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Abstract  11 
Pressure injuries are largely preventable, yet they affect one in four Canadians across 12 
all healthcare settings. A key best practice to prevent and treat pressure injuries is to 13 
minimize prolonged tissue deformation by ensuring at-risk individuals are repositioned 14 
regularly (typically every 2 hours). However, adherence to repositioning is poor in 15 
clinical settings and expected to be even worse in homecare settings.  16 

Our team has designed a position detection system for home use that uses machine 17 
learning approaches to predict a patient’s position in bed using data from load cells 18 
under the bed legs. The system predicts the patient’s position as one of three position 19 
categories: left-side lying, right-side lying, or supine. The objectives of this project were 20 
to: i) determine if measuring ground truth patient position with an inertial measurement 21 
unit can improve our system accuracy (predicting left-side lying, right-side lying, or 22 
supine) ii) to determine the range of transverse pelvis angles (TPA) that fully offloaded 23 
each of the great trochanters and sacrum and iii) evaluate the potential benefit of being 24 
able to predict the individual’s position with higher precision (classifying position into 25 
more than three categories) by taking into account a potential drop in prediction 26 
accuracy as well as the range of TPA for which the greater trochanters and sacrum 27 
were fully offloaded. 28 

Data from 18 participants was combined with previous data sets to train and evaluate 29 
classifiers to predict the participants’ TPA using four different position bin sizes (~70°, 30 
45°, ~30°, and 15°) and the effects of increasing precision on performance, where 31 
patients are left side-lying at -90°, right side-lying at 90° and supine at 0°). A leave-one-32 
participant-out cross validation approach was used to select the best performing 33 
classifier, which was found to have an accuracy of 84.03% with an F1 score of 0.8399. 34 
Skin-bed interface forces were measured using force sensitive resistors placed on the 35 
greater trochanters and sacrum. Complete offloading for the sacrum was only achieved 36 
for the positions with TPA angles <-90° or >90°, indicating there was no benefit to 37 
predicting with greater precision than with three categories: left, right, and supine. 38 
 39 
Keywords 40 
Pressure injuries, bed sores, machine learning, neural networks, prevention, healing, 41 
repositioning, skin-bed interface 42 
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1 Introduction 44 
Pressure injuries (PIs), also known as bed sores or pressure ulcers, are largely 45 
preventable, yet they affect one in four Canadians across all healthcare settings (1). PIs 46 
are thought to be the result of prolonged deformation resulting from tissues being 47 
compressed between a support surface and a bony prominence (2); however, on a 48 
microscopic level, tissue deformation can occur within minutes (3,4). Deep tissue 49 
injuries are more related to the pressure force and superficial skin injuries are more 50 
related to the shear force (4).  51 
 52 
The deformation disrupts homeostasis at the cellular level, resulting in a positive 53 
feedback cycle of inflammation, ischemia, and cell death (3–5). The current practice for 54 
treating pressure injuries is to minimize the risk of prolonged deformation by 55 
repositioning patients every two hours to allow the compressed tissues to return to their 56 
normal state (3–6). Unfortunately, evidence suggests that adherence rates to 57 
repositioning schedules are poor in clinical environments (7–9) and are likely to be 58 
worse in homecare settings (10).  59 
 60 
The cost of PIs to the healthcare system is also enormous, with the estimated cost 61 
currently exceeding $26.8 billion in the United States (11). These costs may soon 62 
increase as the COVID-19 pandemic has likely exposed more individuals to PI risks 63 
while being treated as in-patients in hospitals (3).  64 
 65 
To address the need for improved repositioning, Wong et al. (12) have developed a 66 
system that uses machine learning to detect the position of a simulated patient in bed 67 
based on data from load cells under each bed leg. The proof-of-concept work was able 68 
to detect healthy participant position (supine, left-side, or right-side) with 94.2% 69 
accuracy (n=20). When Wong et al.’s (12) model was tested on the data collected from 70 
nine older adults sleeping in their own beds at home, the accuracy dropped to ~88.5%. 71 
The drop in accuracy was suspected to be due to the large variations of sleeping 72 
positions that can be adopted. Additionally, this highlighted the importance of defining 73 
which areas of the pelvis are offloaded in different positions.  74 
 75 
The primary aim of this work was to improve the performance of our machine learning 76 
model using a pelvis-mounted Inertial Measurement Unit (IMU) to provide more 77 
accurate ground-truth labels than we previously had using time-lapse images of the 78 
individual in bed. The secondary aim was to determine the range of transverse pelvic 79 
angles that completely offloads the greater trochanter and the sacrum, where complete 80 
offloading indicates there is no force from the bed being applied to the area in question. 81 
These results were then used to evaluate the benefit of predicting an individual’s 82 
position in bed with finer precision than supine, left, or right. This was achieved by 83 
specifying more narrow ranges of angles within which the participant position belonged 84 
to (i.e., a position held at 30° would fall into the 20° to 40° bin instead of the Right bin). 85 
 86 
The participant’s position was defined by the angle of the pelvis with respect to the bed 87 
in the transverse plane, referred to as the transverse pelvic angle (TPA). Left-side, 88 
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supine, and right-side lying were represented by -90°, 0°, and 90°, respectively. Figure 1 89 
shows a visual representation of the TPA. 90 
 91 

 92 
Figure 1. The solid-coloured black line represents an individual’s position on the bed in the 93 
transverse plane. This line is perpendicular to the line connecting the left and right anterior 94 
superior iliac spine bony landmarks on the individual. The dotted red line represents our 0° (true 95 
supine) reference point, and it is defined as the line perpendicular to the surface of the bed. 96 
Therefore, the TPA, represented by θ, is defined as the angle between the 0° reference line and 97 
the line perpendicular to the anterior-posterior axis of the pelvis. 98 

Figure 2 shows the different bin sizes that were tested to see the effects of increased 99 
precision on performance. A total of four different bin sizes were used. For the 15° 100 
(Figure 2a) and 45° (Figure 2c) bins, all bins are the same size. However, for the ~30° 101 
(Figure 2b) and ~70° (Figure 2d) bins, the bin size containing the 0° supine position was 102 
adjusted to avoid the bin boundaries coinciding with the positions that participants were 103 
asked to adopt. 104 
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 105 
Figure 2a. 15° bins; 2b. ~30° bins; 2c. 45° bins; 2d. ~70° bins 106 

 107 
2 Methods 108 
2.1 Participants 109 
A convenience sample of 20 healthy participants (10 males, 10 females) was recruited 110 
for this study. Able-bodied participants were included with no existing pressure injuries. 111 
All participants provided their informed consent, and the study protocol was reviewed by 112 
the Research Ethics Board of University Health Network.  113 
 114 
2.2 System Setup 115 
The instrumentation was set up in a similar manner to Wong et al. (12). Data was 116 
collected in CareLab, a simulated patient care environment located within Toronto 117 
Rehabilitation Institute (TRI), using a Carroll hospital bed (Carroll Hospital Group, 118 
Kalamazoo, MI). Single-axis load cells comprised of four load sensors (model DLC902-119 
30KG-HB, Hunan Detail Sensing Technology, Changsha, Hunan, China) arranged in a 120 
full Wheatstone bridge circuit were placed under each of the four wheels of the bed. The 121 
load cell signals were amplified, filtered, and converted from analog to digital using a 122 
signal conditioner (GEN 5, AMTI, Watertwon, MA) configured for 5.0 VDC excitation and 123 
a gain of 500 for each channel. NetForce software (version 3.5.2, AMTI, Watertown, 124 
MA) running on a laptop PC (Thinkpad T520, Lenovo, Hong Kong, China, 2.5 GHz Intel 125 
Core i5 CPU, 4 GB of RAM) was used to collect the load cell data at 50 Hz with 16-bit 126 
resolution. A camera was also positioned above the bed to capture ground truth video 127 
data of the participant positions. 128 
 129 
Participants were fitted with three IMUs (Shimmer3, Shimmer Sensing, Dublin, Ireland) 130 
– one around the chest, one around the pelvis, and one around the arm in order to 131 
collect ground truth data for the sternal angle, pelvic angle, and heart rate, respectively. 132 
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The IMUs were connected to a laptop (Aspire 5, Acer, Xizhi, New Taipei, Taiwan, 133 
1.8GHz Intel Core i7 CPU, 12GB of RAM) via Bluetooth to ConsensysPRO (version 134 
1.6.0, Consensys, Dublin, Ireland) to collect data, visualize real-time transverse trunk 135 
and pelvic angles, and choose the sampling frequency (256 Hz).  136 
 137 
Participants were also fitted with three FSRs (model RP-S40-ST, Hilitand) in order to 138 
collect offloading data. The FSRs were connected to an Arduino board, which was 139 
connected to a laptop (Aspire 5, Acer, Xizhi, New Taipei, Taiwan, 1.8GHz Intel Core i7 140 
CPU, 12GB of RAM) using the Arduino software (Arduino, version 1.8.13, Boston, MA). 141 
Three LED lights (one for each sensor) were set up to indicate that the FSRs were 142 
recording properly.  143 
 144 
2.3 Data Collection 145 
The data was collected in two phases: a) the primary phase, where participants were 146 
instructed to cycle through a series of 11 unique positions at 0°, ±15°, ±30°, ±45°, ±60°, 147 
and ± 90°; and b) the random phase, where participants could assume any position they 148 
wanted to from -180° to +180° to account for the wide range of positions that can be 149 
adopted in bed. In addition, participants were asked to assume one prone position. 150 
 151 
All primary and random phase positions were held for three minutes. Figure 3 shows 152 
order of positions, including the intermediate positions (defined as positions held in 153 
between each three-minute hold,) that were held for one minute. The intermediate 154 
positions served as a way of standardizing the way pillows were inserted and removed 155 
for the primary phase. 156 

  157 
Figure 3. The 11 different positions adopted by patients during primary testing and the order of 158 
positions, including Intermediate holds at supine, R90° and L90°. 159 
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Data from two participants was removed from the data set due to equipment 160 
malfunction.  161 
 162 
2.4 Data Supplementation 163 
Additional data was incorporated into the training set to increase the size of the data 164 
set. This additional data was only used to train machine and deep learning classifiers for 165 
the detection of supine, left, or right positions. The total data set used included 20,520 166 
observations of which 2,963 observations were from data collected in this study; 4,909 167 
observations were from the data collected by Wong et al. (12); and 12,918 observations 168 
were from data collected in the home environment by Gabison et al. (13).  169 
 170 
2.5 Data Processing 171 
Load Cell Data - Load cell signals were exported from Netforce and processed offline 172 
using MATLAB 2020a. The data was manually segmented into trials by removing 173 
sections where the participants were changing positions. Next, the center of mass of the 174 
bed-patient system was calculated using equations 1 and 2 below where CoM_x and 175 
CoM_y refer to the center of mass in the x (parallel to the short axis or width of the bed) 176 
and y (parallel to the long axis or length of the bed) directions, respectively. The data 177 
processing will be performed in the same manner as the study by Wong et al (12). 178 
Below is an explanation of how the data processing was executed, where LH 179 
 180 

𝐶𝑜𝑀_𝑥 =
𝑤

2
×

𝐿𝐻+𝐿𝐹−𝑅𝐻−𝑅𝐹

𝐿𝐻+𝐿𝐹+𝑅𝐻+𝑅𝐹
  Equation 1 181 

𝐶𝑜𝑀_𝑦 =
𝑙

2
×

𝐿𝐻+𝑅𝐻−𝐿𝐹−𝑅𝐹

𝐿𝐻+𝐿𝐹+𝑅𝐻+𝑅𝐹
 Equation 2 182 

 183 
and RH correspond to the vertical forces measured by left and right sensors at the head 184 
of the bed respectively, LF and RF corresponds to the vertical forces measures by the 185 
left and right sensors at the foot of the bed respectively, and l and w refer to the 186 
distances between the load cells. To isolate the changes in the CoM signals associated 187 
with respiration, CoM_x and CoM_y signals were low pass filtered with personalized 188 
Chebyshev Type II filters. This filter was applied using MATLAB’s filtfilt function 189 
(ensuring zero-phase shift) to obtain CoM_resp_x and CoM_resp_y. The times when 190 
maxima (tmax) and minima (tmin) occurred in the CoM_resp_x and CoM_resp_y 191 
signals were found by finding zero crossings for the first derivative of each signal. These 192 
times correspond with the end of each exhalation and inhalation respectively (14). The 193 
angle of the principal axis of the ellipsoid traced by the resultant CoM_resp signal 194 
relative to the positive x axis (positive angle measured clockwise) was calculated using 195 
equation 3 for each tmax and subsequent tmin. 196 
 197 

𝐶𝑜𝑀_𝑟𝑒𝑠𝑝_𝐴𝑁𝐺 = 𝑎𝑟𝑐𝑡𝑎𝑛 |
𝐶𝑜𝑀_𝑟𝑒𝑠𝑝_𝑦(𝑡𝑚𝑎𝑥)−𝐶𝑜𝑀_𝑟𝑒𝑠𝑝_𝑦(𝑡𝑚𝑖𝑛)

𝐶𝑜𝑀_𝑟𝑒𝑠𝑝_𝑥(𝑡𝑚𝑎𝑥)−𝐶𝑜𝑀_𝑟𝑒𝑠𝑝_𝑥(𝑡𝑚𝑖𝑛)
| Equation 3 198 

 199 
Finally, components of the signal that captured changes resulting from the cardiac cycle 200 
(rmsPulse) were isolated. MATLAB’s filtfilt function was used to bandpass filter the sum 201 
of the LH and RH signals using a personalized equiripple finite impulse response filter.  202 
 203 
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Each data point used for training/testing the machine learning and deep learning 204 
classifiers was the average of a 45 s moving window (2250 observations) with a new 205 
value computed by shifting the window by 15 s. Since each pose was maintained for 206 
approximately 3 min, roughly 10 data points were calculated for each pose with each 207 
participant. Missing data from one participant was interpolated based on values from the 208 
same window. 209 
 210 
IMU Data - The ground truth data was classified into one of three positions: right-side 211 
lying, left-side lying, or supine. The classifications were made based on a combination 212 
of Euler angles generated from the IMU data (data collected during this study), video 213 
data (data collected by Wong et al. (12)), and time-lapsed images (data collected in a 214 
home environment and classifications performed by 3 independent and blinded raters). 215 
The IMU data was further classified four more times using the generated Euler angles, 216 
once for each of the different bin sizes, to allow for more precise TPA detection.  217 
 218 
FSR Data - Only FSR data from the primary phase was used for this analysis as the 219 
positions were consistent between all participants. The FSR data was manually 220 
annotated by the author to assign position codes using the video data as ground truth 221 
guidance. A total of 865,234 observations were collected. Sensor malfunctions 222 
(incorrect readings where the sensor reported maximum values when there was no 223 
force placed on it or no force when there was forced placed on it) and transitions 224 
(readings that occurred while positions were being changed and that have no use) 225 
resulted in 84,905 and 36,487 observations being removed, respectively. The final 226 
reported data set contained 743,932 observations. 227 
 228 
The FSR data was converted from ADC values to Resistance (Kiloohms) using 229 
Equation 4 and then from Resistance (Kiloohms) to Force (grams) using Equation 5.  230 
 231 

𝑅𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =  −0.00948(𝐴𝐷𝐶) + 10 Equation 4 232 

𝐹𝑜𝑟𝑐𝑒 = (
271

𝑅𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒
)

100

69
 Equation 5 233 

 234 
As the FSRs were attached to participants using tape, there was a constant force 235 
(approximately 120g) present on the sensors. This was referred to as the “tape bias” 236 
and was defined as the lowest recorded force value present. The tape bias was 237 
subtracted from the force measurements and the values were normalized by dividing all 238 
the recordings for a participant by the maximum achieved force reading for that 239 
participant. As such, all force values were reported as the percentage of maximum force 240 
at each position for the participant. 241 
 242 
2.6 Feature Selection 243 
The same features that Wong et al. (12) used to achieve an accuracy of 94.2% with 244 
their in-lab participant study were used. These features were extracted from the load 245 
cell data (Table 1). 246 
 247 
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Table 1. Features extracted by Wong et al. 248 

Feature Description Feature Description 

meanCoM_x The mean of 
CoM_x 

CoM_resp_ANG COM angle during inhalation 
phase only, averaged for all 
occurrences 

meanCoM_y The mean of 
CoM_y 

stdCoM_resp_ANG Standard deviation of 
CoM_resp_ANG 

ratio_meanCoM The quotient of 
meanCoM_y 
divided by 
meanCoM_x 

rmsCoM_resp_x The root mean square of the x-
component of CoM_resp during 
both inhale and exhale phases, 
normalized to the 97th percentile 

stdCoM_x The standard 
deviation of 
CoM_x 

rmsCoM_resp_y The root mean square of the y-
component of CoM_resp during 
both inhale and exhalation 
phases, normalized to the 97th 
percentile 

stdCoM_y  The standard 
deviation of 
CoM_y 

ratio_rmsCoM_resp The quotient of rmsCoM_resp_y 
divided by rmsCoM_resp_x 

ratio_stdCoM The quotient of 
stdCoM_y divided 
by stdCoM_x 

rmsPulse The root mean square of the load 
cell signals filtered to capture 
changes resulting from the 
cardiac cycle 

  249 
2.7 Machine Learning Approach 250 
A two-part hierarchical classification approach was used (Figure 4), similar to the one 251 
used by Liang et al. (15). Level 1 was trained on the final data set and tested only on 252 
the new data to predict either supine, left, or right. After this classification, the new data 253 
was divided into three separate smaller data sets based on its IMU ground truth label 254 
(either supine, left, or right). The data from each of the three positions was fed into its 255 
respective model for Level 2 classification, where the model specified a more precise 256 
bin of angles that each position belonged to. Level 2 classification was repeated four 257 
times, once for each bin size (15°, ~30°, 45°, ~70°).  258 
 259 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 17, 2022. ; https://doi.org/10.1101/2022.03.15.22272323doi: medRxiv preprint 

https://doi.org/10.1101/2022.03.15.22272323
http://creativecommons.org/licenses/by-nc-nd/4.0/


9 
 

 260 
Figure 4. Flow diagram of how the two levels of hierarchical classification work together, where 261 
the second level shows the example of a bin size of 30°. 262 

Table 2 describes how the final data set was used for the classification tasks. 263 
 264 
Table 2. Table describing the different data sources and how they were used. 265 

Data Source 
Data 

Specifications 
Data Set Size 

(samples) 
IMU Data Use 

Hierarchy 
Level 

Wong et al. 
(Lab Data) 

20 healthy 
participants 

4909 No Training 1 

Home Data 
collected by our 
team 

9 healthy 
participants 
collected at home 
and 1 healthy 
participant 
collected in a sleep 
lab 

12918 No Training 1 

New lab data 
collected for 
this study 

18 healthy 
participants 

2963 Yes 
Training & 

Testing 
1 and 2 

 266 
Leave-One-Participant-Out - A leave-one-participant-out cross validation approach was 267 
used to evaluate the accuracy of the classifier, while maximizing the number of training 268 
observations. Using this method, a classifier was trained on a data set that incorporated 269 
17 participants and tested on the one excluded participant. This procedure was 270 
repeated 18 times, once for each participant. The overall performance measures were 271 
estimated from the averaged errors for each individual test sample.  272 
 273 
Incremental Learning - Incremental learning was used to evaluate the potential of the 274 
classifier to adapt to the left-out participant. The classifier was trained using different 275 
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percentages of the left-out participant’s data (c = 0, 10, 20, 30%). To maintain a uniform 276 
test set, the left-out participant’s data was split into a 30% incremental learning set, from 277 
which different c values were added to the training set, and a 70% test set. 278 
 279 
Machine Learning Classifiers - Table 3 shows a list of models used in both Level 1 and 280 
2 classifications. For Level 1, both machine and deep learning models were used. For 281 
Level 2, only machine learning models were used as there was not enough data to 282 
warrant the use of deep learning. 283 
 284 
Table 3. Table describing the models created, which level they were used for, and the features 285 
they used. 286 

Model Level 1 Prediction Level 2 Prediction Features Used 

Logistic Regression  X 
12 features from 
Wong et al. 

Support Vector Machine  X 
12 features from 
Wong et al. 

Gradient Boosting 
Classifier 

X X 
Some of the 12 
features from Wong 
et al. 

AdaBoost Classifier X X 
12 features from 
Wong et al. 

XGBoost Classifier X X 
12 features from 
Wong et al. 

Light Gradient Boosting 
Machine Classifier 

X  
12 features from 
Wong et al. 

Multilayer Perceptron 
(x3) 

X  
12 features from 
Wong et al. 

Recurrent Neural 
Network: Long Short-
Term Memory 

X  

12 features from 
Wong et al. 
& 
Automatic feature 
selection 

Convolutional Neural 
Network: 1-Dimensional 

X  

12 features from 
Wong et al. 
& 
Automatic feature 
selection 

 287 
Three different MLP models were constructed to test Level 1 classification, where: MLP 288 
1 was the original model used by Wong et al. []; MLP 2 was a large, hyperparameter 289 
tuned model using keras.tuner; and MLP 3 was a simple MLP model. Tables 4, 5, and 6 290 
describe the different model architectures. 291 
 292 
Table 4. Table describing the architecture of MLP 1, the original MLP model used by Wong et al. 293 
in their study. The dropout was set to 0.1 for all instances, the batch size was not specified, and 294 
the learning rate was 0.001. 295 

Layers Number of Nodes Activation Function 

Input 12 ReLu 

Fully Connected 1 64 ReLu 

Dropout 1 N/A N/A 
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Batch Normalization 1 N/A N/A 

Fully Connected 2 100 ReLu 

Dropout 2 N/A N/A 

Batch Normalization 2 N/A N/A 

Output 3 Softmax 

 296 
Table 5. Table describing the architecture of MLP 2, the hyperparameter tuned model. The 297 
dropout was set to 0.1 for all instances, the batch size was 128, and the learning rate was 298 
0.000417. 299 

Layers Number of Nodes Activation Function 

Input 12 ReLu 

Fully Connected 1 128 ReLu 

Dropout 1  N/A N/A 

Batch Normalization 1 N/A N/A 

Fully Connected 2 256 ReLu 

Dropout 2 N/A N/A 

Batch Normalization 2 N/A N/A 

Fully Connected 3 160 ReLu 

Dropout 3 N/A N/A 

Batch Normalization 3 N/A N/A 

Fully Connected 4 32 ReLu 

Dropout 4 N/A N/A 

Batch Normalization 4 N/A N/A 

Output 3 Softmax 

 300 
 301 
Table 6. Table describing the architecture of MLP 3, the simplified tuned model. The dropout was 302 
set to 0.1 for all instances, the batch size was 32, and the learning rate was 0.001. 303 

Layers Number of Nodes Activation Function 

Input 12 ReLu 

Fully Connected 1 12 ReLu 

Dropout 1 N/A N/A 

Batch Normalization 1 N/A N/A 

Fully Connected 2 6 ReLu 

Dropout 2 N/A N/A 

Batch Normalization 2 N/A N/A 

Fully Connected 3 4 ReLu 

Dropout 3 N/A N/A 

Batch Normalization 3 N/A N/A 

Output 3 Softmax 

 304 
Tables 7 and 8 describe the architecture of the CNN and RNN, respectively. 305 
 306 
Table 7. Table describing the architecture of the CNN model. The dropout was set to 0.2, 0.0, 307 
0.05, and 0.45 for the four layers, respectively; the batch size was 16, and the learning rate was 308 
0.00188. 309 

Layer Number of 
Filters 

Size/Stride Padding Activation Function 

Input 13 N/A N/A ReLu 

Convolutional 1 32 1/2 Same ReLu 
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Dropout 1 N/A N/A N/A N/A 

Batch Normalization 1 N/A N/A N/A N/A 

Convolutional 2 32 7/4 Same ReLu 

Dropout 2 N/A N/A N/A N/A 

Batch Normalization 2 N/A N/A N/A N/A 

Convolutional 3 32 5/2 Same ReLu 

Dropout 3 N/A N/A N/A N/A 

Batch Normalization 3 N/A N/A N/A N/A 

Max Pooling 1 N/A 4/3 Same N/A 

Flatten 1 N/A N/A N/A N/A 

Fully Connected 1 224 N/A N/A ReLu 

Dropout 4 N/A N/A N/A N/A 

Batch Normalization 4 N/A N/A N/A N/A 

Output N/A N/A N/A Softmax 

 310 
Table 8. Table describing the architecture of the RNN model. The dropout was set to 0.35 for all 311 
instances, the batch size was 512, and the learning rate was 0.000933. 312 

Layer Number of Nodes Activation Function 

Input 13 ReLu 

LSTM 1 96 ReLu 

Dropout 1 N/A N/A 

Batch Normalization 1 N/A N/A 

LSTM 2 128 ReLu 

Dropout 2 N/A N/A 

Batch Normalization 2 N/A N/A 

LSTM 3 256 ReLu 

Dropout 3 N/A N/A 

Batch Normalization 3 N/A N/A 

LSTM 4 224 ReLu 

Dropout 4 N/A N/A 

Batch Normalization 4 N/A N/A 

Fully Connected 1 32 ReLu 

Dropout 5 N/A N/A 

Batch Normalization 5 N/A N/A 

Output 3 Softmax 

 313 
2.8 Statistical Analysis 314 
Level 1 Classification - The results were compared to identify any significant differences 315 
in the mean accuracy and mean F1 scores based on the best performing incremental 316 
learning level. Post-hoc tests, namely Wilcoxon Rank Sum test with Bonferroni 317 
corrections for multiple comparisons, were used to compare the top three performing 318 
models. 319 
 320 
Incremental learning levels were also compared for each of the top models to determine 321 
its impact on performance. Each incremental learning level was compared to its 322 
adjacent value(s) (i.e., 0% to 10%, 10% to 20%, and 20% to 30%). 323 
 324 
Offloading Data - The percentage of maximum load recorded in each position was 325 
compared for each of the three FSRs. The statistical analyses were performed twice for 326 
each sensor, for a total of six analyses, to compare all adjacent positions from 90° to 0° 327 
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and from 0° to -90° (i.e., Analysis 1 was the Right Trochanter Sensor for 90° to 0°; 328 
Analysis 2 was the Right Trochanter Sensor for 0° to -90°; etc.). The data was 329 
normalized to every participant for the calculations. 330 
 331 
Level 2 Classification - The results from Level 2 Classification were compared to 332 
determine the effect of bin size on model performance for right and left classification. 333 
The best classifier from each bin size was compared to its adjacent bin size(s) (i.e., 70° 334 
to 45°, 45° to 30°, and 30° to 15°). 335 
 336 
3 Results 337 
3.1 Participants 338 
Descriptive statistics of the 20 participants recruited for this study are provided in Table 339 
9. 340 
 341 
Table 9. Table showing the participant demographics. *Note, participants 9 and 16 were included 342 
in this table, but they were not included in the analysis as mentioned above. 343 

Participant Sex (M/F) Age Range 
(years) 

Height (cm) Weight (kg) BMI 

1 F 26-30 170.0 92.0 31.8 

2 M 71-75 172.7 75.2 25.1 

3 M 31-35 181.0 88.7 27.1 

4 M 41-45 181.0 99.8 30.4 

5 F 51-55 157.5 87.8 35.4 

6 F 21-25 157.5 50.3 20.3 

7 M 21-25 175.0 73.8 24.1 

8 M 26-30 165.0 65.5 24.1 

9* F 21-25 169.0 77.8 27.2 

10 M 31-35 198.0 120.3 30.7 

11 F 21-25 161.3 62.6 24.1 

12 F 21-25 165.1 49.2 18.0 

13 F 21-25 175.0 57.4 18.8 

14 F 21-25 175.0 60.8 19.8 

15 F 21-25 170.0 63.7 22.1 

16* F 21-25 165.0 42.8 15.7 

17 M 21-25 188.0 107.6 30.4 

18 M 21-25 179.0 81.8 25.5 

19 M 16-20 185.4 78.0 22.7 

20 M 21-25 183.0 88.5 26.4 

Mean ± (SD)  29.8 ± 13.0 174.4 ± 10.6 77.9 ± 19.2 25.4 ± 4.7 

 344 
3.2 Level 1 Classification 345 
Tables 10 and 11 show the overall mean accuracy and F1 scores with their respective 346 
standard deviation values across all 18 participants for the classification of supine, left, 347 
and right for each incremental learning level. Since the ILL of 30% performed best, we 348 
conducted our analyses on these models. 349 
 350 
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Table 10. Table describing the combined mean accuracy and standard deviations of the tested 351 
models for Level 1 of the classification, which classifies positions as supine, left, or right. 352 

Model c = 0% c = 10% c = 20% c = 30% 

ADA Mean 74.90% ± 16.04% 74.73% ± 16.34% 74.89% ± 16.52% 74.54% ± 17.32% 

GBC Mean 38.03% ± 15.70% 37.31% ± 15.99% 37.89% ± 15.68% 37.61% ± 15.83% 

LGB Mean 75.19% ± 15.27% 79.46% ± 13.20% 80.96% ± 12.68% 81.70% ± 13.26% 

XGB Mean 74.30% ± 16.07% 79.04% ± 13.36% 81.87% ± 13.46% 84.03% ± 12.17% 

MLP 1 Mean 75.52% ± 16.12% 75.83% ± 16.13% 76.28% ± 14.33% 76.35% ± 14.80% 

MLP 2 Mean 75.85% ± 15.45% 78.08% ± 13.32% 76.67% ± 13.84% 78.83% ± 14.28% 

MLP 3 Mean 74.97% ± 18.60% 75.67% ± 16.77% 76.96% ± 16.74% 76.65% ± 16.65% 

LSTM Mean 29.75% ± 8.19% 29.66% ± 7.99% 27.00% ± 7.40% 31.05% ± 8.16% 

CNN Mean 38.03% ± 1.81% 37.31% ± 4.94% 37.89% ± 1.47% 37.61% ± 1.66% 

 353 
Table 11. Table describing the combined mean F1 scores and standard deviations of the tested 354 
models for Level 1 of the classification, which classifies positions as supine, left, or right. 355 

Model c = 0% c = 10% c = 20% c = 30% 

ADA Mean 0.7495 ± 0.1626 0.7478 ± 0.1662 0.7487 ± 0.1678 0.7463 ± 0.1749 

GBC Mean 0.7668 ± 0.1616 0.7692 ± 0.1651 0.7680 ± 0.1625 0.7731 ± 0.1637 

LGB Mean 0.7508 ± 0.1577 0.7950 ± 0.1331 0.8097 ± 0.1276 0.8176 ± 0.1331 

XGB Mean 0.7425 ± 0.1642 0.7895 ± 0.1355 0.8181 ± 0.1356 0.8399 ± 0.1226 

MLP 1 Mean 0.6929 ± 0.1387 0.6980 ± 0.1141 0.6762 ± 0.1697 0.6841 ± 0.1485 

MLP 2 Mean 0.7574 ± 0.1707 0.7780 ± 0.1437 0.7665 ± 0.1467 0.7780 ± 0.1434 

MLP 3 Mean 0.7530 ± 0.1919 0.7499 ± 0.2024 0.7691 ± 0.1756 0.7641 ± 0.1764 

LSTM Mean 0.1423 ± 0.0673 0.1480 ± 0.0658 0.1197 ±  0.0607 0.1528 ± 0.0667 

CNN Mean 0.2232 ± 0.0294 0.2216 ± 0.0302 0.2194 ± 0.0215 0.2191 ± 0.0205 

 356 
Comparing Machine Learning Models - The data was confirmed to be non-parametric. A 357 
Friedman’s ANOVA reported a significant difference between the mean accuracies: 358 
χ2(8) = 102.15, p < 1x10-15 and the mean F1 scores: χ2(8) = 115.13, p < 1x10-15. Figures 359 
5 and 6 depict the mean accuracies and F1 scores for all the models at an ILL of 30%. 360 
 361 
Multiple post-hoc Wilcoxon Rank Sum tests with Bonferroni corrections were used to 362 
compare the performances of the top three models (XGB, LGB, and MLP 2). For mean 363 
accuracy, the comparison between MLP 2 vs. LGB was not significant: V = 32, p = 364 
0.0210. The comparisons between MLP 2 vs. XGB, V = 10, p = 0.00178, and LGB vs. 365 
XGB, V = 9, p = 0.00152, were both significant. For mean F1 scores, all comparisons 366 
were found to be statistically significant, MLP 2 vs. XGB: V = 2, p = 0.000301; MLP 2 367 
vs. LGB: V = 11, p = 0.0127; LGB vs. XGB: V = 12, p = 0.00245.  368 
 369 
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 370 
Figure 5. Graph of Level 1 classification mean accuracy for an ILL of 30%. The error bars 371 
represent standard deviation. 372 

 373 
Figure 6. Graph of Level 1 classification mean F1 scores for an ILL of 30%. The error bars 374 
represent standard deviation. 375 

Comparing Incremental Learning Levels - The XGB data was confirmed to be non-376 
parametric. A Friedman’s ANOVA reported a difference between the mean accuracies: 377 
χ2(3) = 37.01, p < 1x10-7 and the mean F1 scores: χ2(3) = 35.41, p < 1x10-7. Figure 7a 378 
and 7b show a visual comparison between the mean accuracies and F1 scores of the 379 
different incremental learning levels for the XGB model. 380 
 381 
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 382 
Figure 7a. Graph of Level 1 classification mean accuracy for the top three models across the 383 
different ILLs. The error bars represent standard deviation; 7b. Graph of Level 1 classification 384 
mean F1 scores for the top three models across the different ILLs. The error bars represent 385 
standard deviation. 386 

Multiple post-hoc Wilcoxon Rank Sum tests with Bonferroni corrections were used to 387 
compare the XGB ILLs. All comparisons were found to be statistically significant for both 388 
mean accuracy and F1 scores. For accuracy, 0 vs. 10: V = 7, p = 0.00287; 10 vs. 20: V 389 
= 15, p = 0.00388; 20 vs 30: V = 7, p = 0.00176. For F1 scores, 0 vs. 10: V = 16, p = 390 
0.00266; 10 vs. 20: V = 21, p = 0.00532; 20 vs. 30: V = 10, p = 0.00178. 391 
 392 
3.4 FSR Data 393 
For the left and right trochanters, only the positions from -90° to 0° and 0° to 90°, 394 
respectively, were assessed. This decision was made because a trochanter is 395 
completely offloaded when a participant is on the opposite side, meaning the force 396 
reading would be 0. The above does not hold true for the sacrum, so it was assessed 397 
for the entire range of positions from -90° to 90°. 398 
 399 
Left Trochanter - The left trochanter loading data for positions -90° to 0° was analyzed 400 
and confirmed to be non-parametric. A Friedman’s ANOVA was significant, χ2(5) = 71, 401 
p < 1x10-13.  402 
 403 
Multiple post-hoc Wilcoxon Rank Sum tests with Bonferroni corrections were used to 404 
compare adjacent primary positions to determine if there was a difference in percentage 405 
of maximum load. In total, five comparisons were made, changing the p-value needed 406 
to reach significance to p < 0.01. Two of the comparisons were statistically significant 407 
and two almost reached statistical significance, -90° to -60°: V = 106, p = 0.051; -60° to 408 
-45°: V = 132, p < 0.001; -45° to -30°: V = 22; p = 0.016; -30° to -15°: V = 136, p < 1x10-409 
4; -15° to 0°: V = 116, p = 0.011. 410 
 411 
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Figure 8 shows the percentage of max load felt at the left trochanter as participants 412 
rotated through different positions and the significance between positions. 413 
 414 

 415 
Figure 8. Graph of the percentage of maximum load for the left trochanter sensor for all the 416 
primary positions. The error bars represent the standard error. 417 

Right Trochanter - The right trochanter loading data for positions 90° to 0° was analyzed 418 
and confirmed to be non-parametric. A Friedman’s ANOVA was significant, χ2(5) = 419 
78.48, p < 1x10-14.  420 
 421 
Multiple post-hoc Wilcoxon Rank Sum tests with Bonferroni corrections were used to 422 
compare adjacent primary positions to determine if there was a difference in percentage 423 
of maximum load. In total, five comparisons were made, changing the p-value needed 424 
to reach significance to p < 0.01. All comparisons except from 90° to 60° were 425 
statistically significant, 90° to 60°: V = 117, p = 0.057; 60° to 45°: V = 152, p < 1x10-4; 426 
45° to 30°: V = 146; p < 0.001; 30° to 15°: V = 153, p < 1x10-4; 15° to 0°: V = 140, p < 427 
0.01. 428 
 429 
Figure 9 shows the percentage of max load felt at the right trochanter as participants 430 
rotated through different positions and the significance between positions. 431 
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 432 
Figure 9. Graph of the percentage of maximum load for the right trochanter sensor for all the 433 
primary positions. The error bars represent the standard error. 434 

 435 
Sacrum - The sacral loading data for positions 90° to 0° was analyzed and confirmed to 436 
be non-parametric. A Friedman’s ANOVA was significant, χ2(5) = 75.218, p < 1x10-14. 437 
 438 
Multiple post-hoc Wilcoxon Rank Sum tests with Bonferroni corrections were used to 439 
compare adjacent primary positions to determine if there was a difference in percentage 440 
of maximum load. In total, five comparisons were made, changing the p-value needed 441 
to reach significance to p < 0.01. Four of the comparisons were statistically significant, 442 
90° to 60°: V = 7, p < 0.001; 60° to 45°: V = 7, p < 0.001; 45° to 30°: V = 55; p = 0.33; 443 
30° to 15°: V = 4, p < 0.001; 15° to 0°: V = 9, p < 0.001. 444 
 445 
The sacral loading data for positions -90° to 0° was analyzed and confirmed to be non-446 
parametric. A Friedman’s ANOVA was significant, χ2(5) = 67.679, p < 1x10-12. 447 
 448 
Multiple post-hoc Wilcoxon Rank Sum tests with Bonferroni corrections were used to 449 
compare adjacent primary positions to determine if there was a difference in percentage 450 
of maximum load. In total, five comparisons were made, changing the p-value needed 451 
to reach significance to p < 0.01. Three of the comparisons were statistically significant 452 
and one almost reached statistical significance, -90° to -60°: V = 10, p < 0.01; -60° to -453 
45°: V = 60, p = 0.71; -45° to -30°: V = 22; p = 0.016; -30° to -15°: V = 1, p < 1x10-4; -454 
15° to 0°: V = 13, p = 0.0027. 455 
 456 
Figure 10 shows the percentage of maximum load felt at the sacrum as participants 457 
rotated through different positions and the significance between positions. 458 
 459 
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 460 
Figure 10. Graph of the percentage of maximum load for the sacral sensor for all the primary 461 
positions. The error bars represent the standard error. 462 

3.5 Level 2 Classification 463 
Tables 12 and 13 show the overall mean accuracy and F1 scores with their respective 464 
standard deviation values across all 18 participants from Level 2 left and right 465 
classification using an ILL of 30%. Only the top two models are shown. 466 

 467 
Table 12. Table showing the mean accuracy and standard deviation values for the Level 2 Right 468 
and Left Classifications of different bin sizes for the top two models. 469 

Left 

Model Bin = ~70° Bin = 45° Bin = ~30° Bin = 15° 

GBC 77.46% ± 14.73% 73.57% ± 14.75% 64.18% ± 19.34% 56.20% ± 20.60% 

XGB 77.30% ± 15.28% 75.11% ± 14.80% 65.15% ± 20.91% 55.72% ± 20.36% 

 
Right 

Model Bin = ~70° Bin = 45° Bin = ~30° Bin = 15° 

GBC 66.98% ± 17.55% 62.99% ± 19.78% 62.73% ± 19.96% 51.77% ± 25.63% 

XGB 68.83% ± 16.44% 67.74% ± 18.85% 65.19% ± 20.07% 52.49% ± 24.57% 

 470 
Table 13. Table showing the mean F1 scores and standard deviation values for the Level 2 Right 471 
and Left Classifications of different bin sizes for the top three models. 472 

Left 

Model Bin = ~70° Bin = 45° Bin = ~30° Bin = 15° 

GBC 0.7080 ± 0.1963 0.6907 ± 0.1855 0.6031 ± 0.2179 0.5425 ± 0.2022 

XGB 0.7159 ± 0.2011 0.7100 ± 0.1864 0.6213 ± 0.2312 0.5400 ± 0.2099 

 
Right 

Model Bin = ~70° Bin = 45° Bin = ~30° Bin = 15° 

GBC 0.5914 ± 0.2299 0.5712 ± 0.2285 0.5780 ± 0.2224 0.4886 ± 0.2566 

XGB 0.6097 ± 0.2239 0.6181 ± 0.2305 0.6039 ± 0.2270 0.4996 ± 0.2573 
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 473 
Comparing Bin Sizes - The data for Level 2 left classification was confirmed to be 474 
parametric for both mean accuracy and F1 scores. Two ANOVAs reported a significant 475 
difference between the different bin sizes for mean accuracies, F(68,3) = 5.004, p = 476 
0.0034, and no significant difference for the mean F1 scores, F(68,3) = 2.714, p = 477 
0.0516. Figures 11a and 11b show the best mean accuracies and F1 scores from each 478 
Level 2 right classification bin. 479 
 480 

 481 
Figure 11a. Graph of mean accuracy for the top models for Level 2 left classification for the four 482 
different bin sizes; 11b. Graph of mean F1 score for the top models for Level 2 left classification 483 
for the four different bin sizes. 484 

Multiple post-hoc t-tests with Bonferroni corrections were used to compare the adjacent 485 
bin sizes. In total, three comparisons were made, changing the p-value needed to reach 486 
significance to p < 0.017. For mean accuracy, the 45° vs 30° and 30° vs 15° bin 487 
comparisons were found to be statistically significant: 45° vs 30°: t(17) = 2.954, p = 488 
0.00889; 30° vs 15°: t(17) = 2.685, p = 0.0156, respectively.  489 
 490 
The data for Level 2 right classification was confirmed to be parametric for both mean 491 
accuracies and F1 scores. Two ANOVAs reported no significant difference between the 492 
different bin sizes for mean accuracies, F(68,3) = 2.369, p = 0.0782, and F1 scores, 493 
F(68,3) = 0.959, p = 0.417. Figures 12a and 12b show the best mean accuracies and 494 
F1 scores from each Level 2 right classification bin. No post-hoc tests were performed. 495 
 496 
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 497 
Figure 12a. Graph of mean accuracy for the top models for Level 2 left classification for the four 498 
different bin sizes; 12b. Graph of mean F1 score for the top models for Level 2 left classification 499 
for the four different bin sizes. 500 

4 Discussion  501 
4.1 Level 1 Classification 502 
The best performing model was the XGBoost model with a mean accuracy of 84.03% ± 503 
12.17%, and mean F1 score of 0.8399 ± 0.1226. This accuracy is an improvement over 504 
the ~68% that Wong et al.’s previous model was able to achieve on this data. It is likely 505 
that this accuracy represents an underestimate of the actual accuracy of our new 506 
system as the training set includes data without the IMU ground truth data. 507 
 508 
The deep learning methods generally performed worse than the machine learning 509 
models, except for the MLP 2 model which performed at a comparable level to the LGB. 510 
However, this model had an overly complicated architecture for the amount of data it 511 
was processing, so it may have overfit to the data. In general, the most likely reason for 512 
the poor performance of the CNN and RNN was the lack of data as deep learning 513 
traditionally relies on very large data sets. 514 
 515 
Comparing Machine Learning Models - The omnibus test found an overall significant 516 
difference between the performance of all models and post-hoc comparisons of the top 517 
three models found statistically significant differences. In terms of mean accuracy and 518 
F1 score, the XGB model performed significantly better than both the LGB and MLP 2 519 
models. For mean accuracy, the LGB and MLP 2 were found to have performed 520 
comparably, whereas for mean F1 score, the LGB model outperformed the MLP 2 521 
model. Therefore, the XGB model was statistically significantly better than the other 522 
models and should thus be included in future work when testing position prediction.  523 
 524 
Comparing Incremental Learning Levels - A Friedman’s ANOVA showed a significant 525 
difference between the performance of the XGB model at different ILLs. Post-hoc tests 526 
further confirmed that there was a significant improvement in performance between 527 
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adjacent ILLs for both mean accuracy and F1 score as the ILL increased. This finding is 528 
important as it suggests that collecting data for incremental learning has the potential to 529 
better personalize the model to participants, thus improving their care. It is important to 530 
note that the test set for each participant in the study was limited ranging from 83 to 215 531 
observations (mean 151.1 observations), meaning that a maximum of 64 observations 532 
at 30% incremental learning were added to a data pool of ~20,000 observations for 533 
incremental learning. Considering that incremental learning with so few observations 534 
was able to improve the overall mean accuracy and F1 score by almost 10% and 0.1, 535 
respectively, for the XGB model, it would be important to further investigate the impacts 536 
of incremental learning with a larger data set. Additionally, it would be important to 537 
investigate whether the statistical significance of incremental learning translates to 538 
clinical significance and an improved prevention of PIs. 539 
 540 
4.2 FSR Data 541 
Left Trochanter - The left trochanter was loaded for most angles between 0° and -90° 542 
(as shown in Figure 8). A Friedman’s ANOVA indicated that there was a significant 543 
difference between the mean percentage of maximum force experienced on the left 544 
trochanter between different left-side lying positions. Post-hoc comparisons compared 545 
adjacent left positions and identified that the percentage of maximum force on the left 546 
trochanter was significantly different for -60° to -45° and -30° to -15°. Changes from -45° 547 
to -30° and -15° to 0° almost met significance. This finding indicates that rotating a 548 
participant from a more extreme position to a less extreme position between the 549 
positions -60° to -45° and -30° to -15° will result in significant offloading of the left 550 
trochanter compared to the previous position. 551 
 552 
Right Trochanter - The right trochanter was loaded for most angles between 0° to 90° 553 
(as shown in Figure 9). A Friedman’s ANOVA indicated that there was a significant 554 
difference between the mean percentage of maximum force experienced on the right 555 
trochanter between different right-side lying positions. Post-hoc comparisons compared 556 
adjacent right positions and identified that the percentage of maximum force on the right 557 
trochanter was significantly different for all adjacent positions except for 90° to 60°. This 558 
finding indicates that rotating a participant from a more extreme position to a less 559 
extreme position between the positions 60° to 45°, 45° to 30°, 30° to 15°, and 15° to 0° 560 
will result in significant offloading of the right trochanter compared to the previous 561 
position. 562 
 563 
Sacrum - The sacrum was only completely offloaded at -90° and 90° (as shown in 564 
Figure 10). A Friedman’s ANOVA reported a significant difference between the mean 565 
percentage of maximum force experienced on the sacrum between different right-side 566 
lying positions. Post-hoc comparisons compared adjacent right positions and identified 567 
that the percentage of maximum force on the sacrum was significantly different for all 568 
adjacent positions except for 45° to 30°. This finding indicated that rotating a participant 569 
from a less extreme position to a more extreme position between the positions 0° to 15°, 570 
15° to 30°, 45° to 60°, and 60° to 90° resulted in significant offloading of the sacrum 571 
compared to the previous position. 572 
 573 
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A Friedman’s ANOVA reported a significant difference between the mean percentage of 574 
maximum force experienced on the sacrum between different left-side lying positions. 575 
Post-hoc comparisons were used to compare adjacent left positions and they identified 576 
that the percentage of maximum force on the sacrum was significantly different for -90° 577 
to -60°, -30° to -15°, and -15° to 0°. Changes from -45° to -30° almost met significance. 578 
This finding indicates that rotating a participant from a less extreme position to a more 579 
extreme position between the positions 0° to -15°, -15° to -30°, and -60° to -90° will 580 
result in significant offloading of the sacrum compared to the previous position. 581 
 582 
Optimal Offloading - The trochanter opposite to the side a patient was turned on will be 583 
completely offloaded, making the trochanters easier to offload than the sacrum. It 584 
appeared that the sacrum was not fully offloaded in any position that required the use of 585 
a support pillow as the patient’s sacrum was likely pressed up against it. If complete 586 
offloading is required for adequate tissue healing, it may be necessary for patients to 587 
assume a side-lying position that can be maintained without the use of assistive device 588 
to maintain the position. If assistive devices are needed, it may be important to ensure 589 
they have a cut out around the sacral area to ensure it is being properly offloaded.  590 
 591 
Optimal Bin Size - The results indicated that the smallest bin size needed to detect 592 
meaningful changes in offloading is 15°. However, if patients require complete 593 
offloading to heal, then classifying positions as supine, left, or right will suffice. As such, 594 
it may be more important to focus on accurately detecting large positional changes like 595 
those in Level 1 classification to ensure offloading is occurring on a scheduled basis. 596 
More precise detection may be useful in recognizing smaller self-repositioning efforts 597 
and determining their impact on high-risk areas.  598 
 599 
4.3 Level 2 Classification 600 
Level 2 classification separates the right, left, and supine classifications from Level 1 601 
classification into smaller bins. Tables 12 and 13 summarize the results from the top two 602 
models for Level 2 classification of left and right bins based on bin size. The best 603 
performing models vary depending on bin size, but the XGB model was best in six out 604 
of eight cases for mean accuracy and seven out of eight for mean F1 score. The table 605 
also shows a trend of left-side positions being predicted correctly more often than right-606 
side positions. The reason for this finding is currently unclear. 607 
 608 
Comparing Bin Sizes - Tables 12 and 13 and Figures 11 and 12 show the effect of bin 609 
size on prediction accuracy. The results show that the accuracy of predictions 610 
decreases as the precision, or number of bins, increases.  611 
 612 
ANOVAs indicated that the only significant difference in bin sizes was in the Level 2 left 613 
mean accuracy comparison. When further analyzed, post-hoc t-tests indicated that the 614 
45° vs 30° and 30° vs 15° bin comparisons were significant.   615 
 616 
These results are important because they indicate that there is likely a trade-off 617 
between accuracy and precision when making predictions. It will be important to 618 
optimize the bin size for this system to ensure it is recording and classifying movements 619 
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of interest. In the future, bin size should be optimized based on information gathered 620 
from offloading data and clinical expertise to decide what is the smallest positional 621 
change that needs to be captured. 622 
 623 
4.4 Study Limitations 624 
This study included a number of technical and clinical limitations as described below: 625 
 626 
The technical limitations of this study included: 627 

1. Load cell data was filtered with customized parameters for each participant, 628 
which may have led to an increase in classification accuracy compared to using 629 
generic parameters. 630 

2. Most of the training data did not contain IM ground truth, so it could have 631 
negatively impacted the accuracy. 632 

3. The data set was too small to run one-shot learning to compare its accuracy with 633 
the current hierarchical approach. 634 

4. The neural network architectures selected by hyperparameter tuning were very 635 
complicated and may have overfit the data. 636 

5. Level 2 classification had an imbalance of positions that were >90° and <-90°, 637 
which could have negatively impacted the prediction accuracy for more extreme 638 
positions. 639 

 640 
The clinical limitations of this study included: 641 

1. The patient population was predominantly young, healthy individuals, which likely 642 
did not reflect the performance with a population of older adults with/at-risk of PI.  643 

2. Certain primary positions participants were asked to adopt were unnatural, which 644 
may have impacted the participants’ abilities to relax/breathe normally. 645 

3. Individuals were supported using pillows that were occasionally placed against 646 
the sacrum in side-lying positions, which could have resulted in overestimates in 647 
sacral load. Train clinicians would have likely avoided placing the support pillows 648 
against the sacrum. 649 

4. The way in which the IMUs were attached could have been more reliable to 650 
ensure they did not move while patients were changing positions. 651 

5. The FSRs were placed by participants under guidance of the author, which 652 
means they may not have been placed in the correct anatomical position every 653 
time.  654 

6. The FSRs occasionally fell off the participants during the study and needed to be 655 
re-attached mid study. 656 

 657 
4.5 Future Work 658 
Future work will include: 659 

1. Collecting overnight data from at-risk patients in their own homes. 660 
2. Revising pillow placement during offloading and trying out different repositioning 661 

aids to see the impacts on sacral loading. 662 
3. Validate a safe way to use IMUs for overnight data collection of at-risk patients. 663 
4. Treating the detection of patient position as a regression task instead of a 664 

classification task to evaluate performance. 665 
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 666 
5 Conclusion 667 
The main findings of this study were: 668 

1. An IMU mounted to the pelvis improved position detection accuracy for supine, 669 
left, or right from ~70% in our previous work to 84.2% ± 11.8% for the best 670 
performing model. 671 

2. The right and left trochanters were completely offloaded for TPAs of 0° to 90° 672 
and 0° to -90°, respectively. The sacrum was only completely offloaded for TPAs 673 
of >=90° and <=-90°, highlighting a potential limitation of the existing clinical 674 
guidelines suggesting individuals be rotated between TPAs of -40° and 40°. 675 

3. Prediction accuracy decreased as the precision increased.  676 

 677 
6 References 678 
1.  Perez ED. Pressure ulcers: Updated guidelines for treatment and prevention. Vol. 679 

48, Geriatrics. 1993. p. 39-41+43.  680 
2.  Norton L, Parslow N, Johnston D, Ho C, A Afalavi. Best practice 681 

recommendations for the prevention and management of pressure injuries. 682 
Wounds Canada. 2017;  683 

3.  Gefen A, Soppi E. What is new in our understanding of pressure injuries : the 684 
inextricable association between sustained tissue deformations and pain and the 685 
role of the support surface. Wound Pract Res. 2020;28(2):58–66.  686 

4.  Lustig M, Wiggermann N, Gefen A. How patient migration in bed affects the sacral 687 
soft tissue loading and thereby the risk for a hospital-acquired pressure injury. 688 
2020;(December 2019):631–40.  689 

5.  Amit Gefen. The future of pressure ulcer prevention is here: Detecting and 690 
targeting inflammation early. EWMA J [Internet]. 2018 [cited 2019 Nov 691 
28];19(2):7–13. Available from: 692 
http://www.rcsi.ie/files/schoolofnursing/docs/20190122092031_JournalGefenThef693 
utureofpressur.pdf 694 

6.  Edsberg LE, Black JM, Goldberg M, McNichol L, Moore L, Sieggreen M. Revised 695 
National Pressure Ulcer Advisory Panel Pressure Injury Staging System. J 696 
Wound, Ostomy Cont Nurs. 2016 Nov 28;43(6):585–97.  697 

7.  Lyder CH, Preston J, Grady JN, Scinto J, Allman R, Bergstrom N, et al. Quality of 698 
Care for Hospitalized Medicare Patients at Risk for Pressure Ulcers. Arch Intern 699 
Med [Internet]. 2001;161:1549–54. Available from: https://jamanetwork.com/ 700 

8.  Krishnagopalan S, Johnson EW, Low LL, Kaufman LJ. Body positioning of 701 
intensive care patients: Clinical practice versus standards. Crit Care Med 702 
[Internet]. 2002 [cited 2019 Nov 28];30(11):2588–92. Available from: 703 
https://journals.lww.com/ccmjournal/Fulltext/2002/11000/Body_positioning_of_inte704 
nsive_care_patients_.31.aspx?casa_token=ff_PMN56fKYAAAAA:62UjaPGJtDBp705 
krveBQxn17zSFH7vcGEEcQWbgMWCTVfK-706 
hBAMyVi4vvHHO_eKuQ7f7X5WFiRCxbfqEUL8H3-JPc 707 

9.  Renganathan BS, Preejith SP, Nagaiyan S, Joseph J, Sivaprakasam M. A novel 708 
system to tackle hospital acquired pressure ulcers. In: Proceedings of the Annual 709 
International Conference of the IEEE Engineering in Medicine and Biology 710 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 17, 2022. ; https://doi.org/10.1101/2022.03.15.22272323doi: medRxiv preprint 

https://doi.org/10.1101/2022.03.15.22272323
http://creativecommons.org/licenses/by-nc-nd/4.0/


26 
 

Society, EMBS [Internet]. 2016 [cited 2019 Jul 30]. p. 4780–3. Available from: 711 
https://ieeexplore.ieee.org/abstract/document/7591796/ 712 

10.  Jankowski IM, Nadzam DM. Identifying gaps, barriers, and solutions in 713 
implementing pressure ulcer prevention programs. Jt Comm J Qual Patient Saf 714 
[Internet]. 2011 [cited 2019 Nov 28];37(6):253–64. Available from: 715 
https://www.sciencedirect.com/science/article/pii/S155372501137033X 716 

11.  Padula W V., Delarmente BA. The national cost of hospital-acquired pressure 717 
injuries in the United States. Int Wound J. 2019 Jun 1;16(3):634–40.  718 

12.  Wong G, Gabison S, Dolatabadi E, Evans G, Kajaks T, Holliday P, et al. Toward 719 
mitigating pressure injuries: Detecting patient orientation from vertical bed 720 
reaction forces. J Rehabil Assist Technol Eng [Internet]. 2020 [cited 2020 May 721 
7];7:205566832091216. Available from: 722 
https://journals.sagepub.com/doi/pdf/10.1177/2055668320912168 723 

13.  Gabison S, Pupic N, Evans G, Wong G, Fernie G, Dolatabadi E, et al. Measuring 724 
Repositioning in Home Care for Pressure Injury Prevention and Management (In 725 
prep.). Wounds Canada.  726 

14.  Beattie ZT, Hagen CC, Hayes TL. Classification of lying position using load cells 727 
under the bed. Proc Annu Int Conf IEEE Eng Med Biol Soc EMBS. 2011;474–7.  728 

15.  Liang H, Tsui BY, Ni H, Valentim CCS, Baxter SL, Liu G, et al. Evaluation and 729 
accurate diagnoses of pediatric diseases using artificial intelligence. Nat Med 730 
[Internet]. 2019 Mar 11 [cited 2021 Apr 15];25(3):433–8. Available from: 731 
http://www.nature.com/articles/s41591-018-0335-9 732 

 733 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 17, 2022. ; https://doi.org/10.1101/2022.03.15.22272323doi: medRxiv preprint 

https://doi.org/10.1101/2022.03.15.22272323
http://creativecommons.org/licenses/by-nc-nd/4.0/

