age BMI Sex (is male) 

Response var. Coef. est. (se) Coef. est. (se) Coef. est. (se) Coef. est. (se) Coef. est. (se) 

cor(AC, MIMS) 0.988 
(0.0002) 

0.988 
(0.0017) 

< 0.001 
(<0.0001) 

< 0.001 
(<0.0001) 

-0.002 
(0.0005)* 

cor(AC, ENMO) 0.867 
(0.0018) 

0.887 
(0.0138) 

-0.001 
(0.0001)* 

0.001 
(0.0004) 

> -0.001 
(0.0037) 

cor(AC, MAD) 0.913 
(0.0013) 

0.892 
(0.0099) 

< 0.001 
(0.0001) 

0.001 
(0.0003)* 

-0.010 
(0.0026)* 

cor(AC, AI) 0.970 
(0.0007) 

0.962 
(0.0050) 

< 0.001  
(< 0.0001) 

< 0.001 
(0.0001)* 

-0.010 
(0.0013)* 

 

Mapping Between Minute-level Summary Measures 
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 Figure 1 shows estimated association between minute-level AC (x-axis) and minute-level MIMS, 

ENMO, MAD, and AI, respectively (y-axis). The black solid line shows GAM model-fitted values of 

each measure (MIMS, ENMO, MAD, AI) given the AC measure value. Here, the GAM estimates can be 

thought of as a smoothed mean across the points.  

 

Figure 1. Estimated mapping between minute-level AC (x-axis) and minute-level MIMS, ENMO, MAD, 

and AI, respectively (y-axis). Black solid line shows GAM model-fitted values of a measure 

(MIMS, ENMO, MAD, AI) given the AC measure value. The points represent a subset of the data 

created by taking every 100-th observation from all participant- and minute-specific observations; 

this subset is the same across the four plots. 
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 The CSV table with model-fitted values of MIMS, ENMO, MAD, and AI is publicly available on 

GitHub7. The results were used to implement fast R software that maps values of measure A to measure B 

that is available on GitHub8. Table 4 shows model-fitted values for selected published cut-off values of 

AC. Cut-off AC = 1853 was derived by Koster et al. (2016) to separate sedentary and active minutes from 

non-dominant wrist-worn sensor data collected in older adults. Cut-offs AC = 2860 and 3940 were 

derived by Montoye et al. (2020) to separate sedentary, light, and moderate-to-vigorous activity intensity 

levels from non-dominant wrist-worn sensor data collected in young to older adults. For a widely used 

cut-off AC = 1853, the fitted values were: MIMS = 10.558, ENMO = 0.022, MAD = 0.039, AI = 3.620.  

 

Table 4. AC and fitted values of MIMS, ENMO, MAD and AI, respectively, for selected AC cut-off values. 

AC  MIMS fitted ENMO fitted MAD fitted AI fitted 

1853 10.558 0.022 0.039 3.620 

2860 15.047 0.033 0.057 5.273 

3940 19.614 0.046 0.078 7.025 
 

 The mapping accuracy in estimating PA volume statistics was quantified by participant-specific 

mean percentage error (MPE) and mean absolute percentage error (MAPE) in estimating total activity 

count (TAC). Table C2 in Appendix C summarizes the MPE and MAPE across the participants. The 

MAPE was the smallest for MIMS and had mean (sd) of 2.5 (2.4), followed by that of AI (mean = 6.3, sd 

= 5.1), MAD (mean = 11.3, sd = 8.4) and ENMO (mean = 14.3, sd = 10.3).  The MPE were equal for 

MIMS -- mean (sd) 0.2 (3.2), for AI -- 0.3 (7.6), for MAD -- (-0.3) (13.3), and for ENMO -- 4.6 (16.1). 

Figure C1 in Appendix C shows participant-specific MPE arranged according to the participant's average 

TAC. Based on visual inspection, there is a larger variability of MPE values among participants with 

 
7 The CSV table with model-fitted values of MIMS, ENMO, MAD, and AI: https://bit.ly/3CPuFYR 

8 R code script with fast mapping functions: https://bit.ly/3qdS80V 
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smaller average TAC values, but there is no apparent tendency for lower or higher MPE values depending 

on participant's average TAC.  

 The mapping utility in the task of classifying minutes into sedentary versus active using the AC = 

1853 cut-off was also assessed. Table C3 in Appendix C summarizes participant-specific accuracy, 

sensitivity and specificity of predicting whether a minute is active, where the minute's label was based on 

true AC and the prediction was based on AC#!"#$%&". The participant-specific classification accuracy was 

the highest for MIMS and had mean (sd) of 0.981 (0.005), followed by that of AI (mean = 0.960, sd = 

0.012), MAD (mean = 0.928, sd = 0.021) and ENMO (mean = 0.904, sd = 0.028).   

Minute-level Patterns Of Daily Physical Activity 

 Previous work in the BLSA characterized age-related differences in daily patterns of physical 

activity using minute-level counts from Actiheart activity monitor (Schrack et al., 2013). Figure 2 shows 

the estimated smoothed 24-hour median activity counts across the previously published age groups: < 60-

year old (green; n = 140), 60- to 67-year old (red; n = 102), 68- to 74-year old (blue; n = 129), ≥ 75-year 

old (orange; n = 284). Solid semi-transparent colour lines represent results obtained with AC measure. 

Dashed colour lines represent results obtained with AC#!"#$%&" values mapped into AC from one of the 

four measures -- MIMS, ENMO, MAD, and AI -- per plot. Based on visual inspection, in each case, the 

AC#!"#$%&"-based curves yielded roughly the same information as the AC-based curves. The similarity 

between AC-based and AC#!"#$%&"-based estimates was summarized using mean absolute percentage error 

(MAPE). The measure-specific MAPE was the smallest for MIMS and equalled 3.2, followed by that of 

AI (6.7), MAD (11.1) and ENMO (12.5). Figure C2 in Appendix C shows smoothed 24-hour median 

activity counts per minute for each age group computed with the original values of MIMS, ENMO, MAD, 

and AI. 
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Figure 2. Smoothed 24-hour median activity counts per minute for each age group:  < 60-year old (green), 

60- to 67-year old (red), 68- to 74-year old (blue), ≥ 75-year old (orange). Solid semi-transparent 

colour lines represent results obtained with AC measure; they are the same across the four plots. 

Dashed colour lines represent results obtained with AC#  values mapped into AC from one of the four 

measures -- MIMS, ENMO, MAD, and AI -- per plot. 

 

Discussion 

 We used a large-size cohort of BLSA participants (age mean 69.8, range 22-97) to compute and 

compare minute-level accelerometry-derived measures of physical activity: AC and MIMS, ENMO, 

MAD, and AI. Results suggest that correlations between the widely published AC and the other raw data 

summary metrics are all large (>= 0.87), and especially high for MIMS and AI (>= 0.97).  After the 
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harmonization, MIMS allowed for excellent accuracy in predicting TAC and predicting sedentary minutes 

with AC = 1853 cut-off. The observed differences in the correlations with AC between open-source 

measures should be considered when comparing historical results across the metrics.  

 Previously, the correlation between AC and MIMS in data collected during continuous 

monitoring in the free-living environment has not been explored. We computed participant-specific 

correlations between AC and MIMS, ENMO, MAD, and AI measures, and examined how the correlations 

differ across age, BMI and sex. The AC measure had the highest average participant-specific correlation 

with MIMS -- 0.988, closely followed by AI -- 0.97, and MAD (0.913) and ENMO (0.867). Both MIMS 

and AI are based on variability within each axis, whereas MAD and ENMO are based on the Euclidean 

norm of three-dimensional time-series of the raw data. Therefore, it is consistent with expectations to 

observe MIMS and AI behave similarly, and demonstrate similar correlations with AC. While we found 

statistically significant effects of age, BMI and sex on the correlations between AC and the other 

measures, the effect sizes were of very small magnitude. In particular, the analysis showed that MIMS 

had a correlation with AC that did not differ significantly across age nor BMI, and differed significantly 

between men and women by a magnitude of 0.002.  

 We estimated (and provided software to use) the harmonization mapping between minute-level 

measures -- AC and MIMS, AC and ENMO, AC and MAD, and AC and AI. The mapping allows us to 

extend the knowledge from the thousands of manuscripts that have been published using AC to MIMS 

and other measures in cases where the access to raw accelerometry data from a published work is no 

longer available.  The mapping can be particularly useful to translate commonly used cut-off values of PA 

intensity levels from AC into open-source measures. The mapping was validated in the tasks of predicting 

TAC and predicting sedentary minutes based on AC = 1853 cut-off; we observed excellent accuracy for 

MIMS and AI of 0.981 and 0.96, respectively. The utility of the derived mapping was demonstrated in the 

example in which previous BLSA results were replicated. The PA volume daily trajectories across four 

age groups obtained with AC were closely matched with open-source measures, with MIMS yielding 
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visually almost identical results (MAPE = 3.2), followed by that of AI, MAD and ENMO (MAPE = 6.7, 

11.1, and 12.5).   

 Lastly, we believe we are the first to provide freely available R software (SummarizedActigraphy 

R package) with a unified interface for computation of the four open-source measures from raw 

accelerometry data. This effort is accompanied by the Appendix material where we provide a description of 

the used PA measures that distills complicated mathematical formulas into a reader-friendly text.  

Study Limitations 

 We identify the following limitations of our work. First, our study sample consists of 

predominantly middle-aged to older adults; specifically, < 30% of the sample is younger than 64 years 

and no children or adolescents below 22 years of age were included. However, we observed that: (a) the 

level of activity of adults in our study sample did range from sedentary to moderate and vigorous activity, 

(b) our mapping results did not exhibit any trend depending on average level of participant's PA, and (c) 

the measured variability along the estimated mapping is lower for higher activity values, which suggests 

the derived mapping could prove similarly useful in future studies including younger (more active) 

populations. Second, PA measures were computed using raw accelerometry data collected at frequency 

80 Hz; while this frequency matches the frequency of raw accelerometry data collection in recent release 

of PA data from NHANES 2011-2014 that uses the MIMS measure, studies collecting raw data of 

different frequency should use caution in adapting our harmonization mapping. Third, our comparison is 

limited to data collected with a sensor worn on a non-dominant wrist. While we expect the results to 

translate to a dominant-wrist, we presume the correlations and mapping may not be applicable to e.g. 

chest- or hip-worn sensor, where the magnitude of PA volume is expected to be substantially lower than 

when measured at wrist. Fourth, our harmonization mapping was estimated using generalized additive 

models (GAMs) and does not offer an easy, closed-form formula of the transformation. While such a 

formula could be obtained e.g. with polynomial models, the choice of GAMs allowed for thorough 

estimation of a relationship between AC and other measures in a more flexible way. Finally, our results 

are conditional on the data preprocessing methods we have chosen. However, we believe that the steps we 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 18, 2022. ; https://doi.org/10.1101/2022.03.16.22272518doi: medRxiv preprint 

https://doi.org/10.1101/2022.03.16.22272518
http://creativecommons.org/licenses/by-nd/4.0/


 

 19 

performed are commonly done (we have cited studies who have previously used these) and are reasonable 

given the obtained data summary statistics and visual quality checks performed.  

Conclusion 

 In conclusion, our comparison of AC and MIMS, ENMO, MAD and AI allowed to show their 

high correlation to enhance comparability across past and future research. The derived harmonization 

mapping is freely available and provides a way to harmonize accelerometry data sets where summary 

measures were derived using different methods. Further research is warranted to test the validity of the 

mapping with different frequency data and body locations. 
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Appendix A 

Raw Accelerometry Data Quality Control 

 Three raw data quality check flags were adapted from a set of nine flags recently introduced by 

the release of the NHANES 2011-2012 wave protocol (NHANES 2011-2012 Data Documentation, 2020). 

The selected flags subset represents intuitive flags that are meant to "determine signal patterns that were 

unlikely to be a result of human movement" but are not aimed at identifying non-wear. To provide the 

flags definition, we denote a raw data observation as a vector 𝐱(t) = (x'(t), x((t), x)(t)), where x!(t) is 

an acceleration measurement along axis m = 1,2,3 at time t.   

 First, large changes in acceleration values ("spikes") were identified. Specifically, an observation 

𝐱(t) was flagged if for any axis m = 1,2,3, x!(t) had an adjacent observation, x!(t − 1) or x!(t + 1), 

with an absolute difference greater than a threshold of 14.7 g. The 14.7 g threshold was adapted from 

NHANES protocol (11 g), as the NHANES devices had a dynamic range of 12 g, and the BLSA devices 

had a range of 16 g, so our threshold is proportional (11/12) to our data. Second, an observation 𝐱(t) was 

flagged if any axis measurement x!(t) occurred near the device maximum limit (here: 8 g, NHANES 

protocol: 6 g) with a tolerance margin (0.05 g), which translates to x!(t) being equal to or greater than 

7.95 g. Third, an observation 𝐱(t) was flagged if any axis measurement x!(t) occurred near the device 

minimum limit (here: -8 g, NHANES protocol: -6 g), including a tolerance margin (0.05 g), and had 

same-axis adjacent observation also near the device minimum limit. These three flags were combined and 

the raw data observation 𝐱(t) was flagged as valid if it had none of the three flags; otherwise it was 

invalid. The R script reference is provided in the footnote9.  

 

 

 

 
9 R code script to generate raw data quality check flags: https://bit.ly/3wtHhnB 
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Appendix B 

Open-source Summary Measures of Raw Accelerometry Data 

 The raw accelerometry data were used to derive a set of commonly used minute-level open-

source summary measures: MIMS, ENMO, MAD, and AI. To provide the measures definition, we denote 

a raw data observation as a vector 𝐱(t) = (x'(t), x((t), x)(t)), where x!(t) is an acceleration 

measurement along m = 1,2,3 axis collected at time t. 

Monitor Independent Movement Summary (MIMS) 

 John et al. (2019) proposed Monitor-Independent Movement Summary unit (MIMS-unit). The 

MIMS-unit algorithm steps are conducted independently for each axis' univariate acceleration signal 

x!(t),m = 1,2,3 until a final aggregation step. First, an input signal x!(t) is extrapolated to address a 

possible case when detected acceleration exceeds a sensor’s dynamic range; in this procedure, x!(t) is 

interpolated to 100 Hz, and then the extrapolation algorithm is applied to identify observations that hit the 

device limit (here: ± 8 g) and replace them with spline-interpolated points derived from the estimated 

extrapolation peak. The rest of the computations are done on this 100 Hz data. Second, a fourth-order 

Butterworth bandpass filter (0.2-5 Hz) is applied. Third, the interpolated, extrapolated, and filtered signal, 

x!
(+)(t), is aggregated within an epoch by computing area under curve via numerical integration; here, the 

epoch was set to 1 minute. Fourth, integrated values from each of the three axes are summed, yielding one 

value per epoch. Finally, the values less than or equal to 0.0001 * (epoch in seconds) * (sample rate after 

interpolation) (here: 0.0001 * 60 * 100 = 0.6) are truncated to zero.  

 The MIMS procedure may produce a negative value (-0.01), which indicates "the algorithm is 

unable to output a valid MIMS value for the given piece of the signal" (Tang et al., 2020). Negative 

MIMS output values were set to missing observations.  

 The algorithm implementation is provided in the MIMSunit R package (Tang et al., 2020). To 

compute MIMS, the package's method mims_unit was used with its default values of internal parameters 

(consistent with the manuscript recommendations). 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 18, 2022. ; https://doi.org/10.1101/2022.03.16.22272518doi: medRxiv preprint 

https://doi.org/10.1101/2022.03.16.22272518
http://creativecommons.org/licenses/by-nd/4.0/


 

 25 

Euclidean Norm Minus One (ENMO) 

 Van Hees et al. (2013) proposed Euclidean Norm Minus One (ENMO) summary measure. 

ENMO calculation is based on Euclidean norm of (x'(t), x((t), x)(t)),  

r(t) = 3x'((t) + x(((t) + x)((t)	,	 

where negative values after subtracting are set to zero. Explicitly, the ENMO measure per epoch of H 

observations starting at time t- is defined as  

ENMO(t-; H) =
'
.
Σ/0-.1'max{r(t- + h) − 1,0}. 

 Here, H of size 60 * 80 = 4800 observations was used to match the number of observations in one 

minute with frequency of our raw accelerometry data. For each minute, t- was set to be the time of the 

first observation within that minute.  

 Following the recommendations from van Hees et al. (2014), raw data calibration was performed 

for each participant separately before computing the ENMO measure. The g.calibrate method from the 

GGIR R package (van Hees et al., 2021) was used to estimate calibration values that were further used to 

center and scale the data accordingly.  No other measures used the post-calibrated data. 

Mean Amplitude Deviation (MAD) 

 Vähä-Ypyä et al. (2015) introduced Mean Amplitude Deviation (MAD) as a summary measure 

for accelerometry data. MAD measure per epoch of H observations starting at time t- is defined as  

MAD(t-; H) =
'
.
Σ/0-.1'|r(t- + h) − r̅(t-; H)|, 

where r̅(t-; H) is defined as average Euclidean norm in the epoch, formally 

r̅(t-; H) =
'
.
Σ/0-.1'r(t- + h). 

 Here, H and t- values were defined the same as for ENMO.  
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Activity Index (AI) 

 Bai et al. (2014) proposed the (unnormalized) Activity Index (AI) measure based on the 

combination of the three within-axis variance statistics. The variance of acceleration along m-th axis in 

the window of length Hstarting at time t- is defined as  

σ!( (t-; H) =
1
H
D 	
.1'

/0-

[x!(t- + h) − µ!(t-; H)](, m = 1,2,3, 

where µ!(t-; H) is axis-specific mean acceleration in the window, formally  

µ!(t-; H) =
1
H
D 	
.1'

/0-

x!(t- + h),m = 1,2,3. 

Then AI measure per epoch of H observations starting at time t- is originally defined as  

AI(t-; H) = 3max{'
)
[Σ!0') σ!( (t-; H) 	− σJ(],0}, 

where σJ( is the systematic noise variance calculated using the data collected during some non-moving 

period. In our work, σJ( is not estimated and is set to zero in the above equation; hence, the AI formula 

used narrows down to 

AI(t-; H) = 3max{'
)
Σ!0') σ!( (t-; H),0}. 

 In computation of AI, first, a window H of size 1 * 80 = 80 was used to match the number of 

observations in one second with frequency of our raw accelerometry data, and t- was set to be the time of 

the first observation within each second. Next, the per-second AI values were summed up within each 

minute so as the final outcome is defined on the minute level. This procedure is consistent with the 

recommendations given in Bai et al. (2016).  
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Appendix C 

Results 

Table C1. Summary of minute-level measures: AC, MIMS, ENMO, MAD, AI. Each value in the table is 

an aggregate -- mean, standard deviation, median, minimum and maximum -- of all participant-

minutes. The summary was computed based on a data set after winsorization and invalid minutes 

data imputation. 

Measure name Mean (sd) Median [min, max] 

AC 1530 (2176) 465 [0, 15709] 

MIMS 7.842 (10.063) 3.642 [0, 64.908] 

MAD 0.033 (0.048) 0.014 [0, 0.460] 

ENMO 0.021 (0.032) 0.010 [0, 0.375] 

AI 2.885 (3.811) 1.245 [0, 28.349] 
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Code output C1. Summary of linear regression model fit 1. The response variable is defined as the 

participant's correlation between minute-level measures AC and MIMS. 

Call: 
lm(formula = y ~ sex + bmi + age, data = dat) 
 
Residuals: 
      Min        1Q    Median        3Q       Max  
-0.073302 -0.001046  0.001161  0.002984  0.006901  
 
Coefficients: 
                 Estimate    Std. Error t value             Pr(>|t|)     
(Intercept)  0.9879694754  0.0017443393 566.386 < 0.0000000000000002 *** 
sexMale     -0.0018588979  0.0004659921  -3.989            0.0000738 *** 
bmi          0.0000322338  0.0000460425   0.700                0.484     
age          0.0000005471  0.0000162881   0.034                0.973     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.00589 on 651 degrees of freedom 
Multiple R-squared:  0.02413, Adjusted R-squared:  0.01963  
F-statistic: 5.365 on 3 and 651 DF,  p-value: 0.001183 

 

Code output C2. Summary of a linear regression model fit 2. The response variable is defined as the 

participant's correlation between minute-level measures AC and ENMO. 

Call: 
lm(formula = y ~ sex + bmi + age, data = dat) 
 
Residuals: 
      Min        1Q    Median        3Q       Max  
-0.236999 -0.023625  0.007123  0.031915  0.092445  
 
Coefficients: 
              Estimate Std. Error t value             Pr(>|t|)     
(Intercept)  0.8865661  0.0137661  64.402 < 0.0000000000000002 *** 
sexMale     -0.0002062  0.0036775  -0.056               0.9553     
bmi          0.0006530  0.0003634   1.797               0.0728 .   
age         -0.0005325  0.0001285  -4.142            0.0000389 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.04648 on 651 degrees of freedom 
Multiple R-squared:  0.03178, Adjusted R-squared:  0.02732  
F-statistic: 7.123 on 3 and 651 DF,  p-value: 0.0001032 
 
GCV = 0.0021345  Scale est. = 0.0021131  n = 655 
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Code output C3. Summary of a linear regression model fit 3. The response variable is defined as the 

participant's correlation between minute-level measures AC and MAD. 

Call: 
lm(formula = y ~ sex + bmi + age, data = dat) 
 
Residuals: 
      Min        1Q    Median        3Q       Max  
-0.179410 -0.014196  0.006283  0.023250  0.060610  
 
Coefficients: 
               Estimate  Std. Error t value             Pr(>|t|)     
(Intercept)  0.89217679  0.00985175  90.560 < 0.0000000000000002 *** 
sexMale     -0.01041026  0.00263185  -3.955            0.0000848 *** 
bmi          0.00083958  0.00026004   3.229              0.00131 **  
age          0.00004359  0.00009199   0.474              0.63574     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.03326 on 651 degrees of freedom 
Multiple R-squared:  0.03511, Adjusted R-squared:  0.03066  
F-statistic: 7.896 on 3 and 651 DF,  p-value: 0.00003521 

 

Code output C4. Summary of a linear regression model fit 4. The response variable is defined as the 

participant's correlation between minute-level measures AC and AI. 

Call: 
lm(formula = y ~ sex + bmi + age, data = dat) 
 
Residuals: 
      Min        1Q    Median        3Q       Max  
-0.164823 -0.003697  0.003584  0.008782  0.025173  
 
Coefficients: 
               Estimate  Std. Error t value             Pr(>|t|)     
(Intercept)  0.96236434  0.00501616 191.853 < 0.0000000000000002 *** 
sexMale     -0.00957592  0.00134004  -7.146      0.0000000000024 *** 
bmi          0.00027797  0.00013240   2.099               0.0362 *   
age          0.00006285  0.00004684   1.342               0.1802     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.01694 on 651 degrees of freedom 
Multiple R-squared:  0.07583, Adjusted R-squared:  0.07157  
F-statistic: 17.81 on 3 and 651 DF,  p-value: 0.00000000004068 
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Table C2. Summary of participant-specific mean percentage error (MPE) and mean absolute percentage 

error (MAPE) in estimating total activity counts (TAC).  

Measure name 
MPE MAPE 

Mean (sd) Mean (sd) 

MIMS 0.2 (3.2) 2.5 (2.4) 

ENMO 4.6 (16.1) 14.3 (10.3) 

MAD -0.3 (13.3) 11.3 (8.4) 

AI 0.3 (7.6) 6.3 (5.1) 
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Figure C1. Participant-specific MPE in estimating TAC arranged according to the participant's average 

TAC. Each point represents one participant's MPE. A dashed vertical line represents ME equal 0. 
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Table C3. Summary of participant-specific accuracy, sensitivity and specificity of predicting whether a 

minute is active. The minute's label was based on true AC and the prediction was based on 

AC#!"#$%&". For each participant, performance metrics -- accuracy, sensitivity and specificity -- 

were computed across all participant's minutes. Columns 3-5 show mean and standard deviation 

of participant-specific performance metrics.   

Minute's label Minute's prediction 
Accuracy Sensitivity Specificity 

Mean (sd) Mean (sd) Mean (sd) 

AC > 1853 AC#2324> 1853 0.981 (0.005) 0.968 (0.012) 0.986 (0.007) 

AC > 1853 AC#5627> 1853 0.904 (0.028) 0.856 (0.071) 0.921 (0.043) 

AC > 1853 AC#289 > 1853 0.928 (0.021) 0.879 (0.061) 0.945 (0.028) 

AC > 1853 AC#83 > 1853 0.960 (0.012) 0.933 (0.030) 0.970 (0.018) 
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Figure C2. Smoothed 24-hour median activity counts per minute for each age group:  <60-year old 

(green), 60- to 67-year old (red), 68- to 74-year old (blue), ≥75-year old (orange). Plots show 

results obtained with one of five measures -- AC, MIMS, ENMO, MAD, and AI -- per plot.   
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