
Prospectively validated disease-agnostic predictive
medicine with augmented intelligence

Bragi Lovetrue1 & Idonae Lovetrue1

1Demiurge Technologies AG, 14 6300, Baarerstrasse, Zug, Switzerland

Despite numerous remarkable achievements for a variety of complex challenges,1,2 stan-

dalone artificial intelligence (AI) does not unlock life science from the long-term bottle-

neck of linearly extracting new knowledge from exponentially growing new data,3 which

has severely limited clinical success rates of drug discovery.4 Inspired by state-of-the-art

AI training methods, we propose a human-centric augmented intelligence5 (HAI) to learn

a foundation model6 that extracts all-encompassing knowledge of human physiology and

pathogenesis. The quality of HAI’s extracted knowledge was evaluated using a real-world

validation method— the public, prospective prediction of pivotal ongoing clinical trial suc-

cess outcomes at large scale (PROTOCOLS). This dataset was developed to benchmark HAI

performance with an expert baseline for prospective prediction sensitivity of successful clin-

ical programs, using only preclinical data as input. HAI achieved an 11.4-fold improve-

ment over this baseline with a 99% confidence7 for the PROTOCOLS validation set. The

decision-support integration of HAI during the developmental candidate evaluation stage

could significantly increase average clinical success rates of investigational new drugs from

7.9%8 to 90.1% for nearly any disease.9,10 This result confirms that exponentially extracted

knowledge alone may be sufficient to accurately predict clinical success, effecting a complete
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reversal of Eroom’s law.4 The trained HAI is also the world’s first clinically validated model

of human aging that could substantially speed up the discovery of preventive medicine for

all age-related diseases.11 This study demonstrates that disruptive breakthroughs necessi-

tate the smallest team size to attain the largest HAI for optimal knowledge extraction from

high-dimensional, low-quality data spaces, thus establishing the first prospective proof of

the previous discovery that small teams disrupt12. The global adoption of how to train a HAI

may provide a new path to mass producing scientific and technological breakthroughs via ex-

ponential knowledge extraction and better data label designs for training better-performing

AI.13

1 INTRODUCTION

Despite recent successes,1,2 standalone AI has not enabled life science to overcome the bottleneck

of linearly extracting new knowledge from exponentially growing new data.3 This long-term short-

age of knowledge in life science has accelerated the decline of productivity in drug discovery, even

after the widespread adoption of AI for biomedical data analysis.4 For example, recent studies have

shown that only 20% of biomedical research generated reproducible data14 and fewer than 10% of

animal studies successfully predicted the clinical efficacy of new drugs.15 It has been proposed

that increasing the scale of data collection or the efficiency of knowledge extraction could address

these issues.3

High dimensionality and low quality are two defining characteristics of biomedical data, as

biological systems involve large quantities of entities across multiple scales. These attributes make
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it more difficult to reproduce and structure biomedical data. Deep neural networks (DNNs) are well

suited for extracting knowledge from the high-dimensional, high-quality data spaces.2 In contrast,

biological neural networks (BNNs) are adept at extracting knowledge from low-dimensional, low-

quality data spaces. As a result, neither DNNs nor BNNs alone are suitable for improving the

efficiency of knowledge extraction from biological data.

The multi-faceted correspondence between DNNs and BNNs5 suggests the novel possibility

of combining their complementary advantages. As such, we propose adapting best practices for

DNN training to a BNN, augmenting the resulting network for learning from high-dimensional

data. In principle, an augmented BNN (ABNN) is well suited to learning knowledge from the

high-dimensional, low-quality life science data and informing the design of improved data labels

(Figure 1a). Despite the potential translatability of ABNNs into black-box DNNs, an ABNN is

a quasi-white-box model necessarily hosted in a human brain. Hence, an ABNN is a form of

human-centric augmented intelligence (HAI).

There are several key advantages in training an ABNN, compared with a DNN (Figure 1b).

First, there is no need to redesign the network architecture or to tune network hyperparameters for

the ABNN, since the human brain has been optimized to learn via evolution. Second, there is no

need to pre-process data when training an ABNN because all publicly available life science data

are interpretable by humans and thus compatible with the ABNN. This is possible even if most of

the data are unlabeled, unstructured or uncleaned, which would be inscrutable for a DNN without

adequate preprocessing. Third, and more importantly, the ABNN may be immune to overfitting
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because it is sufficiently generalizable for learning from data that are categorically heterogeneous

with its intended application. In contrast, overfitting is somewhat inevitable with a DNN because

it lacks this generalizability and cannot learn from data that are not perfectly homogeneous with

its intended application (Figure 1b). In the context of life science and drug discovery, an ABNN

could be trained with biological data about normal physiological states, and then tested solely with

clinical data about abnormal pathological states. The resulting ABNN could directly extrapolate

from the normal states of human physiology to the abnormal states of human disease, even before

research data become available on new diseases like COVID-19.

Here we introduce the first ABNN developed by training a BNN to learn like an DNN for over

the course of eight years (Figure 2a and 2b). Since larger DNNs typically perform better,16,17 we

propose that the largest ABNN could only be realized by limiting the research team size to a single

brain to maximally increase the efficiency of knowledge extraction (Figure 2d). As such, best

practices for DNN training were adapted to a single ABNN that learns from all-encompassing life

science data in an uninterrupted pass without imposing intermediate milestones (Figure 2e). The

trained ABNN achieved exponential knowledge extraction from an exhaustive body of publicly

accessible life science publications and databases, thereby constructing a foundation model6 of

human physiology and over 130 specific models of human disease (Figure 2c).

The quality of knowledge extracted with the ABNN was assessed by measuring resulting

increases in the productivity of drug discovery. Inspired by the CASP challenge,18 which served

as a benchmark for evaluating DNN performance against expert performance in protein structure
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prediction, we designed a real-world validation method—the public prospective prediction of piv-

otal ongoing clinical trial success outcomes at large scale (PROTOCOLS) challenge. This method

provided a benchmark for comparing ABNN and expert performance in clinical success prediction

(Figure 3a, 3b and Methods section ‘Validation design’).

The rationale for the PROTOCOLS challenge is that pivotal clinical trials (phase 2 and phase

3) are statistically powered to assess a drug’s clinical success by evaluating its clinical efficacy

and safety, which is largely determined by the underlying biological processes that can be dis-

tilled into scientific knowledge. Historical clinical success rates for investigational drugs are

well-documented8,19 and provide an accurate baseline for evaluating ABNN performance in the

PROTOCOLS challenge.

Clinical success prediction is a critical go/no-go decision step in drug development because

only a subset of developable drug candidates, with highest clinical success potential, are selected

to transition from non-clinical to clinical development, due to the prohibitive cost of human clin-

ical trials.20 As a best practice in the biopharmaceutical industry,21 a group of committed experts

reviews both publicly available and privately accessible preclinical data to predict which drug

candidates will achieve clinical success. Human clinical trials are initiated only for those drug

candidates that are prospectively predicted to be clinically successful (Figure 3a). However, real-

world industrial practice has yielded a prospective prediction sensitivity of 7.9%,19 which is only

slightly better than chance.22

The PROTOCOLS validation method is designed to mirror the real-world industrial practices
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to minimize the performance gap from validation to application. The included ABNN accessed a

publicly available subset of expert-accessible preclinical data, used to predict which drug candi-

dates would achieve clinical success. Clinical trial readouts were tracked for all drug candidates

that had been prospectively predicted to be either clinically successful or not (Figure 3a). In con-

trast to the expert baseline performance of 7.9% (Methods section ‘Baseline performance’), the

ABNN followed identical procedures with fewer data yet yielded a prospective prediction sensi-

tivity of 90.1%, representing an 11.4-fold improvement over the baseline in realistic settings.

The PROTOCOLS validation method was used to evaluate the real-world performance of an

ABNN in actual clinical settings with an emphasis on generalizability to novel drug-disease pairs,

even with scarce or uninformative prior clinical data (Figure 3b). As such, there is little difference

between the validation performance of the ABNN in the PROTOCOLS challenge and the clinical

utility of the ABNN in real-world development candidate selection.23,24

2 RESULTS

The PROTOCOLS validation set comprised 265 then-ongoing real-world pivotal clinical trials

following a predefined set of screening criteria (Figure 3c and Methods section ‘Validation data

collection’).

Validation clinical trials and newly initiated clinical trials since 2020 were shown to follow

identical distributions across all major therapeutic areas (two-sample Kolmogorov-Smirnov test,

statistic = 0.333; P = 0.73; Figure 4). PROTOCOLS thus provided an unbiased evaluation of
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disease-agnostic performance for the ABNN.

Minimum sample size (131) and event size (118) requirements were determined for evaluat-

ing ABNN performance with 99% confidence7 (Figure 3c and Methods section ‘Statistical analy-

sis’). Both requirements were met as clinical readouts were available from 157 of 265 predictions

by the cutoff date (Methods section ‘Clinical readout’). A ground truth was then determined for

each readout and was then applied to validation of the corresponding prediction (Methods sec-

tion ‘Prediction validation’), producing a set of confusion matrices for varying subgroups of the

validation set (Figure 7).

It should be noted that positive instances (true positives and false negatives) are far more

important than negative instances (true negatives and false positives) in real-world drug discovery.

True positives are also more interesting than true negatives because the historical clinical success

rate for investigational drugs entering human studies is only 7.9% across all diseases8. As such,

false positives have only a marginal clinical impact because human clinical trials can still fail with-

out doing harm to patients. In contrast, false negatives have a substantial clinical impact because

they not only deny clinical benefits to patients, but also eliminate sizable revenue opportunities.

Accordingly, we chose sensitivity and F1 score as appropriate performance metrics for the

PROTOCOLS validation.25 Our choice of sensitivity realistically reflects best practices in actual

drug development. Every investigational new drug greenlit to enter first-in-human studies is then

genuinely believed by qualified experts to be capable of achieving clinical success. As such, the

clinical success rate from phase 1 to approval is construed as a statistical measure of sensitivity.19
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We also report other standard measures (accuracy, specificity, etc.) to provide a balanced view of

ABNN performance (Data Table 2).

Since the ABNN was trained to functionally reconstruct human physiology and human

pathogenesis (Methods section ‘Model training’), its disease-agnostic performance was first as-

sessed for the full validation set (157 predictions; Supplementary Table 1). The ABNN achieved a

90.1% prospective prediction sensitivity (99% CI 80.0%, 96.9%; P < 0.001; Figure 5a;), a 11.4-fold

improvement over the realistic baseline sensitivity of 7.9% and a 6.0-fold improvement over the

conservative baseline sensitivity of 15.1% (Figure 5a; Methods section ‘Baseline performance’).

It also achieved 0.86 F1 score (99% CI 0.79, 0.92; P < 0.0001; Figure 6c; Data Table 1), 82.8% ac-

curacy (99% CI 74.2%, 89.8%; P < 0.0001; Figure 6c; Data Table 1), and 72.7% specificity (99%

CI 57.5%, 85.3%; P < 0.0001; Figure 6b; Data Table 1). These data clearly demonstrate that the

ABNN has extracted large-scale, high-quality knowledge, enabling its excellent disease-agnostic

performance in the real-world settings of the PROTOCOLS validation.

Further analysis of subgroups was conducted for the validation set, with varying degrees of

clinical data availability. In theory, the ABNN should not require access to any clinical data prior

to making predictions of clinical outcomes for investigational drug candidates (Figure 3a).

First-in-class clinical trials for novel drug-disease pairs represent a fairly challenging subset

of the PROTOCOLS validation process because no prior clinical data are available for those drug-

disease pairs across all therapeutic areas. Since PROTOCOLS included 128 first-in-class clinical

trials with clinical readouts, the minimum sample and event size requirements for a 99% confidence
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interval (CI) have been met. The ABNN achieved 92.4% prospective prediction sensitivity (99%

CI 80.8%, 99.2%; P < 0.009; Figure 5b, 6b; Data Table 1), 0.85 F1 score (99% CI 0.76, 0.92; P <

0.0001;Figure 6c; Data Table 1), 82.5% accuracy (99% CI 72.8%, 90.3%; P < 0.0001; Figure 6c;

Data Table 1), and 71.7% specificity (99% CI 55.6%, 85.0%; P < 0.0001; Figure 6b; Data Table

1).

Notably, the ABNN exhibited superior disease-agnostic prospective prediction sensitivity for

first-in-class clinical trials, compared with all clinical trials (∆ = 2.3%; 99% CI -0.92%, 5.52%;

P < 0.002 for superiority at a 2% margin; Figure 5b; Methods section ‘Statistical analysis’). This

accuracy was also non-inferior to its performance for all clinical trials (∆ = 0.3%; 99% CI -0.87%,

1.47%; P < 0.0001 for non-inferiority at a 2% margin; Methods section ‘Statistical analysis’).

These results clearly demonstrate that the outstanding performance of the ABNN for PROTOCOLS

validation was independent of clinical data availability for arbitrary drug-disease pairs.

Clinical trials in oncology represent a unique challenge for the ABNN, as they conventionally

suffer from the lowest clinical success rates. The realistic baseline sensitivity for oncology is

5.3%, in contrast to the highest sensitivity of 23.9% for hematology8 (Methods section ‘Baseline

performance’). Consequentially, the importance of preferred positive instances is even higher in

oncology than in other therapeutic areas, to the reasonable extent that negative instances are no

longer interesting. As such, a clinically meaningful assessment of ABNN performance in oncology

should primarily focus on sensitivity, F1 score, and accuracy.

In addition, clinical trials in oncology often include quite complex trial designs involving

9
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active controls and combination therapies as a standard design for pivotal clinical trials. Human

cancer patients are further stratified by certain biomarkers,26 stages of cancer, and prior treatment

history, all of which add to the complexity of scientific knowledge required to make accurate

predictions of drug clinical efficacy and safety.

PROTOCOLS validation set included 48 clinical trials in oncology with clinical readouts,

satisfying the minimum sample and event size requirements for a 90% CI have been met (see

Methods section ‘Statistical analysis’). The ABNN achieved 88.9% prospective prediction sensi-

tivity (90% CI 75.7%, 94.3%; P < 0.015; Figure 5c, 6b; Data Table 1), a 16.8-fold improvement

over the realistic baseline sensitivity of 5.3%, and an 8.2-fold improvement over the conservative

baseline sensitivity of 10.8% for oncology clinical trials (Methods section ‘Baseline performance’).

Remarkably, the ABNN achieved 0.85 F1 score (90% CI 0.77, 0.90; P < 0.0004; Figure 6c; Data

Table 1) and 77.1% prospective prediction accuracy (90% CI 65.1%, 84.9%; P < 0.0004; Figure

6c; Data Table 1). These data clearly demonstrate the ABNN has extracted sufficiently complex

and intricately nuanced knowledge of the human body and cancer etiology to accurately predict

the clinical success of cancer drugs in biomarker-differentiated heterogeneous patient populations.

COVID-19 represents the ultimate test of existing knowledge quality for the ABNN because

no knowledge of COVID-19 can be extracted directly, due to a lack of prior data shortly after the

outbreak. As such, the entire disease model for COVID-19 can only be constructed by generalizing

other knowledge to COVID-19 clinical symptoms. In addition, no clinical data were available

worldwide when the preprint of the ABNN COVID-19 disease model was published on March 20,
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202027.

As there are 49 infectious disease clinical trials in the validation set, the minimum sample

size and event size requirements for a 90% CI have been met (see Methods section ‘Statistical

analysis’). In total, 94% (46/49) are pivotal COVID-19 clinical trials (Supplementary Table 4).

The ABNN achieved 88.9% prospective prediction sensitivity (90% CI 68.3%, 95.4%; P <

0.05; Figure 5c; Data Table 1) for infectious diseases in the validation set. This represents a 6.7-

fold improvement over the realistic baseline sensitivity of 13.2% and a 3.9-fold improvement over

the conservative baseline sensitivity of 22.8% for infectious disease clinical trials (Methods section

‘Baseline performance’). The ABNN also achieved 0.78 F1 score (90% CI 0.65, 0.86; P < 0.0012;

Figure 6c; Data Table 1) and 81.6% prospective prediction accuracy (90% CI 70.1%, 88.4%; P <

0.002; Figure 6c; Data Table 1). These data clearly indicate the quality of extracted knowledge in

the ABNN has reached a critical mass, enabling de novo generation of comprehensive knowledge

for a new disease like COVID-19 while maintaining the same quality as that of the new knowledge

extracted from prior biological data.

The ABNN achieved 92.4% 7.8% prospective prediction sensitivity (Figure 5c, 6b; Data

Table 2) and 0.91 0.10 F1 score (Figure 6d; Data Table 2) across all other therapeutic areas in

the PROTOCOLS validation set (60 predictions in total; Supplementary Table 7). Although the

minimum requirements for a 90% CI were not met for these data (Methods section ‘Statistical

analysis’), the results demonstrate that ABNN performance is stable and consistent.
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Alzheimer’s disease (AD) was also included in the PROTOCOLS validation and served to

further demonstrate the robustness of extracted knowledge in the ABNN. AD represents an ex-

treme case because the historical clinical success rate of AD-modifying drugs is nearly zero.28 A

single true positive then becomes an appropriate performance metric for AD because both false

positive and false negative instances are equally uninteresting in real-world settings. As such, AD

represents a significant challenge for the ABNN because of a consensus that it is overly complex,

the quantity of existing data is too low, and the quality of existing data is poor.28

Despite these limitations, the ABNN achieved 100% accuracy and 100% precision with non-

zero true positives and no false positives (Supplementary Table 6) for three prospective predictions

of AD pivotal clinical trials during PROTOCOLS validation. The first true positive was Masitinib,

a first-in-class c-Kit inhibitor that met the efficacy primary endpoint in a pivotal phase 3 trial

(NCT01872598). These results demonstrate the potential of the ABNN for extracting large-scale,

high-quality knowledge of AD from existing data.

Aging is an evolutionarily conserved effect across all mammalian species29 and is clinically

recognized as the primary risk factor for numerous diseases in multiple therapeutic areas.30 The

quality of extracted aging-specific knowledge in the ABNN was evaluated by identifying all age-

related pivotal clinical trials in the PROTOCOLS validation set (Methods section ‘Validation data

collection’) and corresponding ABNN performance (Figure 8).

As there are 119 age-related clinical trials of age-related diseases in the validation set, the

minimum sample and event size requirements for a 99% CI have been met. The ABNN achieved
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91.0% prospective prediction sensitivity (99% CI 79.1%, 98.4%; P < 0.005; Data Table 1; Figure

9a), 0.85 F1 score (99% CI 0.76, 0.92; P < 0.0001; Data Table 1; Figure 6c), 81.5% prospective

prediction accuracy (99% CI 71.3%, 89.7%; P < 0.0001; Data Table 1; Figure 6c), and 69.2%

specificity (99% CI 51.8%, 83.9%; P < 0.0001; Data Table 1; Figure 6b).

Remarkably, ABNN prospective prediction sensitivity for all age-related clinical trials was

non-inferior to its performance for all first-in-class clinical trials (∆ = 1.4%; 99% CI -1.12%,

3.92%; P < 0.003 for superiority at a 2% margin; Methods section ‘Statistical analysis’). ABNN

prospective predictive accuracy for age-related clinical trials was also shown to be non-inferior to

its performance for first-in-class clinical trials (∆ = 1.0%; 99% CI -1.14%, 3.14%; P < 0.0001 for

non-inferiority at a 2% margin; Methods section ‘Statistical analysis’).

ABNN prospective predictive sensitivity for all age-related clinical trials was statistically

significantly higher than its performance for all clinical trials in the validation set (∆ = 0.9%; 99%

CI -1.13%, 2.93%; P < 0.0001 for superiority at a 2% margin; Figure 9a; Methods section ‘Statis-

tical analysis’). These results clearly demonstrate the ABNN has extracted sufficient knowledge

of aging, which contributed significantly to its consistent performance across all the age-related

indications in the PROTOCOLS validation set (Figure 9b).

We also investigated the relationship between the quality of extracted knowledge in the

ABNN and the difficulty of drug discovery per therapeutic area, by calculating correlations be-

tween F1 scores and realistic baseline sensitivities (or LOA: historical clinical success rates for

investigational new drugs since phase 1. See Methods section ‘baseline performance’) for all val-
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idation subgroups (Figure 6d). F1 scores and LOA were negatively and weakly correlated (Exact

Pearson r = -0.260), indicating that the quality of ABNN knowledge concerning human pathogen-

esis is orthogonal to the quality of collective knowledge for the corresponding therapeutic areas.

Surprisingly, ABNN performance was higher for increasingly difficult therapeutic areas (Figure

6d; Data Table 2).

Finally, we investigated the relationship between the quality of extracted knowledge in the

ABNN and drug modality (Figure 10). The ABNN achieved 91.5% prospective prediction sensi-

tivity (90% CI 80.8%, 95.7%; P < 0.015; Figure 11a; Data Table 1) for biologics (68 biological

trials; Methods section ‘Drug classification’) and 85.7% prospective prediction sensitivity (90%

CI 71.9%, 92.2%; P < 0.009; Figure 11a; Data Table 1) for small molecule drugs (77 NME tri-

als; Methods section ‘Drug classification’). This performance was consistently high across drug

modalities and even higher for biologics than for small molecules (∆ = 5.8%; 90% CI 0.78%,

10.82%; P < 0.0001 for superiority at a 2% margin; Figure 11a; Methods section ‘Statistical anal-

ysis’). We further calculated correlations between F1 scores and realistic baseline sensitivities (or

LOA: historical clinical success rates for investigational new drugs since phase 1. See Methods

section ‘baseline performance’) across drug modalities. F1 scores and LOA were positively and

strongly correlated (Exact Pearson r = 0.975; Figure 11b), indicating that the quality of extracted

knowledge in the ABNN may be a natural fit for drug modalities with a higher target specificity.
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3 DISCUSSION

In this study, the possibility of a deep-learning-augmented human intelligence (HAI) has been

presented for constructing a foundation model of human physiology, potentially enabling highly

accurate data-free predictions of clinical success for investigational new drugs applied to almost

any disease. This achievement is intractable for data-driven machine intelligence, on which the

demands for clinical data are unrealistically high and the efficiency of knowledge extraction is

sufficiently low that gaps between promise and proof have become nearly unbridgeable (Figure 1).

Humans have designed machine learning methods to train deep neural networks that have

successfully learned black-box models, outperforming human experts in playing games1 and pre-

dicting protein structures.2 Our work shows that a similar approach could be adapted to training

augmented biological neural networks (ABNNs) in learning quasi-white-box models27 and pre-

dicting the clinical success of investigational new drugs (Figure 1b).

The resulting ABNN could safely deliver AI-surpassing clinical utility while averting the

privacy and trustworthiness challenges faced by medical AI systems.24 The ABNN could also

inform the better design of labels for training better-performing DNNs with fewer data.13

Furthermore, in contrast to domain experts who have privileged access to a large body of

private preclinical data, the presented ABNN was trained solely using public preclinical data yet

extracted more knowledge than previous attempts by experts (Figure 3a).
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PROTOCOLS represents the most rigorous validation design to date for evaluating the real-

world utility of extracted knowledge from large-scale, low-quality data spaces (Figure 3 and Figure

4). With a 99% CI, the trained ABNN achieved a prospective prediction sensitivity of more than

90%, an F1 score of more than 0.85, and a prospective prediction accuracy of more than 82%

across all therapeutic areas, independent of the availability of prior clinical data (Figure 5 and

Figure 6; Data Table 2).

In addition, the drug mechanism of action and clinical trial design protocols were the only

inputs used by the ABNN to evaluate the clinical success of novel drugs (Figure 3a). ABNN

performance in PROTOCOLS confirmed that large-scale, high-quality scientific knowledge alone

may be sufficient to accurately predict drug clinical success.

Given that both ABNN inputs are available prior to first-in-human studies and positive in-

stances matter far more than negative instances in actual drug discovery and development, positive

predictions of drug clinical success alone could serve as a decision-support intelligence for the

selection of drug candidates for clinical development, significantly increasing the clinical success

rates for investigational new drugs from 7.9%8 to 90.1% and ushering a permanent reversal of

Eroom’s law4 (Figure 3a).

The trained ABNN is also the world’s first clinically validated model of human aging (Figure

8 and Figure 9). Its application to the development of cellular rejuvenation programming could

substantially speed up the discovery of preventive medicines for age-related diseases.11
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The ABNN also leaves room for improvement as 17.2% (27/157) of predictions were either

false positives (18/157) or false negatives (9/157) in the PROTOCOLS validation. As such, further

work is planned to investigate why the ABNN performs better for harder diseases (Figure 6d). The

exponential efficiency of knowledge extraction enabled the ABNN to translate each false prediction

into substantial improvements in the corresponding disease model.

Another potential limitation of our work is that the ABNN was validated in PROTOCOLS

using ongoing pivotal clinical trials whose drug candidates had already been pre-selected by ex-

perts to enter clinical development. ABNN performance in development candidate selection may

thus be conditioned upon prior expert performance, the extent of which could be determined in fu-

ture rounds of PROTOCOLS validation enabled by an expanded access to private preclinical data,

allowing for the ABNN to predict the clinical success for the drug candidates that are crossed out

by experts yet still enter clinical-stage development based on predictions by the ABNN.

Nevertheless, the possible conditioning of the ABNN’s performance upon prior expert per-

formance in development candidate selection should be seen as an application advantage. The

ABNN enables a zero-change integration with any standard workflow of clinical development as

an add-on screening of expert-shortlisted development candidates, without making any modifica-

tions of current best practices. The ABNN serves as an augmented intelligence in collaboration

with experts, in contrast to artificial intelligence systems that are often positioned in competition

with or even in substitution for experts.24

While this work could significantly reshape medicine, its broader impact lies in the pre-
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sented training methodology, which provides a new path for drastically increasing the efficiency

of knowledge extraction in every discipline that is characterized by large-scale, low-quality data

spaces (e.g., synthetic biology, material science, and climate science). These results also provide

the first prospective proof that the smallest research team is necessary for delivering the most dis-

ruptive breakthroughs.12

The advent of the ABNN represents a new era of human-centric augmented intelligence

(HAI). The global adoption of ABNN training could shift research culture and organizational struc-

ture towards a potential mass production of scientific and technological breakthroughs. ABNNs

could give rise to general purpose technologies that could potentially overcome the productivity

J-curve and paradoxes recurrently observed in the past.31

4 METHODS

TRAINING DATA COLLECTION

Two types of training data were collected for different stages of training the ABNN.

In stage 1, the ABNN was trained to learn a foundation model of the normal states of human

body to capture the latent complexity of human physiology. The stage 1 training data covered all

publicly accessible sources of biological data that could inform normal physiological processes

in human body, including cross-species data about evolutionarily conserved biological building

blocks (Methods section ‘Model training’).

18

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 31, 2022. ; https://doi.org/10.1101/2022.03.14.22272372doi: medRxiv preprint 

https://doi.org/10.1101/2022.03.14.22272372
http://creativecommons.org/licenses/by-nc-nd/4.0/


In stage 2, the ABNN was trained to learn disease-specific models of the abnormal states of

human body that should match the clinical scope of human pathogenesis. The stage 2 training data

covered all publicly accessible sources of biological data that investigated disease etiology in cell

cultures and animal models, as well as medical data that reported disease-specific co-morbidities

and symptoms on human patients. Nevertheless, no clinical trial data were collected for training

the ABNN because they were designed for drawing causal inferences about drug-target interactions

under the assumption that human body is a black-box system, thus uninformative for modelling

the underlying mechanisms of human pathogenesis (Methods section ‘Model training’).

MODEL TRAINING

Inspired by the multi-faceted functional correspondence between deep neural networks (DNNs)

and biological neural networks (BNNs),5 we adapt the best practice of training DNNs into a stan-

dard protocol of training BNNs to learn representations from large-scale data spaces like DNNs,

resulting in augmented biological neural networks (ABNNs) as a form of replicable augmented

intelligence. We use our validated ABNN in life science as an example for illustrating each step in

the training protocol:

Training Data: DNNs learn better representations of data with more levels of abstraction

than with fewer levels, and BNNs share the hierarchical architecture of DNNs.5,32 Accordingly,

ABNNs must be exposed to the full breadth and depth of multi-omics data (e.g., genome, proteome,

transcriptome, epigenome, metabolome, and microbiome) to capture the latent complexity of hu-

man physiology matching the clinical scope of human pathogenesis (Figure 2a). More specifically,
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ABNNs extract right knowledge by being exposed to the entire English corpus of non-clinical-

trial biomedical publications in journals whose impact factors were stably greater than two for the

most recent three consecutive years (including but not limited to: Science, Nature, Cell, Nature

Neuroscience, Nature Metabolism, Cell Stem Cell, Neuron, PNAS, eLife, Nature Communica-

tion, Scientific Reports, etc.), as well as public repositories of curated databases (including but not

limited to: Human Protein Atlas, Allen Human Brain Atlas, The Cancer Genome Atlas, etc.).

Learn ing Rule: DNNs use backpropagation to improve learned representations of data

by sequentially updating its internal parameters from the highest to the lowest level of abstraction.

The ubiquitous feedback connections in BNNs may implement backpropagation-like learning rules

(Figure 2b). ABNNs extract fast knowledge by iteratively updating internal representations in the

strict order from the most macroscopic level (phenotype) through the intermediate level (endophe-

notype) to the most microscopic level (genotype). ABNNs were trained to zero in on a single area

of interest across all levels of abstractions until they completed the backpropagation-like learn-

ing for that area before moving on to the next. For example, when cortical columns for motor

control were the area of interest for training, our ABNN translated every piece of training data

into a sequential update of internal representations in the ascending order of granularity from the

phenotype level (e.g., muscle contractions), to the endophenotype level (neuronal circuits respon-

sible for muscle contractions), to the cell level (e.g., Layer 5 pyramidal neurons (L5PT) and Layer

2/3 inhibitory interneurons (L2/3IN) responsible for muscle contractions), to the protein level (e.g.,

NMDA receptor subtypes and GABA receptor subtypes specifically expressed in L5PT and L2/3IN

for muscle contractions), to the epigenotype level (e.g., DNA methylation profiles in connection
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with subtype-specific NMDAR and GABAR activities in L5PT and L2/3IN for muscle contrac-

tions), and finally to the genotype level (e.g., the potential role of the CLOCK gene expression on

subtype-specific NMDAR and GABAR activities in L5PT and L2/3IN for muscle contractions).

Learning Rate and Loss: DNNs learn general-purpose representations of all-encompassing

data to deliver maximal performance in a wide range of special-purpose tasks.6 Both BNNs and

DNNs could learn to command general linguistic abilities for numerous tasks (Figure 2c). ABNNs

extract full-scope knowledge by first learning a general-purpose model of human physiology from

the all-encompassing non-disease biological data (Stage 1; Methods section ‘Training data collec-

tion’) before starting to learn numerous human diseases models from disease-specific data (Stage

2; Methods section ‘Training data collection’). In Stage 1, we set the learning rate low and the loss

small so that the ABNN was incentivized to do multiple rounds of learning without being sensitive

to the learning performance of general human physiology in each round. In Stage 2, we set the

learning rate high and the loss large so that the ABNN was incentivized to learn a complete model

of a specific human disease in a single round. The ABNN was thus incentivized to re-run Stage

1whenever the ABNN’s performance was suboptimal in Stage 2. As a result, the ABNN optimized

the global extrema of the disease-agnostic physiology model before starting to optimize the local

extrema of any disease-specific pathogenesis model.

Network Size: DNNs maximize the robustness of learned representations of data by increas-

ing the sheer size of network parameters.17 ABNNs extract novel knowledge if a single ABNN of

the largest size learns from the entirety of the all-encompassing data, rather than multiple ABNNs
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of smaller sizes learn from siloed sub-datasets (Figure 2d). In practice, this means that we should

minimize the number of ABNNs in a research team to one, to maximize the number of ABNN

neuronal nodes interconnected by always-on high-bandwidth biological synapses in a single brain,

rather than by the intermittently-on low-bandwidth human languages between several brains.

Training Environment : DNNs learn the best representations of data given sufficient time

and ample resources to allow for an uninterrupted pass of the full training data before which

no meaningful performance milestones can be defined. ABNNs extract testable knowledge if

a milestone-free supply of time and fund is guaranteed to ensure uninterrupted learning so that

ABNNs won’t be evaluated at all before the completion of learning both human physiology and

human diseases (Figure 2e). Securing the optimal environment was the most challenging aspect of

training ABNNs because it would be extremely difficult to build a research culture and implement

terms and protocols such that ABNNs are willing to receive uninterrupted training that may last

for a decade without intermediate milestones.

Overfitting Prevention: The ABNN may be immune to overfitting because it is sufficiently

generalizable for learning from data that are categorically heterogeneous with its intended appli-

cation. In contrast, overfitting is somewhat inevitable with a DNN because it lacks this generaliz-

ability and cannot learn from data that are not perfectly homogeneous with its intended application

(Figure 1b). In the context of life science and drug discovery, the ABNN was first trained with

biological data about normal physiological states, and then tested solely with clinical data about

abnormal pathological states. The ABNN had no access to disease-specific clinical data until and
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unless the etiology of a specific disease was entirely generated de novo from the foundation model

of human physiology in the first place. The resulting ABNN should be able to directly extrapolate

from the normal states of human physiology to the abnormal states of human disease, which would

otherwise be impossible if the ABNN overfits the training data.

VALIDATION DESIGN AND METHODOLOGY

Validation is critical for an objective assessment of ABNN’s capabilities in exponentially ex-

tracting high-quality knowledge from life science data (Figure 3a and 3b). The simplest approach

is to determine the extent to which the ABNN could reverse Eroom’s law. However, it would

be unrealistically time-consuming and non-scalable to directly begin new drug development. As

such, running virtual clinical trials is an effective alternative. Drug mechanisms of action and clin-

ical trial design protocols would serve as the only inputs and the ABNN could be used to predict

the clinical efficacy and safety of new drugs solely using extracted knowledge, without access to

patient data or confidential third-party information. Highly accurate virtual clinical trials could

be run before first-in-human studies to prevent drug developers from initiating pivotal real-world

trials that are doomed to fail.33

A rigorous validation of the ABNN, including the stringent criteria from the PROTOCOLS

challenge as shown in Figure 3b, would involve publishing prospective predictions for pivotal

clinical trial outcomes across all human diseases. Tamper-proof timestamps would be included

and prediction sensitivity could be determined with a 99% CI, based on a ground truth determined

by actual clinical readouts. No selection of lead over non-lead indications would be included,
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although non-lead indications have a far lower success rate.19

There are a few hundred new pivotal clinical trials each year whose protocols are publicly

accessible in a centralized database (as required by the FDA34) and whose clinical readouts are

typically published by sponsors in a standardized format. Public, prospective predictions of pivotal

ongoing clinical trial outcomes could serve as a validation benchmark for the ABNN, similar to

the way in which ImageNet provided a benchmark validation for visual object recognition using

DNNs.35

BASELINE PERFORMANCE

Prospective prediction sensitivity (PPS) is defined as the percentage of clinical programs that

have achieved actual clinical success by demonstrating sufficient clinical efficacy and safety in

pivotal clinical trials that warrant an FDA approval, given that clinical programs are initiated only

for those drug candidates that are prospectively predicted to be clinically successful by experts.

Realistic baseline sensitivity (RBS), as a realistic estimate of PPS, is defined as the probabil-

ity of FDA approval for drugs in phase 1 development (Phase1 likelihood of approval, or P1LOA).

It was calculated using corresponding P1LOAs in a 2011-2020 survey.8 This baseline sensitivity

is realistic as it acknowledges that an ABNN would make identical predictions at earlier stages of

development with drug mechanisms of action and clinical trial design protocols serving as the only

inputs, both of which are available as early as the preclinical stages.
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Conservative baseline sensitivity (CBS), as a conservative estimate of PPS, is defined as the

probability of FDA approval for drugs in phase 2 development (Phase2 likelihood of approval,

or P2LOA). It is calculated as the corresponding P2LOA in a 2011-2020 survey.8 This baseline

sensitivity is conservative because it does not consider that an ABNN only requires two inputs to

generate predictions (drug mechanisms of action and clinical trial design protocols), both of which

are readily available in the real world even before first-in-human studies (phase 1). Regardless,

this baseline sensitivity is more balanced in consideration of both the phase distribution for clinical

trials in the validation set (157 clinical readouts (3.18% (5/157) phase 1 trials, 43.9% (69/157)

phase 2 trials, and 54.1% (85/157) phase 3 trials, and the irrelevance of phase transitions in making

predictions.

RBS was not directly available from previous survey studies8,19 for two subgroups of the

PROTOCOLS validation set: all first-in-class indications (128 trials) and all age-related indications

(119 trials). As diseases in these two subgroups originate from therapeutic areas featuring lower-

than-average historical clinical success rates (oncology, neurology, cardiovascular, etc.), the real

RBSs for both subgroups should be lower than those of all indications (7.9%8). We therefore

assumed that a reasonable estimate of RBS for the subgroup containing all first-in-class indications

(128 trials) would be 6.32%, equal to 80% of the RBS for all indications (7.9%8). Since no anti-

aging therapeutics have ever been clinically approved, we assumed that a reasonable estimate of

RBS for the subgroup of all age-related indications (119 trials) would be 5.69%, equal to 72% of

the RBS for all indications (7.9%8).
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VALIDATION DATA COLLECTION

After completing the two-stage training, the ABNN turns out to be a ‘virtual patient’ that

functionally reconstruct both human physiology and human pathogenesis with sufficient fidelity.

The trained ABNN is thus clinically equivalent to a real human body such that ‘viritual clinical

trials’ could be run on the ABNN to evaluate drug-body interactions and predict clinical success

in human patients. Clinical trial data were thus all reserved for testing the fully trained ABNN in

the real-world PROTOCOLS validation.

The validation set comprised the registration information for human clinical trials on www

.clinicaltrials.gov, with the screening criteria as shown in Figure 3c (phase 1/2 is categorized as

phase 1, and phase 2/3 is categorized as phase 2). We estimated that there are approximately 200-

300 clinical trials each year that would meet these screening criteria, which is consistent with the

424 annual clinical trials exhibiting a much looser set of screening criteria (no limit on primary

completion date, no preference of first-in-class trials, etc.) in a comprehensive survey study.19 See

the supplementary tables for the full validation data.

A clinical trial in the validation set was designated as “first-in-class” if the drug-indication

pair had not been approved for marketing worldwide.

A clinical trial in the validation set was designated as “age-related” if age was a clinically

identified risk factor for the indication thereof.
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The ABNN is principally disease-agnostic yet leaves room for improvement in identifying

hematological disorders, rare neurodevelopmental disorders, and rare musculoskeletal disorders.

These unfinished disorders were excluded from the performance validation step yet were included

in validation data collection because prospective predictions can provide additional insights to

accelerate model building for such disorders.

PREDICTION GENERATION

Per industry-wise best practices,36 the ABNN predicted SUCCESS for a pivotal clinical trial

if at least one of its pre-specified efficacy primary endpoint(s) was believed to be met with prede-

fined statistical significance. In contrast, the ABNN predicted FAILURE for a pivotal clinical trial

if none of its pre-specified efficacy primary endpoint(s) were believed to be met with predefined

statistical significance (Figure 3d).

If a pivotal clinical trial had multiple co-primary endpoints, PARTIAL SUCCESS or PAR-

TIAL FAILURE was predicted if at least one of its pre-specified efficacy primary endpoint(s) was

believed to be met with predefined statistical significance and at least one of its prespecified effi-

cacy primary endpoint(s) was believed to not be met with predefined statistical significance.

PREDICTION PUBLICATION

A total of 265 predictions were published as timestamped tweets @DemiurgeTech to estab-

lish a publicly accessible track record for prospective predictions (Supplementary Figure 1). The
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immutability of tweets ensures that each published prediction could not be post hoc modified. We

also indexed each tweet to prevent any intentional deletions of false predictions that go unnoticed,

to ensure a reliable performance evaluation. However, index gaps do exist for several legitimate

cases, which does not compromise the rigor of validation for the following reasons. 1) An index

was unintentionally skipped and remained unused from that point forward. 2) An indexed predic-

tion was made but later became disqualified as a prospective prediction, because the corresponding

result had been announced after the indexed prediction was made but before the indexed prediction

was published. We used DocuSign to distinguish these two cases of index gaps by electronically

signing every indexed prediction before publishing it as a tweet. As such, no DocuSign certificates

are available for unused indices. The indices 001 and 286 denote the indices of the first and the last

published prospective predictions, respectively. A total of 21 index gaps were detected, 5 of which

were unused and 5 of which were for disqualified predictions lacking clinical readouts as of the

cutoff date (March 1, 2022). Nine predictions were made for disqualified predictions with clinical

readouts as of the cutoff date (3 false predictions and 6 true predictions). Two predictions were for

qualified unpublished predictions whose results are still not available. DocuSign certificates for

disqualified and qualified unpublished predictions are available upon written request (Figure 3d).

CLINICAL READOUT

It is customary for private companies and mandatory for public companies in the biophar-

maceutical industry to forecast the estimated date of clinical readouts and to publish the actual

results from human clinical trials. We tracked the availability of clinical readouts for every pub-
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lished prospective prediction from multiple online sources, including https://www.globenewswir

e.com/ for press releases, and https://www.biospace.com/ for curated news, and financial reports

from public companies. We published links to available clinical readouts as timestamped tweets

by replying to the original timestamped tweet for the corresponding prediction, thus establishing a

clear timeline of predictions followed by readouts (Figure 3d).

GROUND-TRUTH DETERMINATION

Under the FDA guidelines,37 a clinical trial with available readouts is assigned the ground-

truth label success if and only if at least one efficacy primary endpoint is met according to in-

terim/topline analyses or final data published by the trial sponsors (Figure 3d).

Similarly, a clinical trial with available readouts is assigned the ground-truth label failure

if and only if (1) none of the efficacy primary endpoint(s) are met according to topline analyses

or final data or none are deemed likely to be met according to interim analyses; (2) the trial is

terminated for non-recruitment or non-business reasons; (3) the trial is terminated after the failure

of other clinical trials for identical drug-disease pairs; (4) the post-trial development is discontinued

for non-business or unspecified reasons; (5) the trial is dropped out from the pipeline without

specific reasons, all based on the official websites or announcements by the trial sponsors.

Given that the reliability of ground-truth determination is capped by an 85.1% theoretical

maximum prediction accuracy for drug clinical success in human clinical trials,38 we refrained

from directly labeling missed predictions as false without further consideration of subsequent de-
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velopments. Specifically, we considered missed failure predictions for phase 2b trials that were

less statistically powered than phase 3 trials. Missed failure predictions should thus be more likely

to be true rather than false if the trial sponsor decided not to conduct a phase 3 trial for non-business

or unspecified reasons.

PREDICTION VALIDATION

A prospective prediction of success was validated as TRUE if its corresponding ground-truth

label was also success or invalidated as FALSE if its corresponding ground-truth label was failure.

Similarly, a prospective prediction of failure was validated as TRUE if its corresponding ground-

truth label was also failure or invalidated as FALSE if its corresponding ground-truth label was

success. Confusion matrices were produced to assess ABNN validation performance on a disease-

agnostic basis and are shown per therapeutic-area basis in Figure 7.

DRUG CLASSIFICATION

Drugs in the PROTOCOLS validation set were generally categornized using the FDA clas-

sification codes for new drug applications: new molecular entity (NME), biologic, and non-NME

codes compromising vaccines and other modalities.

NMEs are novel small molecule drugs or novel combinations of multiple old or new small

molecule drugs. Biologics comprise a broad range of drug types such as antibodies, peptides,

RNAi therapies, cell therapies, gene therapies, and microbiome therapies. Non-NMEs include
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vaccines, cytokines, enzymes, insulins and other reformulation of approved drugs.

STATISTICAL ANALYSIS

ABNN performance in clinical success prediction was evaluated using the public, prospec-

tive prediction of pivotal ongoing clinical trial success outcomes at large scale (PROTOCOLS)

challenge, a rigorous external validation of a clinical prediction model with a binary outcome.7

Multiple reasonable assumptions were included to calculate minimal sample and event sizes,

for the determination of prospective prediction sensitivity, F1 score, accuracy, and specificity at a

99% CI inspired by the previously reported method.7

The anticipated clinical readout event proportion (ϕ) was set to 0.9 since, as of the cutoff

date, an average of 75% of clinical trials on clinicaltrials.gov have reported clinical trial results in

compliance with the FDAAA 801 and the Final Rule tracked by fdaaa.trialstracker.net. More than

90% of big-pharma-sponsored clinical trials report results.39

The ratio of total observed clinical readout events and total expected clinical readout events

(O/E) was set to 1 with a width of 0.15 to account for the 12% of clinical trials that are prematurely

terminated without clinical trial results.40

As such, the minimum sample size requirement was set to 131 predictions, and the minimal

event size requirement was 118 readouts for a 99% CI. From February 11, 2020 to December 22,

2020, 265 prospective predictions were published to meet this minimal sample size requirement.
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By the time of the study cutoff date (March 1, 2022), 157 clinical readouts (5 phase 1 trials, 68

phase 2 trials, and 85 phase 3 trials) were available (Supplementary Table 1). Thus, the minimum

event size requirement has been met.

All other factors were held constant and performance measures were detected at a 90% CI for

validation subgroups with smaller event sizes, using a minimum requirement of 52 predictions and

a required event size of 47 readouts. Only simple means and standard deviations were calculated

for validation subgroups with even smaller event sizes over corresponding proportions.

The direct translatability of prospective validations to clinical ABNN applications was eval-

uated using a two-sample Kolmogorov-Smirnov test, the standard approach for comparing vali-

dation clinical trials and initiated clinical trials since 2020. These results followed an identical

distribution (see Figure 4) and the oncology data in the validation set exhibited the same propor-

tion as in the benchmark.19

Statistical significance in real-world scenarios was ensured for actual clinical settings, using

Agresti-Coull Intervals41 for the proportions and Wald Intervals41 for the differences. Two-sided

p-values42 were calculated for every proportion and difference and a 2% absolute margin was

selected for non-inferiority and superiority comparisons, using a statistical significance threshold

of 0.01. The SciPy and NumPy libraries in python were used for all function commands.

ROLE OF THE FUNDING SOURCE
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The funder participated in study design, data collection, data analysis, data interpretation,

and manuscript writing. The funder managed the twitter account for the public disclosure of the

data to which all authors and the public have equal and full access. All authors maintained control

over the final content of this manuscript and had final responsibility for the decision to submit for

publication.
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The PROTOCOLS validation raw data are publicly available at twitter.com/demiurgetech. The

PROTOCCOLS validation summary data are publicly downloadable as supplementary tables.
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(Figure.2)

 LIFE SCIENCE DATA CHALLENGE

Biological systems have intractably many entities at multiple scales.
High Dimensionality

Biomedical data are difficult to reproduce and hard to structure.
Low Quality 

  The challenge and solution of extracting knowledge from life science dataFigure 1.  

Figure 1a. The challenge and solution of extracting knowledge from
life science data.  High dimensionality and low quality are two
defining characteristics of life science data. Deep neural networks
(DNNs) are well suited for learning knowledge from the high-
dimensional,  high-quality data spaces, whereas biological neural
networks (BNNs) are good at learning knowledge from the low-
dimensional, ow-quality data spaces. The proposed augmented
biological neural network (ABNN) combines the complementary
advantages of DNNs and BNNs for knowledge acquisition from 
 high-dimensional, low-quality life science data. 

a Combining The Complementary Advantages of 
DNN and BNN

b The Training Advantages of ABNN over DNN

No architecture re-design is needed
ABNN's network architecture and hyperparameters have been optimized for
learning via evolution.

nodes80 billion

parameters150 trillion

(neurons)

(synapses)

Hidden Layers

Learning Rate

Loss Function

Dropout Rate

 Initial Weights

FAST training speed

ABNN Friendly Data

No data pre-processing is needed
All publicly available life science data are ABNN-friendly without any
preprocessing.

VS. DNNABNN

DNN Friendly Data

Unlabelled

Unstructured

Uncleaned

Well Labelled

Well Structured

Well Cleaned

BROAD training data

No model overfiting is possible
DNN training tends to overfit because DNN lacks generalizability and must
learn from the same-category data as what it will be applied to. 

Human
Body

ABNN training would not overfit because ABNN has sufficient generalizability
to learn from the opposite-category data of what it will be applied to. 

Normal States Abnormal States

ABNN Training
Life Science Data

ABNN Application
Clinical Trials

Human
Body

Abnormal States
Overfitting 

DNN Application
Clinical Trials

DNN Training
Clinical Data

No overfitting 

HIGH training effect

Figure 1b. The training advantages of ABNNs compared with DNNs. 
 ABNN training is far more efficient than that of DNN because no
time or cost is required for designing the network architecture, tuning
network hyperparameters, or cleaning the training data. Furthermore,
the application of an ABNN to clinical trials is also more effective
than a DNN because it offers sufficient generalizability for learning
from large-scale life science data, while DNNs suffer from limited
generalizability  for small-scale clinical data and are prone to
overfitting. 
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Extract RIGHT knowledge 

a

Figure 2a Left. DNNs learn better representations of data with more levels of
abstraction than with fewer levels and share a hierarchical architecture with BNNs.
Figure 2a Right. ABNNs extract right knowledge by integrating more multiomics
data (e.g., genome, proteome, transcriptome, epigenome, metabolome and
microbiome).

Learn for a Foundation Model

Learn via the Backpropagation Algorithm

DNN TRAINING ABNN TRAINING

Extract FAST knowledge 

b

Figure 2b Left. DNNs use backpropagation to improve learned representations of data by
sequentially updating its internal parameters from the highest to the lowest levels of
abstraction. The ubiquitous feedback connections in BNNs may be used to implement
backpropagation-like learning rules. Figure 2b Right. ABNNs extract fast knowledge by
iteratively updating internal representations in a strict order from the most macroscopic level
(phenotype), through the intermediate level (endophenotype), to the most microscopic level
(genotype).c

DNN TRAINING ABNN TRAINING

Figure 2c Left. DNNs learn general-purpose representations of all-
encompassing data to deliver optimal performance for a wide range of
special-purpose tasks.  Both BNNs and DNNs could learn to command
general linguistic capabilities for multiple tasks.

Learn with an Uninterrupted Pass

Learn in the Biggest Networkd
DNN TRAINING ABNN TRAINING

The largest single DNN performs better than multiple smaller DNNs.

Metabolome

Genome

Epigenome

Transcriptome

Proteome

Microbiome Phenome

TEAM MODELS

Genome
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Transcriptome

Proteome
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Microbiome
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The solo ABNN learning from all datasets should perform orders-of-magnitude better than
the team ABNNs each learning from a single dataset.

SOLO MODEL

Extract NOVEL knowledge 
Figure 2d Left. DNNs maximize the robustness of learned representations of
data by increasing the sheer size of network parameters. 

Figure 2d Right. ABNNs extract novel knowledge if a single ABNN of the largest size learns
from the entirety of the all-encompassing data, rather than multiple ABNNs of smaller sizes
learn from siloed sub-datasets.

Figure 2c Right. ABNNs extract full-scope knowledge by first learning a general-purpose model
of human physiology from the all-encompassing data, prior to learning human diseases
models from disease-specific data. 

Source: synced.medium.com/openai-unveils-175-billion-parameter-gpt-3-language-model-3d3f453124cd

e
DNN TRAINING ABNN TRAINING

 Training a foundation model is a non-stop pass without milestones. No milestones. No deadlines. No stops.

Figure 2. 

Figure 2e Left. DNNs learn the best representations of data when provided
with sufficient time and ample resources to allow for an uninterrupted pass
of a full training set, prior to which no meaningful performance milestones
can be defined.

Figure 2e Right. ABNNs extract testable knowledge if a milestone-free resources are provided
for an uninterrupted learning pass, ensuring the ABNN won't be evaluated prior to the
completion of learning both human physiology and human diseases. 

GPT-3 REQUIREMENT
Training Cost $12 million

Training Time up to 36 years

Training Milestone 0
Source: https://analyticsindiamag.com/how-to-take-advantage-gpus-large-language-models-gpt-3/
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Real-world
ABNN

Validation

A real-world, large-scale, public, prospective, external validation of the trained ABNNFigure 3. 

Real-world ABNN validation and Real-world Industrial Practice in Prospective Predictions of Clinically Successful Drug Candidates
 Share Identical Process and Measure

Figure 3a. Real-world validation is critical to the objective assessment of ABNN's potential for improving the efficiency of global drug research and development. As the foundation model is
intended to functionally reconstruct nearly all major diseases that could occur to a single human patient, clinical success prediction is the most effective validation method for the ABNN. The
clinical efficacy and safety of novel drugs were evaluated solely using mechanisms of action, to prevent drug developers from initiating pivotal real-world trials that are doomed to failure. 
 Several key go/no-go decision steps are involved in drug development, as illustrated in Steps 1-4 in the figure. In Step 1, preclinical studies aim to determine which drug candidates are
developable and generate sufficient data indicative of efficiency and safety in humans for each developable candidate. Biopharmaceutical companies have a considerable data advantage over
the ABNN in this step as they have exclusive access to internally generated private data in addition to public data. In contrast, the ABNN only has access to public data of drug mechanism of
action (i.e., drug targets, drug modality, and target modulation) and clinical trial design protocol (i.e., inclusion criteria, exclusion criteria, primary endpoint, control groups, and target
indication). 

Step 2 is a critical go/no-go decision step in drug development because only a subset of developable drug candidates (with highest clinical success potential) can be selected to transition from
non-clinical to clinical development, due to the prohibitive costs of human clinical trials. Best practices in the biopharmaceutical industry involve a group of committed experts using private
and public preclinical data to predict which drug candidates will achieve clinical success (Step 2). Clinical trials are then initiated only for those drug candidates that are prospectively
predicted to be clinically successful (Step 3). However, the resulting prospective prediction sensitivity is only 7.9% (i.e., for every 100 clinical programs that experts prospectively predict to
achieve clinical success, only 7.9 are actual successful) (Step 4). The real-world PROTOCOLS validation set was designed to mirror real-world industrial practices (Steps 2-4), to ensure the
transferability of ABNN performance from validation to application. The ABNN solely uses public preclinical data only to predict which drug candidates will achieve clinical success (Step 2).
Clinical readouts were tracked and recorded for those drug candidates that are prospectively predicted to be clinically successful (Step 3). The resulting prospective prediction sensitivity was
90.1% (i.e., for every 100 clinical programs that were prospectively predicted to achieve clinical success by the ABNN, 90.1 were actually successful) (Step 4). *These indications cover all
diseases except for hematological disorders, rare neurodevelopmental disorders, and rare musculoskeletal disorders.
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Success or Failure Public Tweet Clinical Readout Ground Truth

A real-world, large-scale, public, prospective, external validation of the trained ABNN
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prediction 

T1

Publ ish
prediction

Validation Workflowd

Figure 3. 

Predict
outcome

T0 T2

Check
result

Determine
ground truth

T3

Validation Design

Figure 3b. Prospective validation is far more rigorous than retrospective validation for examining the real-world performance of AI-based systems in actual clinical practice.   Large-
scale validation is also more rigorous than small-scale validation for enabling an unbiased estimation of the actual predictive power of AI-based systems. External validation using
separate datasets (independent of the training datasets) is more rigorous than internal validation using held-out portions of the training data, in evaluating the  generalizability of AI-
based systems for targeted clinical applications. Public validation is more rigorous than private validation for ruling out all the possibility of biasing performance estimates. 

b

whether the primary endpoint
of a clinical trial is predicted to
be met (success) or not met
(failure).

Validation Datasetc
ONGOING PIVOTAL CLINICAL TRIALS

Figure 3c. The list of screening criteria used to identify pivotal clinical trials for ABNN validation. The standalone performance of the foundation model was evaluated using the
public prospective predictions of pivotal ongoing clinical trial success outcomes at large scale (PROTOCOLS), the most rigorous external validation to date of a clinical prediction
model with a binary outcome.  A total of 265 prospective predictions were published to satisfy the minimum sample size requirement of 131 and evaluate prospective prediction
sensitivity, F1 score, accuracy, and specificity at 99% confidence, Similarly, 158 readouts were accumulated to meet the minimum event size requirement of 118 (see Methods section
'Statistical analysis').  

TRIAL SCREENING CRITERIA

Phase:  Phase 2 and Phase 3

Study Type: Interventional

Study Results: No results yet

Study Disease: Any
Study Status: Recruiting / Active, not recruiting

Study Country: United States, China, Japan, Germany, UK, France

Sponsor Type: Industry
Primary Completion Date: 1.January 2020 - 31. December 2022

https://www.clinicaltrials.gov/

Additional Criteria: first-in-class preferred (lead or non-lead)

Total Clinical Trials:  265

Total Therapeutic Areas: 18

Minimal Trial Sample Size: 131

Minimal Readout Event Size:  118

Every prospective prediction is
published as an indexed tweet
that is both timestamped and
immutable @DemiurgeTech. 
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published as press releases,
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failure can be determined
directly from clinical readouts.

Validated Prediction
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Figure 3d. The workflow for every validation step from beginning to end (see Methods section for details). Twitter was used to meet the stringent criteria of the PROTOCOLS
validation, providing immutable timestamped tweets to construct a publicly verifiable track record on the publicly accessible account of @DemiurgeTech. The ABNN was used to
made prospective predictions of pivotal clinical trial outcomes for all human diseases, excluding rare neurodevelopmental , rare skeletomuscular, and hematological disorders.
There was no selection of lead over non-lead indications, though non-lead indications have far lower success rates.  There are a few hundred new pivotal clinical trials whose
protocols are publicly accessible in a centralized database, as required by FDA, and whose clinical readouts are typically published by sponsors in a standardized format. We
calculated prospective prediction sensitivity with a 99% confidence interval using a ground truth determined by actual clinical readouts. 
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Proportions of Clinical Trials Per Key Therapeutic AreaFigure 4. 

Figure 4. A two-sample Kolmogorov-Smirnov test was used as the standard method to evaluate the direct translatability between prospective validation and
clinical applications. Validation clinical trials and all clinical trials initiated since 2020 followed identical distributions (statistic = 0.333  p-value = 0.73).

Prospective Prediction Sensitivity of Clinical Trials for All Therapeutic AreasFigure 5a.
 

Figure 5a. The PROTOCOLS validation involved a realistic baseline sensitivity of 7.90% (Historical P1-APP LOA: historical likelihood of success from phase 1 to
approval) and a conservative baseline sensitivity of 15.1% (Historical P2-APP LOA: historical likelihood of success from phase 2 to approval) to benchmark ABNN
performance (see Methods section 'Baseline performance' for details).  The overall prospective prediction sensitivity for pivotal clinical trials in the PROTOCOLS
validation was 90.1% (99% CI 80.0%, 96.9%; P < 0.001) .
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Prospective Prediction Sensitivity of Clinical Trials for All Trials and First-in-class TrialsFigure 5b. 

Figure 5b. Prospective prediction accuracy for first-in-class pivotal clinical trials was superior to that of all pivotal clinical trials  (Δ = 2.3%; 99% CI -0.92%, 5.52%; P <
0.002; 2% margin for non-inferiority) for all therapeutic areas,  excluding rare neurodevelopmental, rare skeletomuscular, and hematological disorders (see Methods
section 'Model training' for details).

Prospective Prediction Sensitivity of Clinical Trials Per Therapeutic AreaFigure 5c. 

Figure 5c. The PROTOCOLS validation utilized a realistic baseline sensitivity (Historical P1-APP LOA: historical likelihood of success from phase 1 to approval) and a
conservative baseline sensitivity (Historical P2-APP LOA: historical likelihood of success from phase 2 to approval) to benchmark ABNN performance (see Methods
section 'Baseline performance' for details). Results were as follows: Oncology: 77.1% (90% CI 65.1%, 84.9%; P < 0.0004); Infectious Disease: 81.6% (90% CI 70.1%,
88.4%; P < 0.002); *The minimum sample and event size requirements for a 90% confidence have been met (see Methods section ‘Statistical analysis’). **The
minimum sample and event size requirements for 90% confidence have not been met (see Methods section ‘Statistical analysis’). 
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Performance of ABNN: Precision and RecallFigure 6a. 

Figure 6a. ABNN performance as measured by precision and recall (see Data Table 1 for more details).

Performance of ABNN: Sensitivity and 1 - SpecificityFigure 6b. 

Figure 6b.  ABNN performance as measured by sensitivity and 1 - specificity (see Data Table 1 for more details).

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 31, 2022. ; https://doi.org/10.1101/2022.03.14.22272372doi: medRxiv preprint 

https://doi.org/10.1101/2022.03.14.22272372
http://creativecommons.org/licenses/by-nc-nd/4.0/


Performance of ABNN: Accuracy and F1 ScoreFigure 6c. 

Figure 6c.  ABNN performance as measured by accuracy and F1 score (see Data Table 1 for more details).

Performance of ABNN: LOA and F1 ScoreFigure 6d. 

Figure 6d. ABNN performance as measured by historical clinical success rates for investigation new drugs (LOA) and F1 scores (see Data Table 1 for details). LOA is
identical to the realistic baseline accuracy (see Methods section 'Baseline performance'). F1 scores and LOAs across overall validation subgroups were negatively and
weakly correlated (exact Pearson coefficient = -0.260) 
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Performance of ABNN: Confusion Matrices for All Therapeutic AreasFigure 7a. 

Figure 7a. ABNN performance as recorded by confusion matrices for all therapeutic areas.

82 9

18 48

Prospective Prediction

G
ro

un
d 

tr
ut

h

Success Failure

Su
cc

es
s

Fa
ilu

re

All Indications (157 Trials)

61 5

17 43

Prospective Prediction
G

ro
un

d 
tr

ut
h

Success Failure
Su

cc
es

s
Fa

ilu
re

All First-in-class Indications (126 Trials)

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 31, 2022. ; https://doi.org/10.1101/2022.03.14.22272372doi: medRxiv preprint 

https://doi.org/10.1101/2022.03.14.22272372
http://creativecommons.org/licenses/by-nc-nd/4.0/


Performance of ABNN: Confusion Matrices Per Therapeutic AreaFigure 7b. 

Figure 7b. ABNN performance as recorded by confusion matrices per therapeutic area.
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Performance of ABNN: Confusion Matrices Per Therapeutic AreaFigure 7c. 

Figure 7c. ABNN performance as recorded by confusion matrices per therapeutic area.
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Figure 8. ABNN performance as recorded by confusion matrices for all age-related diseases.
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Performance of ABNN: Confusion Matrices for Age-Related DiseasesFigure 8. 
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Prospective Prediction Sensitivity for All Age-related IndicationsFigure 9a. 

Figure 9a. Prospective prediction sensitivity of all age-related pivotal clinical trials was 91.0% (99% CI 79.1%, 98.4%; P < 0.005) in the PROTOCOLS validation set
(Methods section 'Statistical analysis').

Distribution of Age-related Indications per Therapeutic AreaFigure 9b. 

Figure 9b. The distribution of all age-related pivotal clinical trials per therapeutic area in the PROTOCOLS validation set(Methods section 'Validation data collection').
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Performance of ABNN: Confusion Matrices Per Drug ModalityFigure 10. 

Figure 7d. ABNN performance as recorded by confusion matrices per drug modality.
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Performance of ABNN Per Drug Modality: Prospective Prediction SensitivityFigure 11a. 

Figure 11a. ABNN performance as measured by prospective prediction sensitivity across drug modalities (see Data Table 1 for more details).  ABNN achieved superior
performance for biologics than for small molecules ((Δ = 5.8%; 90% CI 0.78%, 10.82%; P < 0.0001 for superiority at a 2% margin; Methods section ‘Statistical analysis’).

Performance of ABNN Per Drug Modality: LOA and F1 ScoreFigure 11b. 

Figure 11b. ABNN performance as measured by historical clinical success rates for investigation new drugs (LOA) and F1 scores (see Data Table 1 for details). LOA is
identical to the realistic baseline accuracy (see Methods section 'Baseline performance'). F1 scores and LOAs across overall validation subgroups are strongly positively
correlated (exact Pearson coefficient = 0.975) 
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ABNN's Performance Measures with Statistical SignificanceData Table 1. 

Data Table 1. ABNN primary performance measures. 
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Data Table 2.  SEN: Sensitivity; F1: F1-score; ACC: Accuracy; SPE: Specificity; NPV: Negative Predictive Value. PPV:  Positive Predictive Value; FOR: False
Omission Rate;FDR: False Discovery Rate; FPR: False Positive Rate; FNR: False Negative Rate; PLR: Positive Likelihood Ratio; NLR: Negative Likelihood Ratio;
DOR: Diagnostic Odds Ratio; MCC: Matthews Correlation Coefficient; NME: New Molecular Entity (small molecule drugs); 

ABNN's All Performance Measures Data Table 2. 
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