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Abstract  
 

Most high dimensional mediation epigenetic studies evaluate each mediator indirect effects 

independently. These approaches are underpowered to detect multiple mediators and the 

overall indirect effect remains poorly quantified. We developed HDMAX2, an efficient 

algorithm for high dimensional mediation analysis using max-squared tests, considering 

CpGs and aggregated mediator regions. HDMAX2 outperformed existing approaches in 

simulated and real data, detected true mediators with increased power, and assessed the 

overall indirect effect of several mediators from a high dimension matrix. We showed a 

polygenic architecture for placenta CpGs and regions mediating the effects of maternal 

smoking during pregnancy on baby’s birth weight. 

 

1.Background 
  

Mediation analysis is a statistical tool used to gain insights into the causal mechanisms that 

relate an exposure to an outcome (Baron and Kenny, 1986). It is increasingly used in 

environmental epidemiology, in particular in Developmental Origins of Health and Disease 

(DOHaD) research and in molecular epidemiology studies (Blum et al., 2020; Nakamura et 

al., 2021). With the development of high-throughput screening technologies, these methods 

have become key tools to investigate the pathways by which environmental exposures can 

affect health outcomes, and more specifically those involving epigenetic mechanisms such 

as DNA methylation (DNAm) variations (MacKinnon et al., 2007; VanderWeele, 2015, 2016; 

Zeng et al., 2021). High-dimensional mediation analysis is an extension of unidimensional 

mediation analysis including multiple mediators (Blum et al., 2020).  

 

A typical high-dimensional analysis for DNAm markers generally includes three main steps. 

The first step tests both the effects of exposure on DNAm levels and the effects of DNAm 

levels on the health outcome based on epigenome-wide association studies (EWAS). The 

second step combines significance values obtained from the two EWAS at the first step in 

order to perform mediation tests, and assesses the mediator status of each marker. The 

third step quantify the indirect effects of exposure on the health outcome through DNAm 

changes. Analyses involving a high dimensional set of mediators are difficult, and raise 

numerous statistical issues (Blum et al., 2020). To overcome those issues, several 

approaches have been proposed during the recent years. Classic approaches perform multi-
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dimensional analysis by running unidimensional mediation analyses for each DNAm marker, 

for example using Sobel tests or by estimating Average Causal Mediated Effects (ACME) 

(Imai et al., 2010; Sobel, 1982). Improvements of the Sobel test for indirect effects combine 

the significance values obtained from the two EWAS in various ways (Dai et al., 2020; 

Djordjilović et al., 2020, 2019; Gao et al., 2019; Sampson et al., 2018; Zhang et al., 2016). 

However, there is no consensus on the most relevant combination of EWAS and mediation 

tests for a high-dimensional analysis. Furthermore, the overall indirect effect of multiple 

mediators remains poorly quantified from estimates of single mediator effects in a context of 

correlation among the mediators.  

 

We addressed the above issues by developing HDMAX2, a method for high-dimensional 

mediation analysis, and systematically compared HDMAX2 to recently proposed 

approaches. HDMAX2 relies on latent factor regression models to evaluate associations of 

exposure and outcome with DNAm, and on mediation tests that control the type I error when 

combining the significance values obtained in the exposure and outcome EWAS. We 

developed additional features to further consider differential methylation regions as 

mediators and to estimate an overall mediated effect of DNAm accounting simultaneously for 

all mediators identified. Using simulations, we performed an in-depth evaluation of the 

statistical performances of HDMAX2 in comparison to recently developed methods, and 

showed that HDMAX2 has increased power compared to the other methods.  

 

We then used HDMAX2 to identify the causal role of placental DNA methylation in the 

pathway between maternal smoking during pregnancy, gestational age at delivery and birth 

weight of the baby. While most of the literature has focused on cord blood (Agha et al., 2016; 

Joubert et al., 2012; Küpers et al., 2015; Xu et al., 2021), few studies have investigated 

placental DNAm, although it plays a key role in fetal programming (Cardenas et al., 2019; 

Morales et al., 2016; Rousseaux et al., 2019; Thornburg and Marshall, 2015). We discovered 

new CpG mediators  and regions that were not identified by classic approaches (Cardenas 

et al., 2019; Morales et al., 2016), and estimated the overall indirect effect of maternal 

smoking during pregnancy on newborn birth weight and on gestational age at delivery. The 

reasoning we used for placental DNAm data also holds for other types of tissue and 

quantitative omics data, and HDMAX2 extends to various data. 
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2. Methods 

2.1       Overview of the HDMAX2 method 
HDMAX2 is a newly developed approach for high dimensional mediation analysis structured 

in three main steps (Figure 1). The first step of HDMAX2 corresponds to an extension of 

regression models considered generally in unidimensional mediation analysis (Baron and 

Kenny, 1986). The extension includes latent factors as covariates in the models to account 

for unobserved variables that confound multidimensional DNAm data analysis, such as 

batch effects or cell-type heterogeneity in samples. The second step identifies potential 

mediators by combining paired significance values that are obtained when testing the effect 

of exposure on DNAm and the effect of DNAm on outcome in step 1. Step 2 is not restricted 

to CpG markers, and can also identify aggregated mediator regions (AMRs) based on the 

paired P-values. The third step quantifies indirect effects of identified mediators either 

separately or simultaneously with an overall indirect effect.  

 

Figure 1: Workflow of the high dimensional mediation analysis procedure implemented in HDMAX2. 

 

Step 1. Evaluating associations between exposure, mediators and outcome. The first 

step of HDMAX2 consists in adjusting latent factor mixed models (LFMMs) to estimate the 

effects of exposure, X, on a matrix M of CpG markers, and the effect of each marker on 

outcome, Y (Caye et al., 2019; Jumentier et al., 2020). LFMMs belong to a class of 

estimation algorithms that adjust latent factor models, and that encompasses surrogate 

variable analysis (SVA) (Leek and Storey, 2007), directed SVA (Lee et al., 2017) or 

confounder adjusted testing and estimation (CATE) (Wang et al., 2017). Latent factor 

models differ from models based on a priori estimates of cell types (Houseman et al., 2016; 

Rahmani et al., 2016), and represent a more general approach to the issue of confounding in 

association studies (Leek and Storey, 2007). Within the latent factor regression framework, 

additional known covariates (like maternal age or sex of the newborn) can be included in the 

model to improve accuracy.   

 

Mediation analysis based on DNAm markers performs two EWAS. To estimate the effects of 

exposure (X) on a matrix of CpG markers (M), the following model was first adjusted to the 

centered data 

 

M = XaT + U1V1
T + E1 ,                     (Equation 1) 
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where a contains the vector of effect sizes of exposure on DNAm levels, U1 is a matrix 

formed of K latent factors estimated simultaneously with a, V1 contains the loadings 

associated with the latent factors, and E1 is a matrix of residual errors. The K latent factors 

represent hidden confounders, for example unobserved cell types of tissue samples and 

batch effects. Using the latent factor regression defined in Eq.1, a significance value, Px, is 

computed for the test of a null effect size for exposure on DNAm at each CpG marker (H0: aj 

= 0, for the jth marker).  

 

A second EWAS was then performed in order to estimate effect sizes for the DNAm levels 

on the health outcome (Y) as follows:  

 

Y = Xc + MbT + U2V2
T + E2 ,          (Equation 2) 

 

where c contains the direct effect of exposure on outcome, b contains the effect sizes of 

DNAm levels on outcome, U2 are latent factors from a latent factor regression model, V2 are 

the corresponding loadings, and E2 is a matrix of errors. For each marker j, a significance 

value, Py, is computed for the test of a null effect size for DNAm on outcome (H0: bj  = 0).   

 

Step 2. Identifying potential CpG mediators and aggregated mediator regions. The 

second step of HDMAX2 consists in combining the significance values Px and Py computed 

at each DNAm marker by using a new procedure called the max-squared test. The P-value 

for the max-squared (max2) test was computed as P = max(Px, Py)². Like the Sobel test, the 

max2 test rejects the null-hypothesis that either the effect of exposure on DNAm or the effect 

of DNAm on outcome is null. The square in the formula warrants that the distribution of P-

values is uniform when Px and Py are independent and uniformly distributed. In HDMAX2, 

the max2 test was first used in order to identify potential CpG mediators. A combination of P-

values along the methylome was then performed to identify potential AMRs using comb-p, a 

method relying on the Stouffer-Liptak-Kechris correction that combines adjacent CpG P-

values in sliding windows (Xu et al., 2016). We considered methylated regions including at 

least two markers at a maximum distance of 1,000 bp and significant at the 10% False 

Discovery Rate (FDR) level. The mean value of DNAm levels for CpGs located in AMRs was 

retained to summarize information on methylated regions.  

 

Step 3. Quantifying indirect effects with single and multiple mediators. Mediation of 

exposure on the outcome was first assessed at the level of CpG markers, and then at the 

level of aggregated regions. For CpG and for AMRs, estimates of indirect effect sizes and 

the proportion of mediated effect were computed in the R package mediation (Imai et al., 
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2010). For CpGs, the estimate of the indirect effect size for marker j was checked to be 

equivalent to the product of effect sizes, , computed in Eqs. (1) and (2). A novelty of 

HDMAX2 is to evaluate a cumulated indirect effect for all CpGs or AMRs identified in Step 3. 

The overall indirect effect (OIE) was estimated in a model including m mediator variables as 

follows  

(Equation 3) 

 

where ( ) represent methylation levels observed at  CpG mediators or AMRs (or both of 

them), and the terms ( ) correspond to the latent factor coordinates estimated in Step 1.  

The overall indirect effect was then computed as 

(Equation 4) 

 

where ( ) represents the effect of exposure on methylation (Step 1). To account for 

correlation among mediators, the standard deviation of the OIE estimate was computed 

using a bootstrap approach (10,000 replicates).  

 

2.2       Simulation studies  
We performed simulations to compare the methods implemented in HDMAX2 with state-of-

the-art approaches for EWAS in Step 1 and for mediation tests in Step 2.  

 

Step-1 EWAS methods evaluated in simulations. In HDMAX2 Step 1, several latent factor 

estimation algorithms could be implemented for performing the EWAS. A preliminary study 

was performed to decide which of LFMM2, SVA and CATE was the best (using precision (1 - 

false discovery rate) and F1-score (harmonic mean of precision and power)) for our 

particular data set (Text S1, Figure S1). Then we performed generative simulations to 

compare methods using latent factors with those based on estimates of cell type 

composition. HDMAX2 was compared to two regression models including covariates 

obtained from RefFreeEWAS (Houseman et al., 2016) and refactor (Rahmani et al., 2016).   
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Step-2 mediation methods evaluated in simulations. We compared the max2  mediation 

test in Step 2 of HDMAX2 to methods based on direct application of Sobel tests and of 

univariate mediation analysis (Cardenas et al., 2019; Morales et al., 2016).  Then we 

compared  the max2 test to recent methods for high dimensional mediation: a multiple-

testing procedure for high-dimensional mediation hypotheses similar to the max-squared test 

HDMT (Dai et al., 2020), a two-step familywise error rate procedure called ScreenMin 

(Djordjilović et al., 2020), an approach using familywise error rate and false discovery rate 

control when testing multiple mediators SBMH (Sampson et al., 2018), a linear regression 

model combined with an ANOVA (Tobi et al., 2018) and an approach using variable 

selection to reduce the number of mediators HIMA (Zhang et al., 2016). The last two 

approaches combined the first steps of HDMAX2 in a single step.  

 

Mediation model simulations.  The simulations were performed according to a generative 

model that reproduces the mediation pathways described in Eq. (1) and Eq. (2). Exposure 

and outcome (X and Y) and three confounding factors (U) were simulated according to a 

multivariate Gaussian model. The percentage of variance of exposure and outcome 

explained by the confounding factors, and the correlation between those variables, were set 

at 10%. The variances of confounding factors were equal to one. The number of DNAm 

markers was equal to m = 38,000, approximately equal to the number of CpGs for a single 

chromosome in our empirical data, and the number of individuals was equal to n = 500. The 

vectors of effect sizes (a for exposure and b for outcome) were generated by setting a 

proportion of effect sizes to zero. Non-null effect sizes were sampled according to a standard 

Gaussian distribution. A residual error matrix E was simulated by using a multivariate 

Gaussian distribution with means equal to zero and standard deviations of one. In addition to 

the three confounding factors, six additional factors representing distinct cell types were 

added in the simulation model. The proportion of cells from six different types were 

simulated by using a Dirichlet distribution. To consider values that are realistic with respect 

to our data analysis, the parameters of the Dirichlet distribution were equal to the proportions 

of each cell type estimated on the EDEN placental DNAm data (described afterwards). A 

matrix of DNAm markers was built using Eq 1 and Eq 2 with 3 parameters: the mean of non-

null effect size for exposure (X) on methylation M (a = 0.2, 0.4), the mean of non-null effect 

size for M on outcome (b = 0.2, 0.4), and the number of causal markers (equal to 8, 16 or 

32). For each set of parameters, 200 simulations were carried out. For each method tested, 

a subset of hits with a level of FDR = 5% was selected as potential mediators (Benjamini 

and Hochberg, 1995).  For each list of hits, we computed precision (1 - FDR), sensitivity 

(power), and the harmonic mean of precision and sensitivity (F1-score). The highest value of 
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an F1-score is one, if precision and sensitivity are maximal, and the lowest value is zero, if 

either the precision or the sensitivity is null.  

 

2.3  Mediation analyses of prenatal exposure to maternal 

smoking on birth weight and gestational age   

Study population. Our analysis included participants of the EDEN Mother-Child Cohort 

enrolled in the university hospitals of Nancy and Poitiers, France, between 2003 and 2006 

(Abraham et al., 2018; Heude et al., 2016). Lifestyle, demographic, and clinical data were 

collected by questionnaires and interviews during pregnancy and after delivery. 

DNAm measurements. DNAm was measured from DNA extracted from 668 placental 

samples. The Illumina’s Infinium HumanMethylation450 BeadChip was used to assess the 

levels of methylation in samples following the manufacturer’s instructions (Illumina, San 

Diego, CA, USA). Protocols for placental DNA extraction and DNAm processing are detailed 

in (Jedynak et al., 2021). Briefly, DNAm was normalized using the beta-mixture quantile 

(BMIQ) method to ultimately obtain beta-methylation levels for 379,904 CpG probed CpG 

sites (Teschendorff et al., 2013).  

Maternal smoking (MS), birth weight (BW) and gestational age (GA). We excluded 

preterm deliveries (n=28), women who reported quitting smoking before pregnancy (n=70) 

and women whose smoking status was unknown (n=100), leaving 470 women included in 

our analyses. Birth weight was extracted from medical records. Prenatal maternal cigarette 

smoking was collected by questionnaires during prenatal and postpartum clinical 

examinations. Non-smokers were defined as women who did not smoke during the 

3�months before and during pregnancy (359 non-smokers). Smokers were defined as 

women smoking more than one cigarette per day throughout the duration of the pregnancy 

(111 smokers). All smokers during pregnancy also smoked during the 3�months before 

pregnancy. Gestational age was defined as gestational age at birth. 

Mediation analyses. We hypothesized that maternal smoking during pregnancy could 

induce modifications of placental DNAm that result in changes in GA or in BW. To this aim, 

we investigated the causal relationships between MS, placental DNAm and each pregnancy 

outcome. MS was encoded as a categorical variable and the outcomes were encoded as 

continuous variables. In order to identify mediators of the exposure-outcome relationship, we 
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used the HDMAX2 approach to evaluate DNAm CpG mediators first, and then to identify 

AMRs.  

In HDMAX2 regression models, adjustment factors included child sex, parity (0, 1, ≥�2 

children; categorical covariate), maternal age at end of education (≤�18, 19–20, 21–22, 23–

24, ≥�25�years; categorical covariate), season of conception (categorical covariate), study 

center, maternal body mass index (BMI) before pregnancy, maternal age at delivery, batch, 

plate, and chip technical factors related to DNAm measurements (categorical covariates). 

We relied on the principal component analysis of the DNAm matrix to include 6 latent factors 

in the HDMAX2 regression models (Figure S2). This number was consistent with the 6 

factors selected in a previous work to represent the cell-types using the Reffree algorithm 

(Rousseaux et al., 2019). FDR-corrected P-values were calculated for the 379,904 CpGs 

using the local FDR algorithm in fdrtool (Strimmer, 2008). Calibration of the max2 test P-

values was evaluated through a direct examination of the histogram of P-values. The local 

FDR parameter (eta0) was computed to evaluate the proportion of null-hypothesis among 

the 379,904 tests. This proportion was estimated at eta0 = 99.8-99.9%, suggesting that an 

FDR level of 5% would be overly conservative (Figure S3). To agree with the value of eta0, 

candidate CpGs were selected at FDR levels < 10%, corresponding to adjusted P < 9.03 × 

10-6 for BW and to adjusted P < 3.27 × 10-6 for GA. Results obtained after considering FDR 

levels < 20% are also reported.  

Chained mediation of maternal smoking on birth weight. To better understand the 

causal pathways involving (six) genic regions that mediate the effect of MS both on GA and 

on BW, we considered GA as having reverse causality on DNAm levels. To assess reverse 

causality, we evaluated the indirect effects of targeted AMRs in a mediation analysis of GA 

on BW. For AMRs having a significant mediation P-value, each indirect effect and an overall 

indirect effect were computed from the above-described procedures.    

Bioinformatic analyses. Promoter and enhancer regions were obtained from Illumina chip 

annotations. Gene annotations were obtained using the FDb.InfiniumMethylation.hg19 

package (Triche, 2014). Placental gene expression of annotated genes was compared to 

their gene expression in other tissues according to the Expression Atlas database 

(Papatheodorou et al., 2020). For every gene, Chauvenet’s criterion was used to decide 

whether the gene was outlier for placental expression compared to other tissues. Functional 

annotation was made from the KEGG and the Gene Annotation databases (Kanehisa et al., 

2021). 
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3. Results 

3.1 Simulations  
HDMAX2 was compared to several recent combinations of methods for multidimensional 

mediation analysis using simulation experiments. First, we compared the performances of 

latent factor models to other regression methods in estimating the association between 

exposure, DNAm levels, and outcome (Step 1 of HDMAX2). Then we compared the max2 

mediation test to recently proposed tests (Step 2 of HDMAX2).  

 

Performances of regression methods in step 1 of HDMAX2.  A preliminary simulation 

study evaluated which of SVA, LFMM, or CATE provided the best estimation algorithm of 

latent factors for our empirical data set (Text S1). CATE and LFMM obtained better 

performance scores than SVA (Figure S1). LFMM runtimes were shorter than those of 

CATE, and LFMM performance scores were higher. Thus, we concluded that LFMM is the 

most appropriate for analysis of the EDEN cohort data, and we used it everywhere in 

subsequent assessments of HDMAX2. Using more general simulation experiments, we 

measured the relative performances of HDMAX2, that jointly estimates effect sizes and 

latent factors with LFMM, and methods based on a priori estimates of cell-type composition 

with RefFreeEWAS and ReFACTor (Figure 2).  In all scenarios, the performances of the 

ReFACTor method were much lower than those of LFMM and RefFreeEWAS (Figure 2). For 

lower effect sizes of DNAm on outcome, LFMM and RefFreeEWAS reached close F1-

scores, but LFMM obtained higher scores than RefFreeEWAS for higher effect sizes. All 

approaches obtained higher scores when more mediators were simulated, or when both the 

effect of exposure on DNAm and the effect of DNAm on outcome were higher. The results 

indicated that latent factor regression models outperformed methods that directly attempt to 

estimate cell-type composition from the DNAm data.  

 

 

Figure 2. Relative performances of Step 1 approaches estimating latent factors versus inclusion of cell-

type composition estimates. F1-score as a function of the number of mediators (16 or 32), effect size of 

exposure on DNAm (X->M; low = 0.2, high = 0.4), and effect size of DNAm on outcome (M->Y; low = 0.2, high = 

0.4). Each simulation included 38,000 CpGs for 500 samples, with 6 cell types and 3 additional confounding 

factors. 
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Performances of mediation tests in the 2nd step of HDMAX2. Next, we compared 

HDMAX2 to five recent tests for high-dimensional mediation: HDMT, ScreenMin, SBMH, 

linear models combined with ANOVA (lm+anova), and HIMA (Figure 3). In every scenario, 

HDMAX2 and HDMT reached similar scores, and those approaches were the best ones 

overall. In the specific case of high DNAm on outcome effect sizes and low exposure on 

DNAm effect sizes, lm+anova obtained the best scores, immediately followed by HDMAX2 

and HDMT. Lowest performances were obtained with ScreenMin, SBMH and HIMA. When 

both effect sizes were high, HIMA obtained the lowest performances. For low DNAm on 

outcome effect sizes, lm+anova and SBMH obtained the poorest performances. In addition, 

HDMAX2 outperformed mediation analyses combining EWAS with Sobel tests and with 

unidimensional mediation analyses repeated at each marker, especially when the number of 

mediators increased from 16 to 32 (Figure S4). Since the runtime was much shorter for 

HDMAX2 than for HDMT and for other approaches (Figure S5), HDMAX2 was used in our 

analyses on empirical data. 

 

 

Figure 3: Relative performances of Step 2 multidimensional mediation methods. F1-score as a function of 

the number of mediators (16 or 32), effect size of exposure on DNAm (X->M; low = 0.2, high = 0.4), and effect 

size of DNAm on outcome (M->Y; low = 0.2, high = 0.4).  Each simulation included 38,000 CpGs for 500 

samples, with 6 cell types and 3 additional confounding factors. 

 

3.2 Mediation of prenatal exposure to maternal smoking on 
birth weight and gestational age 
 

Among 470 mother-infant pairs, mean maternal age at enrolment was 29 years (SD = 5 

years), body mass index before pregnancy was 23 kg/m2 (SD = 4.4 kg/m2) and 23.6% of 

women smoked during pregnancy (Table 1). Term birth weight (BW) ranged between 2010g 

and 4960g, with a mean of 3352 g +/- 435 g. Gestational age (GA) varied from 37 weeks to 

42 weeks, with a mean of 40 weeks +/-1.20 week (8.4 days). Maternal smoking (MS) during 

pregnancy had a significant correlation with BW (r = -0.16, P = 0.003), but not with GA 

(Figure S6). BW and GA were significantly correlated in mother-infant pairs (r = 0.31, P = 1.6 

x 10-12). After adjustment, the total effect of MS was 140 g lower BW (SD = 49.1 g, P = 

0.004), and the total effect of MS was not significant for GA (effect size = 0.12, SD = 0.14, P 

= 0.2434).  
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Table 1. Characteristics of the study population (n = 470).  

Characteristics mean±SE n (%) 
Center  

Poitiers  189 (40) 
Nancy  281 (60) 

Sex of offspring  
Male  241 (51) 
Female  229 (49) 

Parity  
0  189 (40) 
1  195 (41) 
≥2  86 (18) 

Maternal age at end of education (year)  
≤18   89 (20) 
19-20   70 (15) 
21-22  114 (24) 
23-24  109 (23) 
≥25  87 (18) 

Season of conception  
January – March   100 (21) 
April – June  103 (22) 
July – September   130 (28) 
October – December   137 (29) 

Maternal smoking                   
smoker   111 (24) 
Non smoker  359 (76) 

BMI (kg/m²)                          23.0±4.4 
Maternal age (year)                 29.4±5.0 
Birth weight                  3352±435 
Gestational duration (weeks)  40±1.2 
BMI= pre-pregnancy Body Mass Index.  
 

 

Mediation of maternal smoking on birth weight. A high dimensional mediation analysis of 

MS on BW was performed using placental DNAm data from the EDEN mother-child cohort. 

At an FDR level of 10% (5%), thirty-two (twenty) CpGs were identified as mediators of MS 

on BW (Table S1, Figure 4A, adjusted max-squared P < 9.11 x 10-6). Twenty CpGs were 

associated with a lower BW for the newborn (average ACME: -32.0 g, SD = 5.6 g; average 

proportion mediated (PM): 22.8%, SD = 4.0), and twelve CpGs were associated with a 

higher BW (average ACME: 32.6 g, SD = 10.3 g; average PM: 23.3 %, SD = 7.4) (Figure 

S7). The 32 CpGs were associated with an overall indirect effect corresponding to 40.3 g 

lower BW (SD = 51.3 g). 

 

Examples of CpG mediators with the largest negative indirect effects include cg10624729 

(adjusted P = 5.15 x 10-8), in MIGA1 (Mitoguardin 1) a regulator of mitochondrial fusion, 

associated with 41 g lower BW,  cg19406975 (adjusted P = 9.27 x 10-8), in SH3BP5L (SH3 

Binding Domain Protein 5 Like) which functions as a guanine exchange factor, associated 

with 41 g lower BW,  cg01686933 (adjusted P = 6.98 x 10-7), in NECTIN1 (Nectin Cell 

Adhesion Molecule 1) which encodes an adhesion protein that plays a role in  the 
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organization of epithelial and endothelial cells, associated with 41 g lower BW, and 

cg14502606 (adjusted P = 1.04 x 10-6), in MLX (MAX Dimerization Protein MLX) a 

transcription factor which plays a role in proliferation, determination and differentiation, 

associated with 38 g lower BW (Table S1).  

 

Figure 4. High Dimensional Mediation analysis (HDMAX2) of maternal smoking on birth weight. A) 

Manhattan plot of -log(P-values) obtained from HDMAX2 (CpGs). Gray bars without dots correspond to CpGs 

above the 20% FDR level. Gene names correspond to hits identified at the 10% FDR level (32 hits). Colored bars 

without gene names correspond to hits identified at the 20% FDR level (164 hits).  B) Manhattan plot of -log10(P-

values) for potential AMRs at the 10% FDR level (28 hits). C) Estimates of indirect effect (ACME) and proportions 

of mediated effect for confirmed AMRs (19 hits). For the A) and B) plots, the colors indicate the magnitude of 

indirect effects. For the C) plot, the colors indicate the distance to the gene (bp). Symbols on top of colored bars 

correspond to classification as enhancer, promoter or unknown. Overall indirect effect of AMRs: 52 g lower BW. 

 

At an FDR level < 20%, 164 mediators were discovered, including fifty-five CpGs within 

enhancer regions and twenty-six CpGs within promoter regions (Figure 4A). In comparison 

with the methylome, the list of mediators was enriched in hits corresponding to enhancer 

regions (33% of all hits, P = 0.0003, Fisher test, Figure S8A), and it was depleted in hits 

corresponding to promoter regions (15% of all hits, P = 0.04, Fisher test, Figure S8B). 

Several mediators were found in the body of a gene (109 hits), and some genes were hit 

more than once (AJAP1, ESRP2, SH3BP2, SKI, SRSF5, VAV2 and MLX).  We additionally 

performed mediation analyses for CpG cg27402634 (between LINC00086 and LEKR1) and 

cg25585967 (TRIO) identified in (Morales et al. 2016), and for one CpG (cg11280108) in the 

HumanMethylation450 BeadChip which was among the seven CpGs identified in (Cardenas 

et al. 2019) from the EPIC chip.  Although associations of DNAm with exposure to MS were 

significant for those CpGs (adjusted P = 9.07 x 10-14), none of those markers were mediators 

of MS on BW in our analysis (q-values > 0.93).   

 

Regarding methylated regions, HDMAX2 detected twenty-eight potential AMRs, including 

four within enhancer regions, seven within promoter regions, and twenty within the body of a 

gene (FDR level < 10%, Figure 4B). Nineteen AMRs were associated with statistically 

significant indirect effects ranging between 26.7 g lower BW and 33.0 g higher BW (Table 

S2). Twelve AMRs were associated with a lower BW (average ACME: -19.7 g, SD = 4.6; 

average PM: 14.0%, SD = 3.3%), and seven were associated with a higher BW (average 

ACME:  17.5 g, SD = 7.9; average PM:  12.5%, SD = 5.6%, Figure 4C). The 19 AMRs were 

associated with an overall indirect effect corresponding to 52 g lower BW (SD = 45 g). The 

overall indirect effect of both CpG mediators and AMRs was 44.5 g lower BW (SD = 60.7 g). 

The strongest evidence corresponded to AMR chr17:40,713,862-40,715,404 (adjusted P = 
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3.20 x 10-13) in COASY (Coenzyme A Synthase) which plays an important role in numerous 

synthetic and degradative metabolic pathways in all organisms, associated with 26 g lower 

BW. This AMR was only 3kb close to another AMR, chr17:40,718,932-40,719,777 (adjusted 

P = 9.37 x 10-19), in MLX, which was associated with 27 g lower BW (Figure 4, Table S2 for a 

full list of AMRs). 

 

Figure 5. Mediation analysis of maternal smoking on gestational age. A) Manhattan plot for CpG’s -log(P-

values) obtained from HDMAX2. Gene names are displayed for hits obtained at the 10% FDR level (15 hits). 

Colored bars without gene names correspond to hits identified at the 20% FDR level (63 hits). Gray bars without 

dots correspond to CpGs above the 20% FDR level. B) -log10(P-values) for potential AMRs at 10% FDR level 

(31 hits). C) Estimates of indirect effects (ACME) and proportions of mediated effect for AMRs. Colors 

correspond to the intensity of the indirect effects. Symbols on top of colored bars correspond to categorization as 

enhancer, promoter, or unknown. Overall indirect effect of AMRs: 0.12 weeks lower GA. 

 

Mediation of maternal smoking on gestational age. An independent mediation analysis 

was performed on the DNAm data in order to evaluate the indirect effects of MS on GA. At 

an FDR level < 10%, fifteen CpGs (two CpGs at FDR level < 5%) were identified as 

mediators of MS on GA (Table S3, Figure 5A, adjusted max-squared P < 3.28 x 10-6). The 

15 CpGs were associated with a weak overall indirect effect corresponding to 0.28 week (2 

days) lower GA (SD = 0.12) (Figure S9). 

 

Examples of CpG mediators with the most negative effects include cg10298741 (adjusted P 

= 4.82 x 10-7), in ZFHX3 (Zinc Finger Homeobox 3) a transcription factor which regulates 

myogenic and neuronal differentiation, associated with 0.08 week lower GA, cg04908961 

(adjusted P = 9.19 x 10-7), in MIR17HG (MiR-17-92a-1 Cluster Host Gene) a host gene for 

the MiR17-92 cluster, a group microRNAs (miRNAs) that may be involved in cell survival, 

proliferation, and differentiation, associated with 0.09 week lower GA, cg08402058 (adjusted 

P = 1.04 x 10-6), in BLCAP (Bladder cancer-associated protein) which reduces cell growth by 

stimulating apoptosis, associated with 0.09 week lower GA, (see Table S3 for a full list of 

CpG mediators). Ten CpGs were associated with a shorter GA (average indirect effect 0.09 

week lower GA, SD=0.02; PM: 74%, SD = 14%), and five CpGs were associated with higher 

GA (average ACME: 0.09 week, SD = 0.01; PM: 71%, SD = 10%; Figure S9). At an FDR 

level < 20%, sixty-three mediators were identified, including twenty-six hits within an 

enhancer region (Figure 5A). This subset of CpG mediators was enriched in hits 

corresponding to enhancer regions (33% of all hits, P < 2.2 x 10-16, Fisher test, Figure S8A). 

 

The per-region analysis resulted in the detection of thirty-one potential AMRs, including 

eleven regions within enhancers, five within promoters, and twenty-six within the body of a 
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gene (Figure 5B, Table S4). Twenty-three AMRs were associated with small but statistically 

significant indirect effects ranging between -0.09 week and 0.10 week (none were 

associated with a significant mediated proportion). Five regions were associated with a lower 

GA (average ACME: -0.06 week ; SD = 0.01 ; average PM: 54.1%, SD = 13.1%), and 

eighteen regions were associated with a higher GA (average ACME : 0.06 week ; SD = 0.01; 

average PM: 49.4%, SD = 11.1%). 

 

The 23 AMRs were associated with a weak overall indirect effect corresponding to 0.12 

week (23 hours) shorter GA (SD = 0.11). The cumulative overall indirect effect of CpG 

mediators and AMRs was 0.09 week (16 hours) shorter GA (SD = 0.14). The largest 

negative indirect effects corresponded to AMR chr1:28,906,332 - 28,906,661 (adjusted P = 

7.89 x 10-9) in SNHG12, (Small Nucleolar RNA Host Gene 12) an RNA gene that may 

promote tumorigenesis, associated with 0.09 week lower GA, chr20:36,148,579 - 36,149,354 

(adjusted P = 1.13 x 10-10) in BLCAP, which encodes a protein that reduces cell growth by 

stimulating apoptosis, associated with 0.06 week lower GA, and chr17:40,714,100 - 

40,714,374 (adjusted P = 2.84 x 10-6) in COASY associated with 0.06 week lower (Figure 5, 

Table S4 for a full list of AMRs). 

 

Chained mediation of maternal smoking on birth weight through DNAm and GA. Six 

genes, COASY, BLCAP, SKI, DECR1, ESRP2, PRRT1, included AMRs that act as 

mediators both for MS on BW and for MS on GA. To better understand the causal pathways 

involving those genic regions, we tested the hypothesis that GA influences methylation 

levels in those regions, and estimated the indirect effects in a mediation analysis of GA on 

BW (Figure 6, Figure S10, Table S5). In this analysis, GA had significant indirect effects on 

BW for two of the six AMRs, in COASY (ACME = 6.9 g, mediation P <10-3), BLCAP (ACME 

= 5.1g, mediation P = 0.01). The two AMRs were associated with an overall indirect effect 

corresponding to 10 g higher BW (SD = 3.91). 

In the genomic region surrounding the COASY gene (Figure S10), the AMRs were located in 

regions with low DNAm levels (Figure S11B), and MS decreased DNAm levels within AMRs 

(Figure S11C). The CpGs contained in AMRs mediated lower BW, and were among the 

most negative observed indirect effects (Figure S11D-E). In the genomic region surrounding 

the BLCAP gene (Figure S12), AMRs were located in highly methylated gene body areas 

(Figure S12B), and MS decreased DNAm levels within AMRs (Figure S12C). The CpGs 

contained in AMRs mediated lower BW, and again, they were among the most negative 

observed indirect effects (Figure S12D-E). Figure 6 provides a summary of the chained 

mediation analysis (Figure S13 for a summary of CpG mediation analysis). 
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Figure 6. Summary of mediation analysis of MS on GA and BW for AMRs. Nineteen AMRs mediate the 

relationship between MS and BW, with a total indirect effect corresponding to 52 g lower BW. Twenty-three 

AMRs mediate the relationship between MS and GA, with a total indirect effect corresponding to 0.12 week 

shorter GA. Two AMRs mediate the relationship between GA and BW with a total indirect effect corresponding to 

10g higher BW. The color under each gene indicates the sign of the indirect effect. The color of segments 

indicates the direction of association (blue means negative, red means positive).  

 

4. Discussion  
Main contributions. High dimensional mediation holds promising results for deciphering 

molecular mechanisms underlying the association between exposure and outcomes. We 

present HDMAX2, a method combining estimates of latent factors in EWAS with max-

squared tests for mediation, which also evaluates an overall mediated effect for CpG or 

AMR.  We show that HDMAX2 outperforms state-of-art methods and recent approaches 

proposed to identify mediators in a high dimensional setting. HDMAX2 was applied to 

assess the indirect effects of exposure to MS on GA and BW in a study of 470 women from 

the EDEN mother-child cohort, and confirmed the important role played by placental DNAm 

in the causal pathway between maternal smoking during pregnancy and fetal growth 

outcomes (Nakamura et al., 2021). In addition to single CpG mediators, our analysis 

examined AMR and computed an overall indirect effect of all mediators considered 

simultaneously. The overall indirect effects of CpG and AMR were 44.5 g lower BW (32.1% 

of the total effect size) and 0.09 week lower GA (75% total effect size). These results support 

the hypothesis that the role of placental DNAm in the mediation of effect of exposure to MS 

on BW and on GA may be more polygenic than previously reported. In addition, a chained 

mediation analysis of MS on BW suggested the existence of reverse causal relationships for 

AMR located in the genes COASY and BLCAP, which mediate a proportion of the effect of 

MS on BW through an effect of GA on DNAm.  

 

Simulation studies. The main improvements of HDMAX2 over existing mediation methods 

is the use of latent factor models for estimating hidden confounders in step 1, and the max2 

test of mediation in step 2. The combination of latent factors and max2 tests proposed by the 

HDMAX2 approach were carefully evaluated with intensive simulations, and resulted in 

increased performances compared to five state-of-the-art methods evaluating multiple 

mediators (Dai et al., 2020; Djordjilović et al., 2020; Sampson et al., 2018; Tobi et al., 2018; 

Zhang et al., 2016).  Latent factors increased statistical power compared to using a priori 
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estimates of cell-type proportions from reference-free methods (Houseman et al., 2016; 

Rahmani et al., 2016). The max-squared tests showed considerably better performances in 

comparison to the univariate mediation or Sobel test approaches, which were used in 

previous studies analyzing the role of placental DNAm data in the pathway between MS and 

BW (Cardenas et al., 2019; Morales et al., 2016). Using HDMAX2, none of the mediating 

CpGs identified using univariate mediation or Sobel test approaches (Morales et al. 2016 

Cardenas et al. 2019) were mediators of MS on BW in our analysis (q-values > 0.93). 

 

Mediation analysis of maternal smoking on birth weight.  Previous studies have shown a 

possibly overestimated mediated effect of MS on BW, sometimes greater than the total 

effect size (Valeri et al., 2017). This is a limitation of univariate indirect effects estimated 

independently in a context of correlation between multiple mediators. In contrast, our 

approach estimated an overall indirect effect of the placental methylome representing 32% 

of the total effect size of MS on BW. Compared with previous placental DNAm mediation 

analyses of MS on BW (Cardenas et al., 2019; Morales et al., 2016), the magnitude of each 

mediator indirect effect size estimated in our cohort represented smaller part (less than 24% 

for AMRs) of the total effect size, and it was spread over more mediators suggesting that 

indirect effects are more polygenic than in previous estimates.  

CpG mediators. HDMAX2 identified 32 CpG mediators of MS on BW, for which a majority 

(20/32) of effects represented a lower BW. The results provided evidence for an enrichment 

in enhancer regions and for a depletion in promoter regions among mediators, which agrees 

with conclusions from an association study between MS and placental DNAm in the EDEN 

cohort (Rousseaux et al., 2019). According to the Gene Ontology database, six mediators 

were located in genes linked to development or to the growth of tissues: cg24571086 in 

FGFR2, cg11362604 in MEIS2, cg00108098 in SEMA5B, cg10778780 in CCK, and 

cg20482145 in MYH10 and cg07156115 in AHR. The genes FGFR2 and SEMA5B are 

linked to the development of multicellular organisms and to the growth of developmental 

organs, MEIS2 is linked to the development of the brain, eyes and pancreas, CCK is linked 

to neuron migration, and AHR is linked to the development of blood vessels.  

Aggregated mediator regions. Evidence for increased polygenicity of placental DNAm 

mediation was confirmed by examination of AMRs, which are seen as more robust and more 

biologically meaningful than isolated differentially methylated CpGs (Svendsen et al., 2016). 

HDMAX2 identified 19 AMRs of MS on BW, for which a majority of effects represented a 

lower BW (Figure 4C, Table S2). The most negative effects corresponded to AMRs in 

COASY, which plays an important role in numerous synthetic and degradative metabolic 
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pathways and in MLX, a transcription factor physically close to COASY, which is co-

expressed in the placenta. Four regions were located in genes linked to tissue development 

or growth, in FBN2 related to camera-type eye development, ZFP42 to gonad development, 

ESRP2 to fibroblast growth factor receptor signalling pathway, and SKI to roof of mouth 

development, olfactory bulb development, camera-type eye development, and skeletal 

muscle fibber development. The genes FBN2 and ZFP42 were over-expressed in the 

placenta compared to other tissues. Smoking-induced AMRs in FBN2 and ESRP2 were 

associated with higher BW, whereas AMRs in ZFP42 and SKI were associated with lower 

BW. Looking more closely at the biology of mediators, we found a large number of them 

located in genes related to preeclampsia, a pregnancy complication of placental origin 

characterized by high blood pressure and protein in the urine, causing about a third of very 

premature births. Preeclampsia-related genes included NECTIN1 (Ito et al., 2018), AHR 

(Wang et al., 2011), FGFR2 (Marwa et al., 2016), COASY (Martin et al., 2015), BLCAP (Li et 

al., 2020), SKI (Martin et al., 2015), AJAP1 (Yeung et al., 2016), SH3BP5  (Kaartokallio et 

al., 2015). The over-representation of preeclampsia-related genes supports a pleiotropic 

effect of mediators, and highlights the difficulty of disentangling relationships between 

correlated outcomes. 

 

Mediation analysis of maternal smoking on gestational age and reverse causality. Our 

results provided evidence that DNAm (CpG + AMR) mediates a relatively small total indirect 

effect of MS on GA, representing 0.09 week lower GA (15 hours). The largest negative 

effects corresponded to AMRs located in SNHG12 and in BLCAP (Table S4). Six genes 

contained DMRs mediating both the effect of MS on BW and the effect of MS on GA. Two of 

those AMRs, located in BLCAP and COASY, had among the largest negative effects on both 

GA and BW. We found strong evidence that BLCAP and COASY were present in the causal 

pathway from GA to BW, but no evidence that they were present in the pathway from BW to 

GA. This result indicates that the corresponding AMRs in BLCAP and COASY may be 

involved in complex causal relationships, in which DNAm plays a role in the negative effect 

of MS on BW and GA amplified by a lower GA (Figure 6). The placenta exhibits a unique 

epigenetic profile, as it is one of the tissues with lower DNA methylation levels, which 

undergoes intense remodeling in early gestation, and dynamic changes with increase DNA 

methylation as gestation advances (Fuke et al., 2004; Novakovic et al., 2011). Whether 

placental DNAm influences GA or GA influences placental DNAm is uncertain. Our results 

suggest a bidirectional association between placental DNAm and GA, with a feedback loop 

from GA to BW through placental DNAm. However, a limitation of these results and of such 

investigation is the fact that GA and placental DNAm are co-occurring events.  
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Universally applicable framework for high dimensional mediating events. A large body 

of epigenetic research in perinatal health is dedicated to cord blood DNA methylation, 

although the placenta has attracted some attention (Cardenas et al., 2019; Everson et al., 

2019; Morales et al., 2016). Indeed, the placenta supports both the health of the mother and 

the development of the foetus; it produces hormones, ensures immune-tolerance, and 

provide nutrients to the foetus and regulates the exchange of gases and wastes. The 

placenta is a key resource informing on the intra uterine environment and a highly relevant 

tissue to investigate within the DOHAD framework. Besides being associated with several 

prenatal exposures, placental DNA methylation is suggested to be a relevant proxy for 

neurodevelopmental outcomes (Jensen Peña et al., 2012; Kundakovic and Jaric, 2017; 

Lester and Marsit, 2018) and respiratory health (Chhabra et al., 2014) of the child and 

understanding the indirect effects of its DNAm modifications on such outcomes will be an 

important objective. Beyond the role of the placenta and DNA methylation, other tissues and 

omics markers are relevant to investigate in perinatal and more generally epidemiological 

studies. The HDMAX2 framework can be applied with other layer of mediators, basically any 

type of high-throughput data (i.e. gene expression data), or with data on any other tissue 

types.  

 

5. Conclusions  
We developed a novel algorithm for high-dimensional mediation, HDMAX2. Beyond our 

current application to placental DNAm data, HDMAX2 is applicable to a wide range of 

tissues and omics layers including genomics, transcriptomics, and other types of omics. 

HDMAX2 shows better performances on simulations and increased power compared to 

existing approaches. We showed the strength of HDMAX2 by applying it to characterize 

associations between exposure to maternal smoking during pregnancy and birth weight and 

gestational age at birth of the baby. The mediation analysis demonstrated a causal 

relationship between maternal smoking during pregnancy and those outcomes underpinning 

many more epigenetic regions than previously found, suggesting a polygenic architecture for 

the pathways. Not limited to single CpG markers, HDMAX2 is extended to identifying AMRs. 

AMRs provide more robust evidence than single epigenetic markers, and allowed the 

characterization of regions mediating effects of maternal smoking during pregnancy both on 

gestational age and birth weight, suggesting that placental DNAm is an important biological 

mechanism. We further showed the overall indirect effect accounting simultaneously for all 
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mediators identified as a plausible estimate of the mediated effect. AMRs located in COASY 

and BLCAP suggested reverse causality in the relationship between gestational and the 

methylome contributing to lower birth weight. Our study added several statistical 

improvements to high-dimensional mediation analyses, and revealed an unsuspected 

complexity of the causal relationships between maternal smoking during pregnancy and birth 

weight at the epigenome-wide level.  

Abbreviations. 

ACME Average causal mediation effects 

AMR Aggregated Mediator Region 

BMI Body Mass Index 

BMIQ Beta Mixture Quantile 

BW Birth Weight of the baby 

CATE Confounder adjusted testing and estimation 

CpG Cytosine-phosphate-Guanine 

DNAm DNA methylation 

DOHaD Development Origins of Health and Diseases 

EWAS Epigenome Wide Association Studies 

FDR False Discovery Rate 

GA Gestational Age at delivery 

HDMAX2 High-Dimensional Mediation Analysis with  max-
squared tests 

HDMT High-Dimensional Mediation Test 

LFMM Latent Factor Mixed Model 

MS Maternal Smoking during pregnancy 

OIE overall indirect effect  

PM Proportion Mediated 

SVA Surrogate Variable Analysis 
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6. Supplementary information   

See supplemental materials including tables and figures  

Software availability and requirements.  
The method presented in this study is available in the R package HDMAX2 at 
https://github.com/jumentib/HDMA GNU and reusable under General Public License v3.0. 
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