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ABSTRACT 

 

Background: Echocardiographic strain measurements require extensive operator experience 

and have significant inter-vendor variability. This study sought to develop an automated deep 

learning strain (DLS) analysis pipeline and validate its performance both externally and 

prospectively. 

Methods: The DLS pipeline takes blood pool semantic segmentation results from the EchoNet-

Dynamic network and derives longitudinal strain from the frame-by-frame change in the length of 

the left ventricular endocardial contour. The pipeline was developed using 7,465 

echocardiographic videos, with preprocessing steps optimized to determine the change in 

endocardial length from systole to diastole. It was evaluated on a large external retrospective 

dataset and was prospectively compared with manual within-patient acquisition of repeated 

measures by two experienced sonographers and two separate vendor speckle-tracking methods 

on different machines.  

Results: In the external validation set, the DLS method maintained moderate agreement 

(intraclass correlation coefficient (ICC) 0.58, p<0.001) with a bias of -2.33% (limits of agreement 

-10.61 to 5.93%). The absolute difference in measurements was independent of subjective image 

quality (ß: 0.12, SE: 0.10, p=0.21). Compared to readers on repeated measures, our method has 

reduced variability (standard deviation: 1.35 vs. 2.55%) and better inter-vendor agreement (ICC: 

0.45 vs. 0.29). 

Conclusions: The DLS measurement provides lower variance than human measurements and 

similar quantitative results. The method is rapid, consistent, vendor-agnostic, publicly released, 

and robust across a wide range of imaging qualities.  
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INTRODUCTION 

 

Myocardial strain can be used to identify subtle signatures of cardiac dysfunction.1 It has specific 

applications in the longitudinal monitoring of cardiotoxic therapies as well as in diagnosing 

cardiomyopathies.2 Even compared to conventional measures of left ventricular (LV) function 

such as ejection fraction, longitudinal strain has incremental benefits for predicting cardiovascular 

outcomes.3-5 Strain is formally defined as the change in the length (L) of a myocardial segment 

relative to its initial diastolic length (L0): strain = (L- L0)/ L0.6 However, the method of measuring 

the length of a myocardial segment can significantly vary across manufacturers which may impact 

the downstream assessment of strain and hamper the comparison of strain values across different 

vendors.7 In echocardiography, speckle tracking is the primary method of obtaining longitudinal 

strain.1 Nonetheless, the application of this method requires significant experience8, and it exhibits 

significant inter-/intra-vendor variability, limiting the ability to compare assessments over time and 

between different locations.9, 10 Creation of an open-source, vendor-agnostic method to 

retrospectively measure longitudinal strain from standard B-mode images would greatly improve 

post-hoc research applications and benefit patient care by improving access and ability to more 

directly compare between images captured by different sites, operators, and vendors. 

 

In this manuscript, we present an open-source deep learning-based solution to quantify LV global 

longitudinal strain (GLS) and evaluate its performance against manual segmentation-based strain 

measurements in both internal and external validation. We hypothesized that our method of deep 

learning strain (DLS) assessment could provide consistent and robust strain measurements in an 

automated fashion, similar to standard speckle tracking echocardiography, but without the need 

for manual measurements and expertise.  
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METHODS 

Study Design 

 

We adapted EchoNet-Dynamic, a deep learning-based segmentation network tailored for 

analyzing echocardiograms,11 to identify the endocardial-blood pool interface across the cardiac 

cycle using apical 4-chamber (A4C) view echocardiographic videos. GLS was computed using an 

automated pipeline based on mathematical analysis of the boundaries of the LV across the 

cardiac cycle. The strain methodology was applied retrospectively over a large external database 

with 3D echocardiography-derived LV GLS to assess for agreement. The strain methodology was 

then prospectively compared to standard 2D speckle tracking strain with repeated within-patient 

measurements from two sonographers using two separate echocardiography vendors to 

determine inter- and intra-measurement variability. The study protocol was approved by Stanford 

University, Semmelweis University (#190/2020), and Cedars Sinai Institutional Review Boards. 

 

Datasets 

 

EchoNet-Dynamic was trained on 7,465 A4C view echocardiographic videos of 7,465 unique 

patients from Stanford Healthcare and validated internally on an additional 2,565 videos. The 

dataset is publicly available at https://echonet.github.io/dynamic/. The DLS algorithm was then 

tested on an external cohort of 813 unique patients with 2,454 A4C videos from Semmelweis 

University. To compare the intra-provider variation of our DLS method with that of the 

conventional strain algorithms, 43 unique patients were prospectively scanned four times per 

patient by two experienced sonographers on two different vendor machines.  

 

Deep Learning Strain Algorithm 
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The DLS algorithm builds upon the foundation of a previously validated semantic segmentation 

model, which identifies the LV area throughout the cardiac cycle.12 From the identification of the 

LV, the algorithm calculates longitudinal strain using input echocardiogram videos by 1) 

contouring the endocardium around the LV blood pool in the A4C view, 2) identifying and 

excluding the mitral annular plane, 3) expanding the contour to trace mid-endocardium, 4) 

measuring the length of the LV in each frame, 5) identifying the longest and shortest lengths in a 

single cardiac cycle to calculate per-beat strain, and 6) calculating the average the cardiac strain 

over all of the cardiac cycles within a single video clip (Figure 1). 

 

The development of the original semantic segmentation model has been previously described.11 

Starting with the trained Echonet-Dynamic segmentation model weights, we were able to identify 

the LV blood pool contour. To exclude the mitral annular plane from the length of the LV 

endocardium, a bounding box was applied over the blood pool contour to identify the insertion 

points of the mitral leaflets and exclude the segments of contour crossing the annular plane. Given 

that the exact boundary of the LV may vary due to the presence of trabeculations, we tested 

varying degrees of dilation of the border and their effect on reproducibility. The length of this 

border contour was quantified in each frame. Using Python’s SciPy function 

scipy.signal.find_peaks,13 over a 32-frame sliding window, we identified the maximum and 

minimum lengths of the LV endocardial tracing, corresponding with systole and diastole. Given 

the expected smooth contraction and relaxation of the LV, we tested multiple filters length-fame 

plots to reduce frame-to-frame variance in length across a cardiac cycle. We evaluated multiple 

filters, including Savitzky-Golay (Savgol), convolve average, moving average, high pass, and low 

pass. Algorithms were implemented in Python (version 3.9.5, Python Software Foundation, 

Wilmington, Delaware, USA) using open-source libraries including PyTorch, SciPy, Torchvision, 

and OpenCV.14 
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External Validation on a Cohort from a Separate Healthcare System 

 

The DLS pipeline was applied to an external cohort of subjects who underwent clinically-indicated 

2D and 3D echocardiographic examination at Semmelweis University between November 2013 

and March 2021. The cohort consisted of patients with different cardiac diseases (such as heart 

failure, cardiomyopathies, valvular heart disease), healthy subjects with no cardiovascular risk 

factors or established cardiac diseases, and athletes. This external dataset included A4C view 

echocardiographic videos acquired using various Philips and GE ultrasound systems and 3D 

echocardiography-derived expert annotations. 3D LV end-diastolic and end-systolic volumes, 

ejection fraction, LV mass, and GLS were assessed using a commercially available software 

solution (4D LV-Analysis 3, TomTec Imaging GmbH, Unterschleissheim, Germany). Videos were 

individually assessed for Turing test failure by identifying clear anatomically erroneous 

segmentation, and cases with failure were excluded from the analysis.  

 

Prospective Repeated Measures Analysis 

 

The DLS pipeline was prospectively compared with standard acquisitions in 43 unique patients 

who received blinded, independent strain analysis by two senior sonographers who independently 

scanned, analyzed, and interpreted strain across two different machines. Both senior 

sonographers had advanced cardiac certification and more than 15 years of experience. Each 

patient was scanned using both Epiq 7C (strain in v2.01) and GE Vivid E95 (strain in QLAB v10.2) 

ultrasound machines on the same day to acquire a total of 4 acquisitions per patient. 

 

Statistical Analysis 
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Continuous variables are expressed as mean (standard deviation), while categorical variables are 

reported as frequencies and percentages. In the external validation cohort, we compared 3D 

echocardiography-derived GLS and DLS. In the repeated measures cohort, we evaluated inter-

observer, intra-observer, inter-vendor, and cycle-to-cycle variability of the DLS method, and we 

also compared manual strain versus DLS. Comparisons were made using two-tailed paired T-

test, intraclass correlation coefficients (ICC), and Bland-Altman analyses. Statistical analyses 

were performed in R (version 4.1.1, R Foundation for Statistical Computing, Vienna, Austria).  
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RESULTS 

 

The original training cohort included 7,465 patients (70±22 years, 49% women, Table 1), with the 

repeated measures cohort including 43 patients (55±17 years, 38% women).  

 

Pipeline Optimization 

Two significant empirical decisions were made while designing the automated pipeline: the 

degree of dilation and the smoothing filter. For the former, 0-pixel dilation (i.e., no dilation) was 

compared with 3-pixel and 5-pixel dilation. When dilated with 0 pixels, the mean standard 

deviation of DLS was 2.57%, whereas 3-pixel and 5-pixel dilation resulted in a mean standard 

deviation of 2.02% and 2.50%, respectively. For the smoothing filter, Savgol was 1.35%, low-pass 

was 1.52%, convolve average was 1.40%, and the moving average was 1.89%. Therefore, the 

Savgol filter with 3-pixel dilation was selected for the final pipeline. 

 

External Agreement Validation 

Out of the 3,812 videos (900 patients, 47±23 years, 38% women) of the external dataset, the DLS 

method was feasible in 3,488 (91.5%) videos of 881 (97.9%) patients. An additional 1,034 (27.1%) 

videos were excluded due to anatomically erroneous segmentation. The final external validation 

dataset comprised 2,454 videos from 917 examinations of 813 patients (46±23 years, 37% 

women, Table 1). 3D echocardiography-derived GLS ranged from -1.16 to -31.83%, with a mean 

of -17.79±4.90%, whereas DLS ranged from -6.10 to -38.94%, with a mean of -20.13±5.06%. The 

ICC between the two measurements was 0.58 (0.37-0.71), p<0.001, with a bias of -2.33% and 

limits of agreement (LOA) of -10.61 to 5.93 (Figure 2). The most significant predictors of the 

absolute difference between the ground truth and predicted strain values were DLS (ß: -0.37, SE: 

0.01, p<0.001), 3D GLS (ß: 0.33, SE: 0.02, p<0.001), 3D LV ejection fraction (ß: -0.09, SE: 0.01, 

p<0.001), and 3D LV mass (ß: 0.01, SE: 0.001, p<0.001). Subjective image quality (graded on a 
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1-5 scale) was not significantly associated with the absolute difference in measures (ß: 0.12, SE: 

0.10, p=0.21) (Figure 3). 

 

Prospective Inter-method Variation 

In the repeated measures cohort, four manual measurements were performed for each patient: 

both readers performed strain analysis using the Philips and GE machines. The mean GLS 

measured by readers 1 and 2 was -18.00±2.64% and -17.90±2.41, respectively. Measurements 

on Philips and GE had mean and standard deviations of -19.31±1.74% and -16.58±1.39%, 

respectively. The ICC between readers 1 and 2 was 0.63 (0.48-0.74), p<0.001. The ICC between 

GE and Philips systems was 0.29 (-0.01-0.53), p=0.03. 

 

In the DLS measurements, the overall cohort had a strain of -15.28±1.35%, with Philips machine 

measurements having a mean and standard deviation of -14.96±1.42% and GE machine with -

15.61±1.21%, with an ICC of 0.45 (0.18-0.66), p < 0.001. Comparing the combined human versus 

DLS methods the mean strain was -17.91±2.55% for human and -15.29±1.35% for DLS. The ICC 

was not significant: 0.28 (-0.09-0.59), p=0.09, with a bias of 2.73% (LOA: -1.63 to 7.08%) (Figure 

4). 

 

Although the standard clinical workflow does not necessitate multi-beat measurement, our deep 

learning-based method can automatically quantify strain in all cardiac cycles of a given video. In 

our repeated measures cohort, the mean number of cardiac cycles per video was 3.47. The 

standard deviation of strain measurements was 1.7%, and the mean difference in the maximum 

and minimum measurements was 2.6%. 
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DISCUSSION 

 

In this manuscript, we presented a vendor-agnostic, open-source, deep learning-based strain 

analysis tool and compared the predicted strain values to conventional GLS measurement for 

agreement within and between observers. On an external cohort of patients with 3D 

echocardiography-derived GLS, our method performed consistently and within the variation seen 

between different commercial vendors. On a prospective cohort of patients undergoing repeated 

evaluation by different sonographers and using ultrasound systems of different vendors, our DLS 

algorithm exhibited lower variability than standard clinical variation by standard deviation, with 

decreased inter-vendor variability. Notably, between the human and DLS measurements, there 

was a non-significant agreement, though quantitatively similar to the degree of agreement 

between human measures on the two separate systems. This may be due to multiple factors, 

including the smaller size of the prospective cohort, human error, and the inherently different 

strain measurement methodology. Because our method allows for beat-by-beat assessment of 

strain, our results demonstrate that there is moderate beat-to-beat variation in strain within a 

single acquisition, suggesting a lower bound in the precision of strain. 

 

The reference range of different strain methods depends on each commercially available machine 

and its strain analysis package, which can be limiting given the black-box nature of those software 

solutions. Our DLS algorithm produces comparable strain values within the reference range 

suggested by professional societies for normal patients and is open-source and fully automated, 

allowing for adaptation, iterative improvement, and easy establishment of normal ranges using 

local data. Given the lack of algorithmic transparency with speckle tracking packages, we show 

the DLS methodology has enhanced reproducibility, less variance between vendors, and has less 

dependence on image quality. Additionally, the open-source methods of our technique and 
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development using publicly-available datasets may improve understandability over proprietary 

methods. 

 

Previous studies have applied deep learning analyses in echocardiography and cardiac magnetic 

resonance imaging (MRI) for automated strain analysis. Salte et al. passed echocardiographic 

images through classification networks for view and cardiac phase, then a segmentation network 

to define the myocardium, then an optical flow network to assess strain.15 Given the application 

of optical flow, similar to speckle tracking, this technique will depend on high resolution and fidelity 

image quality. Deep learning approaches to semantic segmentation were shown to be robust to 

even poor video quality,11 and could potentially measure strain in low-quality clinical videos where 

speckle-tracking or optical flow fails. Early application in cardiac MRI for measurement of strain 

using deep learning in the UK Biobank has been shown.16 Given our model’s dependence on 

semantic segmentation to identify the interface of the blood pool and myocardium, feature-

tracking MRI techniques to calculate strain may be more similar to our approach than tagging or 

even speckle tracking. While fundamental differences in methodology may explain the 

discrepancies between our method’s results versus vendor-based GLS measurements,17 we 

speculate that DLS may enable better comparison with CMR feature-tracking measurements.  

 

There are a few potential limitations to our methodology. Given the dependence on appropriate 

deep learning segmentation, we excluded studies for which deep learning failed. Not all cases 

were able to be accurately contoured, particularly if the video in question did not show all 

segments of the left ventricle or the lateral wall moved outside of the ultrasound sector during a 

cardiac cycle, which was the case in many segmentation failures. Inherent differences in 

methodology are present: our proof-of-concept study relies on the A4C view alone, whereas 

standard 2D GLS uses all three apical views, and 3D GLS uses 3D acquisitions. However, the 
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measurements are comparable, and the methodology and the codebase are easily generalizable 

to other views.  

 

Potential additional benefits of our pipeline are derived from the DLS measurement as a 

mathematical extension of a semantic segmentation model. In clinical practice, speckle-tracing 

algorithms often do not appropriately track the motion of the LV. The direct measurement and 

identification of the endocardial contour are both easily understandable and visually assessable 

for sources of error. Our algorithm enables rapid retrospective batch analysis of 

echocardiographic images, which may have applications in both research and clinical workflow 

while eliminating human-based measurement variance. Additionally, this pipeline could be 

adapted to other semantic segmentation models, allowing generalization to calculate right 

ventricular or atrial strain. 

 

In conclusion, we present a deep-learning derived strain measurement based on deep learning 

derived endocardial contour. The results show that this measurement can be performed reliably 

with low variance and within the range of standard measurements. The DLS method is rapid, 

consistent, vendor-agnostic, publicly available, and robust across a wide range of image qualities. 
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FIGURES 

 

Figure 1. Summary diagram of deep learning-based strain process including passage of blood 

pool segmentation, bounding box identification for contour identification and dilation. Total border 

length is measured through the cardiac cycle, with a Savitzky-Golay filter to smooth the contour. 

The strain is calculated as the mean change in length in the endocardial border within the video 

clip. 
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Figure 2. Comparison of 3D echocardiography-based global longitudinal strain and deep 

learning-derived strain by Bland Altman and Correlation Plots. Deep learning strain was on 

average less by 2.33%, Limits of Agreement of -10.61 to 5.93%. DLS: Deep learning strain; GLS: 

Global longitudinal strain. 
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Figure 3. Intraclass correlation coefficient with 95% confidence interval by subjective quality score 

of the image. A lower quality score indicates worse image quality. 
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Figure 4. Comparison of different inter-reader methodologies for strain measurement in the 

prospective cohort. GE: General Electric; DLS: Deep Learning Strain. 
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TABLES 

 

Table 1. Demographics, clinical and echocardiographic characteristics of the training and external 

validation datasets 

 Original training dataset External validation dataset 
Number of patients 7,465 813 
Number of videos 7,465 2,454 
Age, years (SD) 70 (22) 46 (23) 
Female, n (%) 3,662 (49) 298 (37) 
Heart failure, n (%) 2,113 (28) 238 (29) 
Diabetes mellitus, n (%) 1,474 (20) 109 (13) 
Hypercholesterolemia, n (%) 2,463 (33) 224 (28) 
Hypertension, n (%) 2,912 (39) 315 (39) 
Renal disease, n (%) 1,475 (20) 112 (14) 
Coronary artery disease, n (%) 1,674 (22) 103 (13) 
End diastolic volume, mL (SD) 91.0 (46.0) 144.9 (58.7)* 
End systolic volume, mL (SD) 43.2 (36.1) 71.6 (49.0)* 
Ejection fraction, % (SD) 55.7 (12.5) 53.5 (12.3)* 
Echocardiographic machine   
  Philips Epiq 7C, n (%) 4,832 (65) 340 (14) 
  Philips Epiq 7G, n (%) 0 (0) 580 (24) 
  Philips iE33, n (%) 2,489 (33) 99 (4) 
  Philips CX50, n (%) 62 (1) 0 (0) 
  Philips Epiq 5G, n (%) 44 (1) 0 (0) 
  GE Vivid E95, n (%) 0 (0) 1,424 (58) 
  Other, n (%) 38 (1) 11 (0) 

*measured with 3D echocardiography 

SD – standard deviation 
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