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Abstract 
Meta-analysis is pervasively used to combine multiple genome-wide association studies (GWAS) 
into a more powerful whole. To resolve causal variants, meta-analysis studies typically apply 
summary statistics-based fine-mapping methods as they are applied to single-cohort studies. 
However, it is unclear whether heterogeneous characteristics of each cohort (e.g., ancestry, 
sample size, phenotyping, genotyping, or imputation) affect fine-mapping calibration and recall. 
Here, we first demonstrate that meta-analysis fine-mapping is substantially miscalibrated in 
simulations when different genotyping arrays or imputation panels are included. To mitigate these 
issues, we propose a summary statistics-based QC method, SLALOM, that identifies suspicious 
loci for meta-analysis fine-mapping by detecting outliers in association statistics based on 
ancestry-matched local LD structure. Having validated SLALOM performance in simulations and 
the GWAS Catalog, we applied it to 14 disease endpoints from the Global Biobank Meta-analysis 
Initiative and found that 67% of loci showed suspicious patterns that call into question fine-
mapping accuracy. These predicted suspicious loci were significantly depleted for having likely 
causal variants, such as nonsynonymous variants, as a lead variant (2.7x; Fisher’s exact P = 7.3 
× 10–4). Compared to fine-mapping results in individual biobanks, we found limited evidence of 
fine-mapping improvement in the GBMI meta-analyses. Although a full solution requires complete 
synchronization across cohorts, our approach identifies likely spurious results in meta-analysis 
fine-mapping. We urge extreme caution when interpreting fine-mapping results from meta-
analysis. 
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Introduction 1 
Meta-analysis is pervasively used to combine multiple genome-wide association studies (GWAS) 2 
from different cohorts1. Previous GWAS meta-analyses have identified thousands of loci 3 
associated with complex diseases and traits, such as type 2 diabetes2,3, schizophrenia4,5, 4 
rheumatoid arthritis6,7, body mass index8, and lipid levels9. These meta-analyses are typically 5 
conducted in large-scale consortia (e.g., the Psychiatric Genomics Consortium [PGC], the Global 6 
Lipids Genetics Consortium [GLGC], and the Genetic Investigation of Anthropometric Traits 7 
[GIANT] consortium) to increase sample size while harmonizing analysis plans across 8 
participating cohorts in every possible aspect (e.g., phenotype definition, quality-control [QC] 9 
criteria, statistical model, and analytical software) by sharing summary statistics as opposed to 10 
individual-level data, thereby avoiding data protection issues and variable legal frameworks 11 
governing individual genome and medical data around the world. The Global Biobank Meta-12 
analysis Initiative (GBMI)10 is one such large-scale, international effort, which aims to establish a 13 
collaborative network spanning 23 biobanks from four continents (total n = 2.2 million) for 14 
coordinated GWAS meta-analyses, while addressing the many benefits and challenges in meta-15 
analysis and subsequent downstream analyses. 16 
 17 
One such challenging downstream analysis is statistical fine-mapping11–13. Despite the great 18 
success of past GWAS meta-analyses in locus discovery, individual causal variants in associated 19 
loci are largely unresolved. Identifying causal variants from GWAS associations (i.e., fine-20 
mapping) is challenging due to extensive linkage disequilibrium (LD, the correlation among 21 
genetic variants), the presence of multiple causal variants, and limited sample sizes, but is rapidly 22 
becoming achievable with high confidence in individual cohorts14–17 owing to the recent 23 
development of large-scale biobanks18–20 and scalable fine-mapping methods21–23 that enable 24 
well-powered, accurate fine-mapping using in-sample LD from large-scale individual-level data. 25 
 26 
After conducting GWAS meta-analysis, previous studies2,7,9,24–30 have applied existing summary 27 
statistics-based fine-mapping methods (e.g., approximate Bayes factor [ABF]31,32, CAVIAR33, 28 
PAINTOR34,35, FINEMAP21,22, and SuSiE23) just as they are applied to single-cohort studies, 29 
without considering or accounting for the unavoidable heterogeneity among cohorts (e.g. 30 
differences in sample size, phenotyping, genotyping, or imputation). Such heterogeneity could 31 
lead to false positives and miscalibration in meta-analysis fine-mapping (Fig. 1). For example, 32 
case-control studies enriched with more severe cases or ascertained with different phenotyping 33 
criteria may disproportionately contribute to genetic discovery, even when true causal effects for 34 
genetic liability are exactly the same between these studies and less severe or unascertained 35 
ones. Quantitative traits like biomarkers could have phenotypic heterogeneity arising from 36 
different measurement protocols and errors across studies. There might be genuine biological 37 
mechanisms too, such as gene–gene (GxG) and gene–environment (GxE) interactions and 38 
(population-specific) dominance variation (e.g., rs671 and alcohol dependence36), that introduce 39 
additional heterogeneity across studies37,38. In addition to phenotyping, differences in genotyping 40 
and imputation could dramatically undermine fine-mapping calibration and recall at single-variant 41 
resolution, because differential patterns of missingness and imputation quality across constituent 42 
cohorts of different sample sizes can disproportionately diminish association statistics of 43 
potentially causal variants. Finally, although more easily harmonized than phenotyping and 44 
genotyping data, subtle differences in QC criteria and analytical software may further exacerbate 45 
the effect of heterogeneity on fine-mapping. 46 
 47 
An illustrative example of such issues can be observed in the TYK2 locus (19p13.2) in the recent 48 
meta-analysis from the COVID-19 Host Genetics Initiative (COVID-19 HGI; Fig. S1)39. This locus 49 
is known for protective associations against autoimmune diseases6,24, while a complete TYK2 50 
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loss of function results in a primary immunodeficiency40. Despite strong LD (r2 = 0.82) with a lead 51 
variant in the locus (rs74956615; P = 9.7 × 10–12), a known functional missense variant 52 
rs34536443 (p.Pro1104Ala) that reduces TYK2 function41,42 did not achieve genome-wide 53 
significance and was assigned a very low PIP in fine-mapping (P = 7.5 × 10–7; PIP = 9.5 × 10–4), 54 
primarily due to its missingness in two more cohorts than rs74956615. This serves as just one 55 
example of the major difficulties with meta-analysis fine-mapping at single-variant resolution. 56 
Indeed, the COVID-19 HGI cautiously avoided an in-silico fine-mapping in the flagship to prevent 57 
spurious results39. 58 
 59 
Only a few studies have carefully addressed these concerns in their downstream analyses. The 60 
Schizophrenia Working Group of PGC, for example, recently updated their largest meta-analysis 61 
of schizophrenia5 (69,369 cases and 236,642 controls), followed by a downstream fine-mapping 62 
analysis using FINEMAP21. Unlike many other GWAS consortia, since PGC has access to 63 
individual-level genotypes for a majority of samples, they were able to apply standardized sample 64 
and variant QC criteria and impute variants using the same reference panel, all uniformly 65 
processed using the RICOPILI pipeline43. This harmonized procedure was crucial for properly 66 
controlling inter-cohort heterogeneity and thus allowing more robust meta-analysis fine-mapping 67 
at single-variant resolution. Furthermore, PGC’s direct access to individual-level data enabled 68 
them to compute in-sample LD matrices for multiple causal variant fine-mapping, which prevents 69 
the significant miscalibration that results from using an external LD reference14–16. A 2017 fine-70 
mapping study of inflammatory bowel disease also benefited from access to individual-level 71 
genotypes and careful pre- and post-fine-mapping QC44. For a typical meta-analysis consortium, 72 
however, many of these steps are infeasible as full genotype data from all cohorts is not available. 73 
For such studies, a new approach to meta-analysis fine-mapping in the presence of the many 74 
types of heterogeneity is needed. Until such a method is developed, QC of meta-analysis fine-75 
mapping results deserves increased attention. 76 
 77 
While existing variant-level QC procedures are effective for limiting spurious associations in 78 
GWAS (Supplementary Box)45, they do not suffice for ensuring high-quality fine-mapping results. 79 
In some cases, they even hurt fine-mapping quality, because they can i) cause or exacerbate 80 
differential patterns of missing variants across cohorts, and ii) remove true causal variants as well 81 
as suspicious variants. Thus, additional QC procedures that retain consistent variants across 82 
cohorts for consideration but limit poor-quality fine-mapping results are needed. A recently 83 
proposed method called DENTIST46, for example, performs summary statistics QC to improve 84 
GWAS downstream analyses, such as conditional and joint analysis (GCTA-COJO47), by 85 
removing variants based on estimated heterogeneity between summary statistics and reference 86 
LD. Although DENTIST was also applied prior to fine-mapping (FINEMAP21), simulations only 87 
demonstrated that it could improve power for detecting the correct number of causal variants in a 88 
locus, not true causal variants. This motivated us to develop a new fine-mapping QC method for 89 
better calibration and recall at single-variant resolution and to demonstrate its performance in 90 
large-scale meta-analysis. 91 
 92 
Here, we first demonstrate the effect of inter-cohort heterogeneity in meta-analysis fine-mapping 93 
via realistic simulations with multiple heterogeneous cohorts, each with different combinations of 94 
genotyping platforms, imputation reference panels, and genetic ancestries. We propose a 95 
summary statistics-based QC method, SLALOM (suspicious loci analysis of meta-analysis 96 
summary statistics), that identifies suspicious loci for meta-analysis fine-mapping by detecting 97 
association statistics outliers based on local LD structure, building on the DENTIST method. 98 
Applying SLALOM to 14 disease endpoints from the Global Biobank Meta-analysis Initiative10 as 99 
well as 467 meta-analysis summary statistics from the GWAS Catalog48, we demonstrate that 100 
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suspicious loci for fine-mapping are widespread in meta-analysis and urge extreme caution when 101 
interpreting fine-mapping results from meta-analysis. 102 
 103 

 104 
Fig. 1 | Schematic overview of meta-analysis fine-mapping. 105 

Results 106 

Large-scale simulations demonstrate miscalibration in meta-analysis fine-mapping 107 
Existing fine-mapping methods21,23,31 assume that all association statistics are derived from a 108 
single-cohort study, and thus do not model the per-variant heterogeneity in effect sizes and 109 
sample sizes that arise when meta-analyzing multiple cohorts (Figure 1). To evaluate how 110 
different characteristics of constituent cohorts in a meta-analysis affect fine-mapping calibration 111 
and recall, we conducted a series of large-scale GWAS meta-analysis and fine-mapping 112 
simulations (Table S1–4; Methods). Briefly, we simulated multiple GWAS cohorts of different 113 
ancestries (10 European ancestry, one African ancestry and one East Asian ancestry cohorts; n 114 
= 10,000 each) that were genotyped and imputed using different genotyping arrays (Illumina 115 
Omni2.5, Multi-Ethnic Global Array [MEGA], and Global Screening Array [GSA]) and imputation 116 
reference panels (the 1000 Genomes Project Phase 3 [1000GP3]49, the Haplotype Reference 117 
Consortium [HRC]50, and the TOPMed51). For each combination of cohort, genotyping array, and 118 
imputation panel, we conducted 300 GWAS with randomly simulated causal variants that 119 
resemble the genetic architecture of a typical complex trait, including minor allele frequency (MAF) 120 
dependent causal effect sizes52, total SNP heritability53, functional consequences of causal 121 
variants17, and levels of genetic correlation across cohorts (i.e., true effect size heterogeneity; rg 122 
= 1, 0.9, and 0.5; see Methods). We then meta-analyzed the single-cohort GWAS results across 123 
10 independent cohorts based on multiple configurations (different combinations of genotyping 124 
arrays and imputation panels for each cohort) to resemble realistic meta-analysis of multiple 125 
heterogeneous cohorts (Table S4). We applied ABF fine-mapping to compute a posterior 126 
inclusion probability (PIP) for each variant and to derive 95% and 99% credible sets (CS) that 127 
contain the smallest set of variants covering 95% and 99% of probability of causality. We 128 
evaluated the false discovery rate (FDR, defined as the proportion of variants with PIP > 0.9 that 129 
are non-causal) and compared against the expected proportion of non-causal variants if the meta-130 
analysis fine-mapping method were calibrated, based on PIP. More details of our simulation 131 
pipeline are described in Methods and visually summarized in Fig. S2. 132 

GWAS cohorts Fine-mappingMeta-analysis
Cohort 1

Cohort 2

Cohort N

...

For each locus

Across constituent cohorts, inter-cohort 
heterogeneity could arise from:

• Genuine biological mechanisms
• Population-specific variants
• GxG and GxE interactions

• Phenotyping
• Different diagnosis criteria
• Different proportion of subtypes
• Different measurement protocols

• Genotyping and imputation
• Different genotyping array
• Different imputation reference panel
• Different imputation quality

• Quality control (QC)
• Different thresholds for MAF,
 imputation quality, etc.

• GWAS
• Different statistical model and
 software

Effect models:
• Fixed-effect
• Random-effect

Ancestries:
• Single-ancestry
• Multi-ancestry

Summary statistics-
based methods include:

• ABF
• CAVIAR
• PAINTOR
• FINEMAP
• SuSiE

Typically, both pre- and 
post-meta-analysis QC 
are applied to summary 
statistics
(Supplementary Box).

Standard outputs:
• Posterior inclusion
 probability (PIP)
• 95% credible sets

Additional post-fine-map-
ping QC is sometimes 
adopted.
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 133 
We found that FDR varied widely over the different configurations, reaching as high as 37% for 134 
the most heterogeneous configurations (Fig. 2). We characterized the contributing factors to the 135 
miscalibration. We first found that lower true effect size correlation rg (i.e., larger phenotypic 136 
heterogeneity) always caused higher miscalibration and lower recall. Second, when using the 137 
same imputation panel (1000GP3), use of less dense arrays (MEGA or GSA) led to moderately 138 
inflated FDR (up to FDR = 11% vs. expected 1%), while use of multiple genotyping array did not 139 
cause further FDR inflation (Fig. 2a). Third, when using the same genotyping array (Omni2.5), 140 
use of imputation panels (HRC or TOPMed) that does not match our simulation reference 141 
significantly affects miscalibration (up to FDR = 17% vs. expected 1%), and using multiple 142 
imputation panels further increased miscalibration (up to FDR = 35% vs. expected 2%, Fig. 2c); 143 
this setup is as bad as the most heterogeneous configuration using multiple genotyping arrays 144 
and imputation panels (FDR = 37%). When TOPMed-imputed variants were lifted over from 145 
GRCh38 to GRCh37, we observed FDR increases of up to 10%, likely due to genomic build 146 
conversion failures (Supplementary Note)54. Fourth, recall was not significantly affected by 147 
heterogeneous genotyping arrays or imputation panels (Fig. 2b,d). Fifth, including multiple 148 
genetic ancestries did not affect calibration when using the same genotyping array and imputation 149 
panel (Omni 2.5 and 1000GP3; Fig. 2e) but significantly improved recall if African ancestry was 150 
included (Fig. 2f). This is expected, given the shorter LD length in the African population 151 
compared to other populations, which improves fine-mapping resolution55. Finally, in the most 152 
heterogeneous configurations where multiple genotyping arrays and imputation panels existed, 153 
we observed a FDR of up to 37% and 28% for European and multi-ancestry meta-analyses, 154 
respectively (vs. expected 2% for both), demonstrating that inter-cohort heterogeneity can 155 
substantially undermine meta-analysis fine-mapping (Fig. 2g,h). 156 
 157 
To further characterize observed miscalibration in meta-analysis fine-mapping, we investigated 158 
the availability of GWAS variants in each combination of ancestry, genotyping array, and 159 
imputation panel. Out of 3,285,617 variants on chromosome 3 that passed variant QC in at least 160 
one combination (per-combination MAF > 0.001 and Rsq > 0.6; Methods), 574,261 variants 161 
(17%) showed population-level gnomAD MAF > 0.001 in every ancestry that we simulated 162 
(African, East Asian, and European). Because we used a variety of imputation panels, we 163 
retrieved population-level MAF from gnomAD. Of these 574,261 variants, 389,219 variants (68%) 164 
were available in every combination (Fig. S3a). This fraction increased from 68% to 73%, 74%, 165 
and 76% as we increased gnomAD MAF thresholds to > 0.005, 0.01, and 0.05, respectively, but 166 
never reached 100% (Fig. S4). Notably, we observed a substantial number of variants that are 167 
unique to a certain genotyping array and an imputation panel, even when we restricted to 344,497 168 
common variants (gnomAD MAF > 0.05) in every ancestry (Fig. S3b). For example, there are 169 
34,317 variants (10%) that were imputed in the 1000GP3 and TOPMed reference but not in the 170 
HRC. Likewise, we observed 33,106 variants (10%) that were specific to the 1000GP3 reference 171 
and even 3,066 variants (1%) that were imputed in every combination except for East Asian 172 
ancestry with the GSA array and the TOPMed reference. When using different combinations of 173 
gnomAD MAF thresholds (> 0.001, 0.005, 0.01, or 0.05 in every ancestry) and Rsq thresholds (> 174 
0.2, 0.4, 0.6, or 0.8), we observed the largest fraction of shared variants (78%) was achieved with 175 
gnomAD MAF > 0.01 and Rsq > 0.2 while the largest number of the shared variants (427,494 176 
variants) was achieved with gnomAD MAF > 0.001 and Rsq > 0.2, leaving it unclear which 177 
thresholds would be preferable in the context of fine-mapping (Fig. S4). 178 
 179 
The remaining 2,711,356 QC-passing variants in our simulations (gnomAD MAF !"0.001 in at 180 
least one ancestry) further exacerbate variable coverage of the available variants (Fig. S3c). Of 181 
these, the largest proportion of variants (39%) were only available in African ancestry, followed 182 
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by African and European (but not in East Asian) available variants (7%), European-specific 183 
variants (6%), and East Asian-specific variants (5%). Furthermore, similar to the aforementioned 184 
common variants, we found a substantial number of variants that are unique to a certain 185 
combination. Altogether, we observed that only 393,471 variants (12%) out of all the QC-passing 186 
3,285,617 variants were available in every combination (Fig. S3d). These observations 187 
recapitulate that different combinations of genetic ancestry, genotyping array, imputation panels, 188 
and QC thresholds substantially affect the availability of common, well-imputed variants for 189 
association testing56. 190 
 191 
Thus, the different combinations of genotyping and imputation cause each cohort in a meta-192 
analysis to have a different set of variants, and consequently variants can have very different 193 
overall sample sizes. In our simulations with the most heterogeneous configurations, we found 194 
that 66% of the false positive loci (where a non-causal [false positive] variant was assigned PIP 195 
> 0.9) had different sample sizes for true causal and false positive variants (median 196 
maximum/minimum sample size ratio = 1.4; Fig. S5). Analytically, we found that at common meta-197 
analysis sample sizes and genome-wide significant effect size regimes, when two variants have 198 
similar marginal effects, the one with the larger sample size will usually achieve a higher ABF PIP 199 
(Supplementary Note; Fig. S6–8). This elucidates the mechanism by which sample size 200 
imbalance can lead to miscalibration. 201 
 202 
 203 

 204 
Fig. 2 | Evaluation of false discovery rate (FDR) and recall in meta-analysis fine-mapping simulations. We 205 
evaluated FDR and recall in meta-analysis fine-mapping using different genotyping arrays (a,b), imputation reference 206 
panels (c,d), genetic ancestries (e, f), and more heterogeneous settings by combining these (g, h). As shown in top-207 
right gray labels, the EUR ancestry, the Omni2.5 genotyping array and/or the 1000GP3 reference panel were used 208 
unless otherwise stated. FDR is defined as the proportion of non-causal variants with PIP > 0.9. Horizontal gray lines 209 
represent 1 – mean PIP, i.e. expected FDR were the method calibrated. Recall is defined as the proportion of true 210 
causal variants in the top 1% PIP bin. Shapes correspond to the true effect size correlation rg across cohorts which 211 
represent a phenotypic heterogeneity parameter (the lower rg, the higher phenotypic heterogeneity).  212 
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Overview of the SLALOM method 213 
To address the challenges in meta-analysis fine-mapping discussed above, we developed 214 
SLALOM (suspicious loci analysis of meta-analysis summary statistics), a method that flags 215 
suspicious loci for meta-analysis fine-mapping by detecting outliers in association statistics based 216 
on deviations from expectation, estimated with local LD structure (Methods). SLALOM consists 217 
of three steps, 1) defining loci and lead variants based on a 1 Mb window, 2) detecting outlier 218 
variants in each locus using meta-analysis summary statistics and an external LD reference 219 
panel, and 3) identifying suspicious loci for meta-analysis fine-mapping (Fig. 3a,b). 220 
 221 
To detect outlier variants, we first assume a single causal variant per associated locus. Then the 222 
marginal z-score 𝑧! for a variant 𝑖 should be approximately equal to 𝑟!,# ⋅ 𝑧# where 𝑧# is the z-score 223 
of the causal variant 𝑐, and 𝑟!,# is a correlation between variants 𝑖 and 𝑐. For each variant in meta-224 
analysis summary statistics, we first test this relationship using a simplified version of the 225 
DENTIST statistics46, DENTIST-S, based on the assumption of a single causal variant. The 226 
DENTIST-S statistics for a given variant 𝑖 is written as 227 
 228 

𝑇! =
$%!&'!,#⋅%#)

$

*&'!,#
$  (1) 229 

 230 
which approximately follows a 𝜒+ distribution with 1 degree of freedom46. Since the true causal 231 
variant and LD structure are unknown in real data, we approximate the causal variant as the lead 232 
PIP variant in the locus (the variant with the highest PIP) and use a large-scale external LD 233 
reference from gnomAD57, either an ancestry-matched LD for a single-ancestry meta-analysis or 234 
a sample-size-weighted LD by ancestries for a multi-ancestry meta-analysis (Methods). We note 235 
that the existence of multiple independent causal variants in a locus would not affect SLALOM 236 
precision but would decrease recall (see Discussion). 237 
 238 
SLALOM then evaluates whether each locus is “suspicious”—that is, has a pattern of meta-239 
analysis statistics and LD that appear inconsistent and therefore call into question the fine-240 
mapping accuracy. By training on loci with maximum PIP > 0.9 in the simulations, we determined 241 
that the best-performing criterion for classifying loci as true or false positives is whether a locus 242 
has a variant with r2 > 0.6 to the lead and DENTIST-S P-value < 1.0 × 10–4 (Methods). Using this 243 
criterion we achieved an area under the receiver operating characteristic curve (AUROC) of 0.74, 244 
0.76, and 0.80 for identifying whether a true causal variant is a lead PIP variant, in 95% credible 245 
set (CS), and in 99% CS, respectively (Fig. 3c). Using different thresholds, we observed that the 246 
SLALOM performance is not very sensitive to thresholds near the threshold we chose (Fig. S9). 247 
We further validated the performance of SLALOM using all the loci in the simulations and 248 
observed significantly higher miscalibration in predicted suspicious loci than in non-suspicious 249 
loci (up to 16% difference in FDR at PIP > 0.9; Fig. 3d). We found that SLALOM-predicted 250 
“suspicious” loci tend to be from more heterogeneous configurations and the SLALOM sensitivity 251 
and specificity depends on the level of heterogeneity (Table S5). Given the relatively lower 252 
miscalibration and specificity at low PIP thresholds (Fig. 3d,e), in subsequent real data analysis 253 
we restricted the application of SLALOM to loci with maximum PIP > 0.1 (Methods). 254 
 255 
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 256 
Fig. 3 | Overview of the SLALOM method. a,b. An illustrative example of the SLALOM application. a. In an example 257 
locus, two independent association signals are depicted: i) the most significant signal that contains a lead variant (purple 258 
diamond) and five additional variants that are in strong LD (r2 > 0.9) with the lead variant, and ii) an additional 259 
independent signal (r2 < 0.05). There is one outlier variant (orange diamond) in the first signal that deviates from the 260 
expected association based on LD. b. Step-by-step procedure of the SLALOM method. For outlier variant detection in 261 
a locus, a diagnosis plot of r2 values to the lead variant vs. marginal χ2 is shown to aid interpretation. Background color 262 
represents a theoretical distribution of –log10 PDENTIST-S values when a lead variant has a marginal χ2 of 50, assuming 263 
no allele flipping. Points represent the variants depicted in the example locus (a), where the lead variant (purple 264 
diamond) and the outlier variant (white diamond) were highlighted. Diagonal line represents an expected marginal 265 
association. Horizontal dotted lines represent the genome-wide significance threshold (P < 5.0 × 10–8). c. The ROC 266 
curve of SLALOM prediction for identifying suspicious loci in the simulations. Positive conditions were defined as 267 
whether a true causal variant in a locus is 1) a lead PIP variant, 2) in 95% CS, and 3) in 99% CS. AUROC values were 268 
shown in the labels. Black points represent the performance of our adopted metric, i.e., whether a locus contains at 269 
least one outlier variant (PDENTIST-S < 1.0 × 10–4 and r2 > 0.6). d. Calibration plot in the simulations under different PIP 270 
thresholds. Calibration was measured as the mean PIP –  fraction of true causal variants among variants above the 271 
threshold. Shadows around the lines represent 95% confidence intervals. e. The fraction of variants in predicted 272 
suspicious and non-suspicious loci under different PIP thresholds. Gray shadows in the panels d,e!"#$"#%#&'!(!)*)!+!273 
,-.!"#/01&!(%!2#!#34567#7!5140!20'8!9(30969!)*)!+!,-.!0&!'8#!(4'6(5!:;<;=>!(&(5?%0%!@(%#7!1&!'8#%#!$(&#5%- 274 
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Widespread suspicious loci for fine-mapping in existing meta-analysis summary 276 
statistics 277 
Having assessed the performance of SLALOM in simulations, we applied SLALOM to 467 meta-278 
analysis summary statistics in the GWAS Catalog48 that are publicly available with a sufficient 279 
discovery sample size (N > 10,000; Table S6; Methods) to quantify the prevalence of suspicious 280 
loci in existing studies. These summary statistics were mostly European ancestry-only meta-281 
analysis (63%), followed by multi-ancestry (31%), East Asian ancestry-only (3%), and African 282 
ancestry-only (2%) meta-analyses. Across 467 summary statistics from 96 publications, we 283 
identified 28,925 loci with maximum PIP > 0.1 (out of 35,864 genome-wide significant loci defined 284 
based on 1 Mb window around lead variants; Methods) for SLALOM analysis, of which 8,137 loci 285 
(28%) were predicted suspicious (Table S7). 286 
 287 
To validate SLALOM performance in real data, we restricted our analysis to 6,065 loci that have 288 
maximum PIP > 0.1 and that contain nonsynonymous coding variants (predicted loss-of-function 289 
[pLoF] and missense) in LD with the lead variant (r2 > 0.6). Given prior evidence16,17,44 that such 290 
nonsynonymous variants are highly enriched for being causal, we tested the validity of our method 291 
by whether they achieve the highest PIP in the locus (i.e., successful fine-mapping) in suspicious 292 
vs. non-suspicious loci (Methods). While 40% (1,557 / 3,860) of non-suspicious loci successfully 293 
fine-mapped nonsynonymous variants, only 17% (384 / 2,205) of suspicious loci did, 294 
demonstrating a significant depletion (2.3x) of successfully fine-mapped nonsynonymous variants 295 
in suspicious loci (Fisher’s exact P = 3.6 × 10–79; Fig. 4a). We also tested whether 296 
nonsynonymous variants belonged to 95% and 99% CS and again observed significant depletion 297 
(1.4x and 1.3x, respectively; Fisher’s exact P < 4.6 × 10–100). In addition, when we used a more 298 
stringent r2 threshold (> 0.8) for selecting loci that contain nonsynonymous variants, we also 299 
confirmed significant enrichment (Fisher’s exact P < 6.1 × 10–65; Fig. S10). To quantify potential 300 
fine-mapping miscalibration in the GWAS Catalog, we investigated the difference between mean 301 
PIP for lead variants and fraction of lead variants that are nonsynonymous; assuming that 302 
nonsynonymous variants in these loci are truly causal, this difference equals the difference 303 
between the true and reported fraction of lead PIP variants that are causal. We observed 304 
differences between 26–51% and 10–18% under different PIP thresholds in suspicious and non-305 
suspicious loci, respectively (Fig. 4b), marking 45% and 15% for high-PIP (> 0.9) variants. 306 
 307 
We further assessed SLALOM performance in the GWAS Catalog meta-analyses by leveraging 308 
high-PIP (> 0.9) complex trait and cis-eQTL variants that were rigorously fine-mapped16,17 in large-309 
scale biobanks (Biobank Japan [BBJ]58, FinnGen20, and UK Biobank [UKBB]19) and eQTL 310 
resources (GTEx59 v8 and eQTL Catalogue60). Among the 27,713 loci analyzed by SLALOM 311 
(maximum PIP > 0.1) that contain a lead variant that was included in biobank fine-mapping, 17% 312 
(3,266 / 19,692) of the non-suspicious loci successfully fine-mapped one of the high-PIP GWAS 313 
variants in biobank fine-mapping, whereas 7% (589 / 8,021) of suspicious loci did, showing a 314 
significant depletion (2.3x) of the high-PIP complex trait variants in suspicious loci (Fisher’s exact 315 
P = 4.6 × 10–100; Fig. 4c). Similarly, among 26,901 loci analyzed by SLALOM that contain a lead 316 
variant that was included in cis-eQTL fine-mapping, we found a significant depletion (1.9x) of the 317 
high-PIP cis-eQTL variants in suspicious loci, where 7% (1,247 / 18,976) of non-suspicious loci 318 
vs. 4% (281 / 7,925) of suspicious loci successfully fine-mapped one of the high-PIP cis-eQTL 319 
variants (Fisher’s exact P = 2.6 × 10–24; Fig. 4d). We observed the same significant depletions of 320 
the high-PIP complex trait and cis-eQTL variants in suspicious loci that belonged to 95% and 99% 321 
CS set (Fig. 4c,d). 322 
 323 
 324 
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 325 
Fig. 4 | Evaluation of SLALOM performance in the GWAS Catalog summary statistics. a,c,d. Depletion of likely 326 
causal variants in predicted suspicious loci. We evaluated whether (a) nonsynonymous coding variants (pLoF and 327 
missense), (c) high-PIP (> 0.9) complex trait variants in biobank fine-mapping, and (d) high-PIP (> 0.9) cis-eQTL 328 
variants in GTEx v8 and eQTL Catalogue were lead PIP variants, in 95% CS, or in 99% CS in suspicious vs. non-329 
suspicious loci. Depletion was calculated by relative risk (i.e. a ratio of proportions; Methods). Error bars, invisible due 330 
to their small size, correspond to 95% confidence intervals using bootstrapping. Significance represents a Fisher’s 331 
exact test P-value (*, P < 0.05; **, < 0.01; ***, < 0.001; ****, < 10–4). b. Plot of the estimated difference between true 332 
and reported proportion of causal variants in the loci tagging nonsynonymous variants (r2 > 0.6 with the lead variants) 333 
in the GWAS Catalog under different PIP thresholds. Analogous to Fig. 3b, assuming nonsynonymous variants in these 334 
loci are truly causal, the mean PIP for lead variants minus the fraction of lead variants that are nonsynonymous above 335 
the threshold is equal to the difference between true and reported proportion of causal variants. 336 
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Suspicious loci for fine-mapping in the GBMI summary statistics 338 
Next, we applied SLALOM to meta-analysis summary statistics of 14 disease endpoints from the 339 
GBMI10. These summary statistics were generated from a meta-analysis of up to 1.8 million 340 
individuals in total across 18 biobanks for discovery, representing six different genetic ancestry 341 
groups of approximately 33,000 African, 18,000 Admixed American, 31,000 Central and South 342 
Asian, 341,000 East Asian, 1.4 million European, and 1,600 Middle Eastern individuals (Table 343 
S8). Among 489 genome-wide significant loci across the 14 traits (excluding the major 344 
histocompatibility complex [MHC] region, Methods), we found that 82 loci (17%) showed 345 
maximum PIP < 0.1, thus not being further considered by SLALOM. Of the remaining 407 loci 346 
with maximum PIP > 0.1, SLALOM identified that 272 loci (67%) were suspicious loci for fine-347 
mapping (Fig. 5a; Table S9). The fraction of suspicious loci and their maximum PIP varied by 348 
trait, reflecting different levels of statistical power (e.g., sample sizes, heritability, and local LD 349 
structure) as well as inter-cohort heterogeneity (Fig. 5b–o). 350 
 351 
While the fraction of suspicious loci (67%) in the GBMI meta-analyses is higher than in the GWAS 352 
Catalog (28%), there might be multiple reasons for this discrepancy, including association 353 
significance, sample size, ancestral diversity, and study-specific QC criteria. For example, the 354 
GBMI summary statistics were generated from multi-ancestry, large-scale meta-analyses of 355 
median sample size of 1.4 million individuals across six ancestries, while 63% of the 467 summary 356 
statistics from the GWAS Catalog were only in European-ancestry studies and 83% had less than 357 
0.5 million discovery samples. Nonetheless, predicted suspicious loci for fine-mapping were 358 
prevalent in both the GWAS Catalog and the GBMI. 359 
 360 

 361 
Fig. 5 | SLALOM prediction results in the GBMI summary statistics. For (a) all 14 traits and (b–o) individual traits, 362 
a number of predicted suspicious (SL), non-suspicious (NSL), and non-applicable (NA; maximum PIP < 0.1) loci were 363 
summarized. Individual traits are ordered by the total number of loci. Color represents the maximum PIP in a locus. 364 
Label represents the fraction of loci in each prediction category. AAA, abdominal aortic aneurysm. AcApp, acute 365 
appendicitis. COPD, chronic obstructive pulmonary disease. HCM, hypertrophic cardiomyopathy. HF, heart failure. IPF, 366 
idiopathic pulmonary fibrosis. POAG, primary open angle glaucoma. ThC, thyroid cancer. UtC, uterine cancer. VTE, 367 
venous thromboembolism. 368 
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Using nonsynonymous (pLoF and missense) and high-PIP (> 0.9) complex trait and cis-eQTL 370 
variants, we recapitulated a significant depletion of these likely causal variants in predicted 371 
suspicious loci (2.7x, 5.2x, and 5.1x for nonsynonymous, high-PIP complex trait, and high-PIP 372 
cis-eQTL variants being a lead PIP variant, respectively; Fisher’s exact P < 7.3 × 10–4), confirming 373 
our observation in the GWAS Catalog analysis (Fig. 6a–c). 374 
 375 
In 15/23 non-suspicious loci harboring a nonsynonymous variant, the nonsynonymous variant 376 
had the highest PIP. These included known missense variants such as rs116483731 (p.Arg20Gln) 377 
in SPDL1 for idiopathic pulmonary fibrosis (IPF)61,62 and rs28929474 (p.Glu366Lys) in SERPINA1 378 
for chronic obstructive pulmonary disease (COPD)63,64. In addition, we observed successful fine-379 
mapping in 2 novel loci for asthma, i) rs41286560 (p.Pro558Thr) in RTL1, a missense variant 380 
known for decreasing height65,66 and ii) rs34187696 (p.Gly337Val) in ZSCAN5A, a known 381 
missense variant for increasing monocyte count30.  382 
 383 
To characterize fine-mapping failures in suspicious loci, we examined suspicious loci in which a 384 
nonsynonymous variant did not achieve the highest PIP. For example, the FCGR2A/FCGR3A 385 
(1q23.3) locus for COPD contained a genome-wide significant lead intergenic variant rs2099684 386 
(P = 1.7 × 10–11) which is in LD (r2 = 0.92) with a missense variant rs396991 (p.Phe176Val) of 387 
FCGR3A (Fig. 6d). This locus was not previously reported for COPD, but is known for 388 
associations with autoimmune diseases (e.g., inflammatory bowel disease44, rheumatoid 389 
arthritis7, and systemic lupus erythematosus67) and encodes the low-affinity human FC-gamma 390 
receptors that bind to the Fc region of IgG and activate immune responses68. Notably, this locus 391 
contains copy number variations that contribute to the disease associations in addition to single-392 
nucleotide variants, which makes genotyping challenging68,69. Despite strong LD with the lead 393 
variant, rs396991 did not achieve genome-wide significance (P = 9.1 × 10–3), showing a significant 394 
deviation from the expected association (PDENTIST-S = 5.3 × 10–41; Fig. 6e). This is primarily due to 395 
missingness of rs396991 in 8 biobanks out of 17 (Neff = 76,790 and 36,781 for rs2099684 and 396 
rs396991, respectively; Fig. 6f), which is caused by its absence from major imputation reference 397 
panels (e.g., 1000GP49, HRC50, and UK10K70) despite having a high MAF in every population 398 
(MAF = 0.24–0.34 in African, admixed American, East Asian, European, and South Asian 399 
populations of gnomAD57). 400 
 401 
Sample size imbalance across variants was pervasive in the GBMI meta-analyses71, and was 402 
especially enriched in predicted suspicious loci—84% of suspicious loci vs. 24% of non-403 
suspicious loci showed a maximum/minimum effective sample size ratio > 2 among variants in 404 
LD (r2 > 0.6) with lead variants (a median ratio = 4.2 and 1.2 in suspicious and non-suspicious 405 
loci, respectively; Fig. S11). These observations are consistent with our simulations, 406 
recapitulating that sample size imbalance results in miscalibration for meta-analysis fine-mapping. 407 
Notably, we observed a similar issue in other GBMI downstream analyses (e.g., polygenic risk 408 
score [PRS]71 and drug discovery72), where predictive performance improved significantly after 409 
filtering out variants with maximum Neff < 50%. Although fine-mapping methods cannot simply 410 
take this approach because it inevitably reduces calibration and recall by removing true causal 411 
variants, other meta-analysis downstream analyses that primarily rely on polygenic signals rather 412 
than individual variants should consider this filtering as an extra QC step. 413 
 414 
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 415 
Fig. 6 | Evaluation of SLALOM performance in the GBMI summary statistics. a–c. Similar to Fig. 4, we evaluated 416 
whether (a) nonsynonymous coding variants (pLoF and missense), (b) high-PIP (> 0.9) complex trait variants in biobank 417 
fine-mapping, and (c) high-PIP (> 0.9) cis-eQTL variants in GTEx v8 and eQTL Catalogue were lead PIP variants, in 418 
95% CS, or in 99% CS in suspicious vs. non-suspicious loci. Depletion was calculated by relative risk (i.e. a ratio of 419 
proportions; Methods). Error bars correspond to 95% confidence intervals using bootstrapping. Significance represents 420 
a Fisher’s exact test P-value (*, P < 0.05; **, < 0.01; ***, < 0.001; ****, < 10–4). d. Locuszoom plot of the 1q23.3 locus 421 
for COPD. The top panel shows a Manhattan plot, where the lead variant rs2099684 (purple diamond) and a missense 422 
variant rs396991 (orange diamond) are highlighted. Color represents r2 values to the lead variant. Horizontal line 423 
represents a genome-wide significance threshold (P = 5.0 × 10–8). The middle panel shows PIP from ABF fine-mapping. 424 
Color represents whether variants belong to a 95% CS. The bottom panel shows r2 values with the lead variant in 425 
gnomAD populations. e. A diagnosis plot showing r2 values to the lead variant vs. marginal χ2. Color represents –log10 426 
PDENTIST-S values. Outlier variants with PDENTIST-S < 10–4 are depicted in red with a diamond shape. Diagonal line 427 
represents an expected marginal association. Horizontal line represents a genome-wide significance threshold. f. Z-428 
scores of the lead variant (rs2099684) vs. the missense variant (rs396991) in the constituent cohorts of the meta-429 
analysis. Open and closed circles represent whether both variants exist in a cohort or rs396991 is missing. Circle size 430 
corresponds to an effective sample size. Color represents genetic ancestry. 431 
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Comparison of fine-mapping results between the GBMI meta-analyses and individual 432 
biobanks 433 
Motivated by successful validation of SLALOM performance, we investigated whether fine-434 
mapping confidence and resolution were improved in the GBMI meta-analyses over individual 435 
biobanks. To this end, we used our fine-mapping results16,17 of nine disease endpoints (asthma64, 436 
COPD64, gout, heart failure73, IPF62, primary open angle glaucoma74, thyroid cancer, stroke75, and 437 
venous thromboembolism76) in BBJ58, FinnGen20, and UKBB19 Europeans that also contributed to 438 
the GBMI meta-analyses for the same traits. 439 
 440 
To perform an unbiased comparison of PIP between the GBMI meta-analysis and individual 441 
biobanks, we investigated functional enrichment of fine-mapped variants based on top PIP 442 
rankings in the GBMI and individual biobanks (top 0.5%, 0.1%, and 0.05% PIP variants in the 443 
GBMI vs. maximum PIP across BBJ, FinnGen, and UKBB; Methods). Previous studies have 444 
shown that high-PIP (> 0.9) complex trait variants are significantly enriched for well-known 445 
functional categories, such as coding (pLoF, missense, and synonymous), 5’/3’ UTR, promoter, 446 
and cis-regulatory element (CRE) regions (DNase I hypersensitive sites [DHS] and H3K27ac)16,17. 447 
Using these functional categories, we found no significant enrichment of variants in the top PIP 448 
rankings in the GBMI over individual biobanks (Fisher’s exact P > 0.05; Fig. 7a) except for variants 449 
in the promoter region (1.8x; Fisher’s exact P = 4.9 × 10–4 for the top 0.1% PIP variants). We 450 
observed similar trends regardless of whether variants were in suspicious or non-suspicious loci 451 
(Fig. 7b,c). To examine patterns of increased and decreased PIP for individual variants, we also 452 
calculated PIP difference between the GBMI and individual biobanks, defined as ΔPIP = PIP 453 
(GBMI) – maximum PIP across BBJ, FinnGen, and UKBB (Fig. S12,13). We investigated 454 
functional enrichment based on ΔPIP bins and observed inconsistent enrichment results using 455 
different ΔPIP thresholds (Fig. S14). Finally, to test whether fine-mapping resolution was 456 
improved in the GBMI over individual biobanks, we compared the size of 95% CS after restricting 457 
them to cases where a GBMI CS overlapped with an individual biobank CS from BBJ, FinnGen, 458 
or UKBB (Methods). We observed the median 95% CS size of 2 and 2 in non-suspicious loci for 459 
the GBMI and individual biobanks, respectively, and 5 and 14 in suspicious loci, respectively (Fig. 460 
S15). The smaller credible set size in suspicious loci in GBMI could be due to improved resolution 461 
or to increased miscalibration. These results provide limited evidence of overall fine-mapping 462 
improvement in the GBMI meta-analyses over what is achievable by taking the best result from 463 
individual biobanks. 464 
 465 
Individual examples, however, provide insights into the types of fine-mapping differences that can 466 
occur. To characterize the observed differences in fine-mapping confidence and resolution, we 467 
further examined non-suspicious loci with ΔPIP > 0.5 in asthma. In some cases, the increased 468 
power and/or ancestral diversity of GBMI led to improved fine-mapping: for example, an intergenic 469 
variant rs1888909 (~18 kb upstream of IL33) showed ΔPIP = 0.99 (PIP = 1.0 and 0.008 in GBMI 470 
and FinnGen, respectively; Fig. 7d), which was primarily owing to increased association 471 
significance in a meta-analysis (P = 3.0 × 10–86, 7.4 × 10–2, 3.6 × 10–16, and 1.9 × 10–53 in GBMI, 472 
BBJ, FinnGen, and UKBB Europeans, respectively) as well as a shorter LD length in the African 473 
population than in the European population (LD length = 4 kb vs. 41 kb for variants with r2 > 0.6 474 
with rs1888909 in the African and European populations, respectively; Neff = 4,270 for Africans in 475 
the GBMI asthma meta-analysis; Fig. S16). This variant was also fine-mapped for eosinophil 476 
count in UKBB Europeans (PIP = 1.0; P = 1.3 × 10–314)16 and was previously reported to regulate 477 
IL33 gene expression in human airway epithelial cells via allele-specific transcription factor 478 
binding of OCT-1 (POU2F1)77. Likewise, we observed a missense variant rs16903574 479 
(p.Phe319Leu) in OTULINL showed ΔPIP = 0.79 (PIP = 1.0 and 0.21 in GBMI and UKBB 480 
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Europeans, respectively; Fig. 7e) owing to improved association significance (P = 7.7 × 10–15 and 481 
4.7 × 10–12 in GBMI and UKBB Europeans, respectively). 482 
 483 
However, we also observed very high ΔPIP for variants that are not likely causal. For example, 484 
we observed that an intronic variant rs1295686 in IL13 showed ΔPIP = 0.56 (PIP = 0.56 and 485 
0.0002 in GBMI and UKBB Europeans, respectively; Fig. 7f), despite having strong LD with a 486 
nearby missense variant rs20541 (p.Gln144Arg; r2 = 0.96 with rs1295686) which only showed 487 
ΔPIP = 0.13 (PIP = 0.13 and 0.0001 in GBMI and UKBB Europeans, respectively). The missense 488 
variant rs20541 showed PIP = 0.23 and 0.15 for a related allergic disease, atopic dermatitis, in 489 
BBJ and FinnGen, respectively17, and was previously shown to induce STAT6 phosphorylation 490 
and up-regulate CD23 expression in monocytes, promoting IgE synthesis78. Although the GBMI 491 
meta-analysis contributed to prioritizing these two variants (sum of PIP = 0.69 vs. 0.0003 in GBMI 492 
and UKBB Europeans, respectively), the observed ΔPIP was higher for rs1295686 than for 493 
rs20541. 494 
 495 
While increasing sample size in meta-analysis improves association significance, we also found 496 
negative ΔPIP due to losing the ability to model multiple causal variants. A stop-gained variant 497 
rs61816761 (p.Arg501Ter) in FLG showed ΔPIP = –1.0 (PIP = 6.4 × 10–5 and 1.0 in GBMI and 498 
UKBB Europeans, respectively; Fig. 7g), which was primarily owing to a nearby lead variant 499 
rs12123821 (~17 kb downstream of HRNR; r2 = 0.0 with rs61816761). This lead variant 500 
rs12123821 showed greater significance than rs61816761 in GBMI (P = 9.3 × 10–16 and 2.0 × 10–501 
11 for rs12123821 and rs61816761, respectively) as well as in UKBB Europeans (P = 7.1 × 10–26 502 
and 1.5 × 10–18). While our biobank fine-mapping16,17 assigned PIP = 1.0 for both variants based 503 
on multiple causal variant fine-mapping (i.e., FINEMAP21 and SuSiE23), our ABF fine-mapping in 504 
the GBMI meta-analysis was only able to assign PIP = 0.74 for the lead variant rs12123821 due 505 
to a single causal variant assumption. This recapitulates the importance of multiple causal variant 506 
fine-mapping in complex trait fine-mapping16,17—however, we note that multiple causal variant 507 
fine-mapping with an external LD reference is extremely error-prone as previously reported14–16.   508 
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 509 
Fig. 7 | Fine-mapping improvement and retrogression in the GBMI meta-analyses over individual biobanks. a–510 
c. Functional enrichment of variants in each functional category based on top PIP rankings in the GBMI and individual 511 
biobanks (maximum PIP of BBJ, FinnGen, and UKBB). Shape corresponds to top PIP ranking (top 0.5%, 0.1%, and 512 
0.05%). Enrichment was calculated by a relative risk (i.e. a ratio of proportions; Methods). Error bars correspond to 513 
95% confidence intervals using bootstrapping. d–g. Locuszoom plots for the same non-suspicious locus of asthma in 514 
the GBMI meta-analysis and an individual biobank (BBJ, FinnGen, or UKBB Europeans) that showed the highest PIP 515 
in our biobank fine-mapping. Colors in the Manhattan panels represent r2 values to the lead variant. In the PIP panels, 516 
only fine-mapped variants in the 95% CS are colored, where the same colors are applied between the GBMI meta-517 
analysis and an individual biobank based on merged CS as previously described. Horizontal line represents a genome-518 
wide significance threshold (P = 5.0 × 10–8). d. rs1888909 for asthma in the GBMI and FinnGen. e. rs16903574 for 519 
asthma in the GBMI and UKBB Europeans. Nearby rs528167451 was also highlighted, which was in strong LD (r2 = 520 
0.86) and in the same 95% CS in UKBB Europeans, but not in the GBMI (r2 = 0.67). f. rs1295686 for asthma in the 521 
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GBMI and UKBB Europeans. A nearby missense, rs20541, showed lower PIP than rs1295686 despite having strong 522 
LD (r2 = 0.96). g. rs12123821 for asthma in the GBMI and UKBB Europeans. Nearby stop-gained rs61816761 was 523 
independent of rs12123821 (r2 = 0.0) and not fine-mapped in the GBMI due to a single causal variant assumption in 524 
the ABF fine-mapping. 525 
 526 

Discussion 527 

In this study, we first demonstrated in simulations that meta-analysis fine-mapping is substantially 528 
miscalibrated when constituent cohorts are heterogeneous in phenotyping, genotyping, and 529 
imputation. To mitigate this issue, we developed SLALOM, a summary statistics-based QC 530 
method for identifying suspicious loci in meta-analysis fine-mapping. Applying SLALOM to 14 531 
disease endpoints from the GBMI meta-analyses10 as well as 467 summary statistics from the 532 
GWAS Catalog48, we observed widespread suspicious loci in meta-analysis summary statistics, 533 
suggesting that meta-analysis fine-mapping is often miscalibrated in real data too. Indeed, we 534 
demonstrated that the predicted suspicious loci were significantly depleted for having likely causal 535 
variants as a lead PIP variant, such as nonsynonymous variants, high-PIP (> 0.9) GWAS and cis-536 
eQTL fine-mapped variants from our previous fine-mapping studies16,17. Our method provides 537 
better calibration in non-suspicious loci for meta-analysis fine-mapping, generating a more reliable 538 
set of variants for further functional characterization. 539 
 540 
We have found limited evidence of improved fine-mapping in the GBMI meta-analyses over 541 
individual biobanks. A few empirical examples in this study as well as other previous 542 
studies7,9,26,27,30 suggested that multi-ancestry, large-scale meta-analysis could have potential to 543 
improve fine-mapping confidence and resolution owing to increased statistical power in 544 
associations and differential LD pattern across ancestries. However, we have highlighted that the 545 
observed improvement in PIP could be due to sample size imbalance in a locus, miscalibration, 546 
and technical confoundings too, which further emphasizes the importance of careful investigation 547 
of fine-mapped variants identified through meta-analysis fine-mapping. Given practical challenges 548 
in data harmonization across different cohorts, a large-scale biobank with multiple ancestries 549 
(e.g., UK Biobank19 and All of Us79) would likely benefit the most from meta-analysis fine-mapping 550 
across ancestries. 551 
 552 
As high-confidence fine-mapping results in large-scale biobanks and molecular QTLs continue to 553 
become available16,17,60, we propose alternative approaches for prioritizing candidate causal 554 
variants in a meta-analysis. First, these high-confidence fine-mapped variants have been a 555 
valuable resource to conduct a “PheWAS”16 to match with associated variants in a meta-analysis, 556 
which provides a narrower list of candidate variants assuming they would equally be functional 557 
and causal in related complex traits or tissues/cell-types. Second, a traditional approach based 558 
on tagging variants (e.g., r2 > 0.6 with lead variants, or PICS80 fine-mapping approach that only 559 
relies on a lead variant and LD) can be still highly effective, especially for known functional 560 
variants such as nonsynonymous coding variants. As we highlighted in this and previous39 561 
studies, potentially causal variants in strong LD with lead variants might not achieve genome-562 
wide significance because of missingness and heterogeneity. 563 
 564 
While using an external LD reference for fine-mapping has been shown to be extremely error-565 
prone14–16, we find here that it can be useful for flagging suspicious loci, even when it does not 566 
perfectly represent the in-sample LD structure of the meta-analyzed individuals. However, our 567 
use of external LD reference comes with several limitations. For example, due to the finite sample 568 
size of external LD reference, rare or low-frequency variants have larger uncertainties around r2 569 
than common variants. Moreover, our r2 values in a multi-ancestry meta-analysis are currently 570 
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approximated based on a sample-size-weighted average of r2 across ancestries as previously 571 
suggested81, but this can be different from actual r2. These uncertainties around r2 affect SLALOM 572 
prediction performance and should be modeled appropriately for further method development. On 573 
the other hand, we find it challenging to use a LD reference when true causal variants are located 574 
within a complex region (e.g., major histocompatibility complex [MHC]), or are entirely missing 575 
from standard LD or imputation reference panels, especially for structural variants. These 576 
limitations are not specific to meta-analysis fine-mapping, and separate fine-mapping methods 577 
based on bespoke imputation references have been developed (e.g., HLA82, KIR83, and variable 578 
numbers of tandem repeats [VNTR]84). 579 
 580 
In addition, there are several methodological limitations of SLALOM. First, our simulations only 581 
include one causal variant per locus. Although additional independent causal variants would not 582 
affect SLALOM precision (but decrease recall), multiple correlated causal variants in a locus 583 
would violate SLALOM assumptions and could lead to some DENTIST-S outliers that are not due 584 
to heterogeneity or missingness but rather simply a product of tagging multiple causal variants in 585 
LD. In fact, our previous studies have illustrated infrequent but non-zero presence of such 586 
correlated causal variants in complex traits16,17. Second, SLALOM prediction is not perfect. 587 
Although fine-mapping calibration is certainly better in non-suspicious vs. suspicious loci, 588 
SLALOM has low precision, and we still observe some miscalibration in non-suspicious loci. 589 
Optimal thresholds for SLALOM prediction might be different for other datasets. Third, SLALOM 590 
does not model effect size heterogeneity. Although SLALOM is able to detect suspicious loci due 591 
to effect size heterogeneity as the method is agnostic to the source of heterogeneity, methods 592 
which model effect size heterogeneity, such as MR-MEGA85, could improve SLALOM 593 
performance. Finally, SLALOM is a per-locus QC method and does not calibrate per-variant PIPs. 594 
Further methodological development that properly models heterogeneity, missingness, sample 595 
size imbalance, multiple causal variants, and LD uncertainty across multiple cohorts and 596 
ancestries is needed to refine per-variant calibration and recall in meta-analysis fine-mapping. 597 
 598 
We have found evidence in our simulations and real data of severe miscalibration of fine-mapping 599 
results from GWAS meta-analysis; for example, we estimate that the difference between true and 600 
reported proportion of causal variants is 20% and 45% for high-PIP (> 0.9) variants in suspicious 601 
loci from the simulations and the GWAS Catalog, respectively. Our SLALOM method helps to 602 
exclude spurious results from meta-analysis fine-mapping; however, even fine-mapping results in 603 
SLALOM-predicted “non-suspicious” loci remain somewhat miscalibrated, showing estimated 604 
differences between true and reported proportion of causal variants of 4% and 15% for high-PIP 605 
variants in the simulations and the GWAS Catalog, respectively. We thus urge extreme caution 606 
when interpreting PIPs computed from meta-analyses until improved methods are available. We 607 
recommend that researchers looking to identify likely causal variants employ complete 608 
synchronization of study design, case/control ascertainment, genomic profiling, and analytical 609 
pipeline, or rely more heavily on functional annotations, biobank fine-mapping, or molecular QTLs. 610 
  611 
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GWAS meta-analysis and performed fine-mapping under different scenarios. An overview of our 642 
simulation pipeline is summarized in Fig. S2. 643 
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Simulated true genotype 644 
Using HAPGEN287 with the 1000 Genomes Project Phase 3 reference49, we simulated “true” 645 
genotypes of chromosome 3 for multiple independent cohorts from African, East Asian, and 646 
European ancestries. For each independent cohort from a given ancestry, we simulated 10,000 647 
individuals each using the default parameters, with an ancestry-specific effective population size 648 
set to 17,469, 14,269, and 11,418 for Africans, East Asians, and Europeans, respectively, as 649 
recommended87. To mimic sample size imbalance of different ancestries in the current meta-650 
analyses, we simulated 10 independent European cohorts, 1 African cohort, and 1 East Asian 651 
cohort. 652 
 653 
To restrict our analysis to unrelated samples, we computed sample relatedness based on KING 654 
kinship coefficients88 using PLINK 2.0 (ref. 89) and removed monozygotic twins, duplicated 655 
individuals, or first-degree relatives with the coefficient threshold of 0.177. The detailed sample 656 
sizes of unrelated individuals for each cohort is summarized in Table S1. 657 

Genotyping and imputation 658 
To simulate realistic genotyping and imputation procedures, we first virtually genotyped each 659 
cohort by restricting variants to those that are available on different genotyping arrays. We 660 
selected three major genotyping arrays from Illumina, Inc. (Omni2.5, Multi-Ethnic Global Array 661 
[MEGA], and Global Screening Array [GSA]) that have different densities of genotyping probes 662 
(Table S2). For each cohort, we created three virtually genotyped datasets by retaining variants 663 
that are genotyped on each array. For the sake of simplicity, we assumed no genotyping errors 664 
occurred between true genotypes and virtually genotyped data—however, in practice, genotyping 665 
error is one of the major sources of unexpected confounding (e.g., see recent discussions 666 
here90,91) and should be treated carefully. 667 
 668 
For each pair of cohort and genotyping array, we then imputed missing variants using different 669 
imputation reference panels. We used the Michigan Imputation Server 670 
(https://imputationserver.sph.umich.edu/)92 and the TOPMed Imputation Server 671 
(https://imputation.biodatacatalyst.nhlbi.nih.gov/)51 with the default parameters, using three 672 
publicly available reference panels: the 1000 Genomes Project Phase 3 (version 5; n = 2,504; 673 
1000GP3)49, the Haplotype Reference Consortium (version r1.1; n = 32,470; HRC)50, and the 674 
TOPMed (version R2; n = 97,256)51. Briefly, for each input, the imputation server created chunks 675 
of 20 Mb, applied the standard QC, pre-phased each chunk with Eagle2 (ref. 93), and imputed 676 
non-genotyped variants using a specified reference panel with Minimac4 677 
(https://genome.sph.umich.edu/wiki/Minimac4). The detailed documentation of the imputation 678 
pipeline is available on the Michigan and TOPMed websites and has been described elsewhere92. 679 
 680 
We applied post-imputation QC by only keeping variants with MAF > 0.001 and imputation Rsq > 681 
0.6. Because the TOPMed panel is based on GRCh38 while the 1000GP3 and the HRC panels 682 
are on GRCh37, we lifted over TOPMed variants from GRCh38 to GRCh37 to meta-analyze with 683 
other cohorts. We excluded any variants which were lifted over to different chromosomes or for 684 
which the conversion failed. The number of virtually genotyped and imputed variants for each 685 
combination of cohort, genotyping array, and imputation panel is summarized in Table S3. 686 

True phenotype 687 
We simulated 300 true phenotypes that resemble observed complex trait genetic architecture and 688 
phenotypic heterogeneity across cohorts. Based on previous literature, we set parameters as 689 
follows: 1) 50% of 1 Mb loci contain a true causal variant94; 2) probability of being causal is 690 
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proportional to functional enrichments of variant consequences (pLoF, missense, synonymous, 691 
5’/3’ UTR, promoter, cis-regulatory region, and non-genic) for fine-mapped variants as estimated 692 
in a previous complex trait fine-mapping study17; 3) per-allele causal effect sizes have a variance 693 
proportional to [2𝑝(1 − 𝑝)], where 𝑝 represents a maximum MAF across the three ancestries 694 
(AFR, EAS, and EUR) and 𝛼 is set to be –0.38 (ref. 52); and 4) total SNP-heritability ℎ-+ for 695 
chromosome 3 equals 0.03 (ref. 53). For the sake of simplicity, we randomly draw a single true 696 
causal variant per locus because ABF assumes a single causal variant31,32. We draw true causal 697 
variants from 1,150,893 non-ambiguous single-nucleotide variants in 1000GP3 that showed MAF 698 
> 0.01 in at least one of the three ancestries (AFR, EAS, or EUR) and were not located within 699 
conversion-unstable positions (CUP)54 between the human genome builds GRCh37 and 700 
GRCh38. To mimic phenotypic heterogeneity across cohorts in real-world meta-analysis (due to 701 
e.g., different ascertainment, measurement error, or true effect size heterogeneity), we introduced 702 
cross-cohort genetic correlation of true effect sizes 𝑟- which is set to be one of 1, 0.9, or 0.5. For 703 
a true causal variant 𝑗, true causal effect sizes 𝛽𝒋 across cohorts were randomly drawn from 𝛽/ ∼704 
𝑀𝑉𝑁(0, 𝛴) where diagonal elements of 𝛴 were set to be 𝜎-+ ⋅ [2𝑝(1 − 𝑝)], and off-diagonal 705 
elements of 𝛴 were set to be 𝑟- ⋅ 𝜎-+ ⋅ [2𝑝(1 − 𝑝)],. 𝜎-+ was determined by 𝜎-+ = ℎ-+/706 
∑/ [2𝑝(1 − 𝑝)]*0,. For each cohort, true phenotype 𝑦 was computed via 𝒚 = 𝑿𝜷 + 𝜀 where 𝑿 707 
is the above true genotype matrix from HAPGEN2 and 𝜀! ∼ 𝑁(0, 1 − 𝜎-+) i.i.d. We simulated 100 708 
true phenotypes for each of 𝑟-= 1, 0.9, and 0.5, respectively.  709 

GWAS 710 
For each combination of phenotype, cohort, genotyping chip, and imputation panel, we conducted 711 
GWAS via a standard linear regression as implemented in PLINK 2.0 using imputed dosages. For 712 
covariates, we included top 10 principal components that were calculated based on true 713 
genotypes after restricting to unrelated samples. We only used LD-pruned variants with MAF > 714 
0.01 for PCA. 715 

Meta-analysis 716 
To simulate meta-analyses that resemble real-world settings, we generated multiple 717 
configurations of the above GWAS results to meta-analyze across 10 independent cohorts. 718 
Briefly, we chose configurations based on the following settings: 1) 10 EUR cohorts are genotyped 719 
and imputed using the same genotyping array (one of GSA, MEGA, or Omni2.5) and the same 720 
imputation panel (one of 1000GP3, HRC, TOPMed, or TOPMed-liftover); 2) 10 cohorts consisting 721 
of multiple ancestries (9 EUR + 1 AFR/EAS cohorts or 8 EUR + 1 AFR + 1 EAS cohorts), with all 722 
cohorts genotyped and imputed using the same array (Omni2.5) and the same panel (1000GP3); 723 
3) 10 EUR or multi-ancestry cohorts are genotyped using the same array (Omni2.5) but imputed 724 
using different panels across cohorts; 4) 10 EUR or multi-ancestry cohorts are imputed using the 725 
same panel (1000GP3) but genotyped using different arrays across cohorts; 5) 10 EUR or multi-726 
ancestry cohorts are genotyped and imputed using different arrays and panels across cohorts. 727 
For settings 3–5, we randomly draw a combination of a genotyping array and an imputation panel 728 
for each cohort five times each for 10 EUR and multi-ancestry cohorts. In total, we generated 45 729 
configurations as summarized in Table S4. 730 
 731 
For each configuration, we conducted a fixed-effect meta-analysis based on inverse-variance 732 
weighted betas and standard errors using a modified version of PLINK 1.9 733 
(https://github.com/mkanai/plink-ng/tree/add_se_meta). 734 
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Fine-mapping 735 
For each meta-analysis, we defined fine-mapping regions based on a 1 Mb window around each 736 
genome-wide significant lead variant and applied ABF31,32 using prior effect size variance of 𝜎1+ = 737 
0.04. We set a prior variance of effect size to be 0.04 which was taken from Wakefield et al.31 and 738 
is commonly used in meta-analysis fine-mapping studies2,7. We computed posterior inclusion 739 
probability (PIP) and 95% credible set (CS) for each locus and evaluated whether true causal 740 
variants were correctly fine-mapped. 741 

The SLALOM method 742 
SLALOM takes GWAS summary statistics and external LD reference as input and predicts 743 
whether a locus is suspicious for fine-mapping. SLALOM consists of the following three steps: 744 

Locus definition 745 
Consistent with common fine-mapping region definition, we defined loci based on a 1 Mb window 746 
around each genome-wide significant lead variant and merged them if they overlapped. We 747 
excluded the major histocompatibility complex (MHC) region (chr 6: 25-36 Mb) from analysis due 748 
to extensive LD structure in the region. 749 

DENTIST-S outlier detection 750 
For each variant in a locus, we computed DENTIST-S statistics using equation (1) based on the 751 
assumption of a single causal variant. DENTIST-S P-values (PDENTIST-S) were computed using the 752 
𝜒+ distribution with 1 degree of freedom. We applied ABF31,32 using prior effect size variance of 753 
𝜎1+ = 0.04 and used the lead PIP variant (the variant with the highest PIP) as an approximation of 754 
the causal variant in the locus. To retrieve correlation r among the variants, we used publicly 755 
available LD matrices from gnomAD57 v2 as external LD reference for African, Admixed American, 756 
East Asian, Finnish, and non-Finnish European populations. When multiple populations exist, we 757 
computed a sample-size-weighted average of r2 using per-variant sample sizes for each 758 
population as previously suggested81. We excluded variants without r2 available in gnomAD from 759 
the analysis. Since gnomAD v2 LD matrices are based on the human genome assembly GRCh37, 760 
variants were lifted over to GRCh38 if the input summary statistics were based on GRCh38. 761 
 762 
We determined DENTIST-S outlier variants using two thresholds: 1) r2 > ρ to the lead and 2) 763 
PDENTIST-S < τ. The thresholds ρ and τ were set to ρ = 0.6 and τ = 1.0 × 10–4 based on the training 764 
in simulations as described below. 765 

Suspicious loci prediction 766 
We predicted whether a locus is suspicious or non-suspicious for fine-mapping based on the 767 
number of DENTIST-S outlier variants in the locus > κ. To determine the best-performing 768 
thresholds (ρ, τ, and κ), we used loci with maximum PIP > 0.9 in the simulations for training. 769 
Positive conditions were defined as whether a true causal variant in a locus is 1) a lead PIP 770 
variant, 2) in 95% CS, and 3) in 99% CS. We computed AUROC across different thresholds (ρ = 771 
0, 0.1, 0.2, …, 0.9; –log10 τ = 0, 0.5, 1, …, 10; and κ = 0, 1, 2, …) and chose ρ = 0.6, τ = 1.0 × 10–772 
4, and κ = 0 that showed the highest AUROC for all the aforementioned positive conditions. Using 773 
all the loci in the simulations, we then evaluated fine-mapping miscalibration (defined as mean 774 
PIP – fraction of true causal variants) at different PIP thresholds in suspicious and non-suspicious 775 
loci and decided to only apply SLALOM to loci with maximum PIP > 0.1 owing to relatively lower 776 
miscalibration and specificity of SLALOM at lower PIP thresholds. 777 
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GWAS Catalog analysis 778 
We retrieved full GWAS summary statistics publicly available on the GWAS Catalog48. Out of 779 
33,052 studies from 5,553 publications registered at the GWAS Catalog (as of January 12, 2022), 780 
we selected 467 studies from 96 publications that have 1) full harmonized summary statistics 781 
preprocessed by the GWAS Catalog with non-missing variant ID, marginal beta, and standard 782 
error columns, 2) a discovery sample size of more than 10,000 individuals, 3) African (including 783 
African American, Afro-Caribbean, and Sub-Saharan African), admixed American (Hispanic and 784 
Latin American), East Asian, or European samples based on their broad ancestral category 785 
metadata, 4) at least one genome-wide significant association (P < 5.0 × 10–8), and 5) our manual 786 
annotation as a meta-analysis rather than a single-cohort study (Table S6). We applied SLALOM 787 
to the 467 summary statistics and identified 35,864 genome-wide significant loci (based on 1 Mb 788 
window around lead variants), of which 28,925 loci with maximum PIP > 0.1 were further classified 789 
into suspicious and non-suspicious loci. Since per-variant sample sizes were not available, we 790 
used overall sample sizes of each ancestry (African, Admixed American, East Asian, and 791 
European) to calculate the weighted-average of r2. All the variants were harmonized into the 792 
human genome assembly GRCh38 by the GWAS Catalog. 793 

GBMI analysis 794 
We used meta-analysis summary statistics of 14 disease endpoints from the GBMI (Table S8). 795 
These meta-analyses were conducted using up to 1.8 million individuals across 18 biobanks for 796 
discovery, representing six different genetic ancestry groups (approximately 33,000 African, 797 
18,000 Admixed American, 31,000 Central and South Asian, 341,000 East Asian, 1.4 million 798 
European, and 1,600 Middle Eastern individuals). Detailed procedures of the GBMI meta-799 
analyses were described in the GBMI flagship publication10. 800 
 801 
Across the 14 summary statistics, we used 489 out of 500 genome-wide significant loci (P < 5.0 802 
× 10–8; 1 Mb window around each lead variant, as defined in the GBMI flagship publication10), 803 
excluding 11 loci that overlap with the MHC region. We applied SLALOM to 422 loci with maximum 804 
PIP > 0.1 based on the ABF fine-mapping and predicted whether they were suspicious or non-805 
suspicious for fine-mapping. We used per-variant sample sizes of each ancestry (African, 806 
Admixed American, East Asian, Finnish, and non-Finnish European) to calculate the weighted-807 
average of r2. Since gnomAD LD matrices were not available for Central and South Asian and 808 
Middle Eastern, we did not use their sample sizes for the calculation. All the variants were 809 
processed on the human genome assembly GRCh38. 810 

Fine-mapping results of complex traits and cis-eQTL 811 
We retrieved our previous fine-mapping results for 1) complex traits in large-scale biobanks 812 
(BBJ58, FinnGen20, and UKBB19 Europeans)16,17 and 2) cis-eQTLs in GTEx59 v8 and eQTL 813 
Catalogue60. Briefly, we conducted multiple-causal-variant fine-mapping (FINEMAP21,22 and 814 
SuSiE23) of complex trait GWAS (# unique traits = 148) and cis-eQTL gene expression (# unique 815 
tissues/cell-types = 69) using summary statistics and in-sample LD. Detailed fine-mapping 816 
methods are described elsewhere16,17. 817 
 818 
In this study, we collected 1) high-PIP GWAS variants that achieved PIP > 0.9 for any traits in any 819 
biobank and 2) high-PIP cis-eQTL variants that acheived PIP > 0.9 for any gene expression in 820 
any tissues/cell-types. All the variants were originally processed on the human genome assembly 821 
GRCh37 and lifted over to the GRCh38 for comparison. 822 
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Additional fine-mapping results 823 
To compare with the GBMI meta-analyses, we additionally conducted multi-causal-variant fine-824 
mapping of four additional endpoints (gout, heart failure, thyroid cancer, and venous 825 
thromboembolism) that were not fine-mapped in our previous study16,17. We used exactly the 826 
same fine-mapping pipeline (FINEMAP21,22 and SuSiE23) as described previously16,17. For UKBB 827 
Europeans, to use the exact same samples that contributed to the GBMI, we used individuals of 828 
European ancestry (n = 420,531) as defined in the Pan-UKBB project 829 
(https://pan.ukbb.broadinstitute.org), instead of those of “white British ancestry” (n = 361,194) 830 
used in our previous study16,17. 831 

Enrichment analysis of likely causal variants 832 
To validate SLALOM performance, we asked whether suspicious and non-suspicious loci were 833 
enriched for having likely causal variants as a lead PIP variant, and for containing them in the 834 
95% and 99% CS. We defined likely causal variants using 1) nonsynonymous coding variants, 835 
i.e., pLoF and missense variants annotated95 by the Ensembl Variant Effect Predictor (VEP) v101 836 
(using GRCh38 and GENCODE v35), 2) the high-PIP (> 0.9) complex trait fine-mapped variants, 837 
and 3) the high-PIP (> 0.9) cis-eQTL fine-mapped variants from our previous studies as described 838 
above. 839 
 840 
We estimated enrichment for suspicious and non-suspicious loci as a relative risk (i.e., a ratio of 841 
proportion of variants) between being in suspicious/non-suspicious loci and having the annotated 842 
likely causal variants as a lead PIP variant (or containing them in the 95% or 99% CS). That is, a 843 
relative risk = (proportion of non-suspicious loci having the annotated variants as a lead PIP 844 
variant) / (proportion of suspicious loci having the annotated variants as a lead PIP variant). We 845 
computed 95% confidence intervals using bootstrapping. 846 

Comparison of fine-mapping results between the GBMI and individual biobanks 847 
To directly compare with fine-mapping results from the GBMI meta-analyses, we used our fine-848 
mapping results of nine disease endpoints (asthma64, COPD64, gout, heart failure73, IPF62, primary 849 
open angle glaucoma74, thyroid cancer, stroke75, and venous thromboembolism76) in BBJ58, 850 
FinnGen20, and UKBB19 Europeans that were also part of the GBMI meta-analyses for the same 851 
traits. For comparison, we computed the maximum PIP for each variant and the minimum size of 852 
95% CS across BBJ, FinnGen, and UKBB. We restricted the 95% CS in biobanks to those that 853 
contain the lead variants from the GBMI. We defined the PIP difference between the GBMI and 854 
individual biobanks as ΔPIP = PIP (GBMI) – the maximum PIP across the biobanks. 855 
 856 
We conducted functional enrichment analysis to compare between the GBMI meta-analysis and 857 
individual biobanks because unbiased comparison of PIP requires conditioning on likely causal 858 
variants independent of the fine-mapping results, and functional annotations have been shown to 859 
be enriched for causal variants. Using functional categories (coding [pLoF, missense, and 860 
synonymous], 5’/3’ UTR, promoter, and CRE) from our previous study16,17, we estimated 861 
functional enrichments of variants in each functional category based on 1) top PIP rankings and 862 
2) ΔPIP bins. Since fine-mapping PIP in the GBMI meta-analysis can be miscalibrated, we 863 
performed a comparison based on top PIP rankings to assess whether the ordering given by 864 
GBMI PIPs is more informative than the ordering given by the biobanks. For the top PIP rankings, 865 
we took the top 0.5%, 0.1%, and 0.05% variants based on the PIP rankings in the GBMI and 866 
individual biobanks. We computed enrichment as a relative risk = (proportion of top X% PIP 867 
variants in the GBMI that are in the annotation) / (proportion of top X% PIP variants in the 868 
individual biobanks that are in the annotation). For ΔPIP bins, we defined three bins using different 869 
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thresholds (θ = 0.01, 0.05, and 0.1): 1) decreased PIP bin, ΔPIP < –θ, 2) null bin, –θ"!"#$%$"!"θ, 870 
and 3) increased PIP bin, θ < ΔPIP. We computed enrichment as a relative risk = (proportion of 871 
variants in the decreased/increased PIP bin that are in the annotation) / (proportion of variants in 872 
the null PIP bin). We combined coding, UTR, and promoter categories for this analysis due to the 873 
limited number of variants for each bin. 874 
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