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Abstract6

Objective: Blood pressure (BP) is an important physiological index reflecting cardiovascular7

function. Continuous blood pressure monitoring helps to reduce the prevalence and mortality8

of cardiovascular diseases. In this study, we aim to estimate systolic blood pressure (SBP) and9

diastolic blood pressure (DBP) values continuously based on fingertip photoplethysmogram10

(PPG) waveforms using deep neural network models.11

Methods: Two models were proposed and both models consisted of three stages. The only12

difference between them was the method of extracting features from PPG signals in the first13

stage. Model 1 adopted Bidirectional Long Short-Term Memory (BiLSTM), while the other14

used convolutional neural network. Then, the residual connection was applied to multiple15

stacked LSTM layers in the second stage, following by the third stage with two fully16

connected layers.17

Results: Our proposed models outperformed other methods based on similar dataset or18

framework, while in our proposed models, the model 2 was superior to model 1. It satisfied19

the standard of Association for the Advancement of the Medical Instrumentation (AAMI) and20

obtained grade A for SBP and DBP estimation according to the British Hypertension Society21

(BHS) standard. The mean error (ME) and standard deviation (STD) for SBP and DBP22

estimations were 0.21 ± 6.40 mmHg and 0.19 ±4.71 mmHg, respectively.23
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Conclusion: Our proposed models could extract important features of fingertip PPG24

waveforms automatically and realize cuff-less continuous BP monitoring, which can be25

helpful in the identification and early treatment of abnormal blood pressure, thus may reduce26

the occurrence of cardiovascular malignant events.27

Keywords: Blood pressure (BP); Photoplethysmogram (PPG); Bidirectional Long28

Short-Term Memory (BiLSTM); Convolutional neural network (CNN); Continuous blood29

pressure monitoring (CBPM).30

1. Introduction31

Blood pressure (BP) is the pressure of blood acting on the walls of arteries[1], which32

fluctuates regularly with the contraction and relaxation of the heart. The maximum pressure33

corresponding to the contraction of the heart is called systolic blood pressure (SBP), and the34

minimum pressure corresponding to the diastole is called diastolic blood pressure (DBP), the35

normal and high-normal ranges of SBP and DBP in adults are <140 mmHg and <90 mmHg,36

respectively [2, 3]. High SBP is one of the main risk factors of cardiovascular diseases37

(CVDs), especially ischemic heart disease (IHD) and stroke, which are the leading cause of38

global mortality and disability[4]. With the acceleration of population aging, the prevalence39

of adults with high SBP nearly doubled from 2.18 billion in 1990 to 4.06 billion in 2019[4].40

From 1990 to 2019, the number of deaths due to high SBP increased from 6.79 million to41

10.8 million[4]. Therefore, BP monitoring is critical for the prevention and treatment of42

CVDs, alleviating the disease burden, and realizing the global health.43

The existing methods of BP measurement can be divided into invasive measurement and44

non-invasive measurement. The invasive method usually places a catheter with a BP sensor45

directly in the blood vessel or heart for measurement. This method is the most accurate and46

considered as the gold standard of BP measurement internationally. However, it has the risk47

of bleeding and infection, which is only suitable for critically ill patients in hospitals and48

should be operated by professionals[5, 6]. Compared with invasive method, non-invasive49

measurement is more acceptable by people. Non-invasive BP measurement includes50
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intermittent blood pressure measurement (IBPM) and continuous blood pressure measurement51

(CBPM). The two traditional IBPM methods commonly used in clinical practice are the52

manual method based on Korotkoff sounds and the automatic method based on cuff pressure53

oscillation[7, 8]. Both methods are susceptible to external interference and require pressure on54

the cuff, which will cause discomfort to the human body. Besides, by the influence of genetic,55

environmental, and lifestyle factors, BP is dynamic[1]. For patients who need to monitor BP56

closely, in contrast to IBPM, CBPM can provide more detailed information of BP changes,57

which is of great significance in the diagnosis and analysis of diseases and medical research.58

The CBPM methods mainly include the volume-compensation, arterial tonometry, and pulse59

wave measurement[9]. The first two methods can also cause discomfort for its pressure on the60

blood vessels[10, 11]. In addition, the measurement process of the volume-compensation61

method is complex, and any state that causing low peripheral perfusion will affect the62

measurement results, such as cold temperature, vascular disease, and Raynaud’s disease[9,63

10]. Moreover, the arterial tonometry method has a high requirement for sensor positioning,64

so it is rarely used in clinical practice[9, 11].65

In recent years, pulse wave measurement has become one of the most promising66

methods for non-invasive cuff-less CBPM, especially the method based on67

photoplethysmogram (PPG)[6]. PPG is a non-invasive optical measurement technology for68

measuring peripheral pulse blood volume changes, which can be obtained from ear, finger,69

toe, and other sites[12]. It has been widely used in clinical physical monitoring, vascular70

assessment, and automatic function, with the characteristics of simple, reliable, and low71

cost[12]. The summary of the BP measurement methods is shown in figure 1.72
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Figure 1. The block diagram of classification for BP measurement methods.
BP = blood pressure, IBPM = intermittent blood pressure measurement, CBPM
= continuous blood pressure measurement.

73

As a typical diagnosis and treatment method of traditional Chinese medicine (TCM), the74

pulse diagnosis has a history of more than two thousand years. It’s one of the important75

means for TCM practitioners to obtain disease information[13]. TCM practitioners place their76

finger pulps on the skin of the human body where the pulsation is obvious, such as Renying77

(the carotid artery), Cunkou (the radial artery), and Fuyang (the dorsalis pedis artery) to78

obtain disease information[14, 15]. Considering the convenience of pulse-taking, Cunkou is79

usually chosen. However, the sensitivity of finger pulps is limited, it can only feel the pulse80

information from somewhere with obvious pulsation[15]. Besides, the pulse diagnosis relies81

on the subjective practical experience of the clinicians, which is difficult to be standardized82

and popularized in clinical practice. In recent years, with the rapid development of modern83

technology, many new methods for obtaining or analyzing pulse information have emerged,84

which bring new opportunities for the objective research of TCM[13]. For instance, the85

aforementioned PPG method can sensitively measure pulse information at many sites of the86

human body, other than Renying, Cunkou, and Fuyang.87

The aim of this study is to explore the relationship between pulse and blood pressure88

based on fingertip PPG signals using neural network model, and to obtain continuous blood89

pressure information from the pulse wave. The establishment of the present method may also90

contribute our understanding of the relation between pulse and health in TCM theory. The91

present paper is organized as follows: Section 2 introduces the related methods and models of92
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BP estimation and describes the proposed method briefly. Section 3 give details about the93

data source and processing as well as the overall framework. Section 4 reports our94

experimental results. Section 5 discusses the results. Finally, section 6 concludes the paper.95

2. Background96

2.1 Morphological characteristics of PPG signal97

PPG waveform consists of two parts: a pulsatile physiological waveform (‘AC’98

component) and a slowly varying baseline (‘DC’ component). The rich information of heart99

pulsation mainly exists in the ‘AC’ component of the PPG waveform, which is mainly100

composed of the anacrotic phase and the catacrotic phase[12]. The rising border of the pulse101

corresponds to the anacrotic phase and the falling border represents the catacrotic phase102

(Figure 2). These two phases correspond to the systole and diastole of the heart respectively.103

During the relaxation of the heart, due to the wave reflections from the periphery, a dicrotic104

notch is formed in the catacrotic phase, which is commonly seen in healthy people[6, 12].105

Figure 2. The sketch map of the ‘AC’ component of typical PPG waveform. A refers to
the starting point of this wave, B is the main peak, C corresponds to the dicrotic notch,
D represents the dicrotic wave, and E is the starting point of the next wave.
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2.2 BP estimation based on PPG106

The potential of PPG to measure BP has been recognized for decades[12]. In this107

section, we described several methods of BP measurement based on PPG signals.108

2.2.1 Pulse transit time methods109

Pulse transit time (PTT) is usually defined as the travel time between aortic valve110

opening and arrival of the blood flow to the distal position[2]. In many literatures, PTT is111

usually replaced by pulse arrival time (PAT) for its starting point is difficult to confirm[2, 16,112

17]. PAT refers to the time difference between the R-peak of an electrocardiogram (ECG) and113

a specific feature point of a PPG[18]. For example, Fung, et al. [19] have evaluated the BP114

value from the PTT (PAT actually), which can be described by Equation (1).115

BP = A
PTT2 + B (1)116

A and B are constants associated with subjects. This PTT-BP algorithm is simplistic, but it117

requires two sensors and complex calibration, which is hard to be applied in practice[19].118

2.2.2 Pulse wave velocity methods119

Pulse wave velocity (PWV) is the velocity of the pressure wave propagation in the blood120

vessels[5], which mainly depends on the elastic and geometric properties of the arterial121

wall[20]. The relationship of them can be illustrated using Moens-Kortweg equation[21, 22].122

Besides, PWV can be calculated by dividing the distance L between two sensors on the same123

arterial branch by the time difference T for the pressure wave propagating at this distance[23].124

Finally, the calculation of BP values from PWV can be described by Equation (2).125

PWV = L
T

= hE0eαP

ρd
(2)126

where h is the thickness of the vessel wall, E0 represents the Young’s modulus of elasticity for127

zero arterial pressure, e is Euler’s number (approximately 2.718), α is a vessel parameter128

(typically 0.016 mmHg-1 to 0.018 mmHg-1), P refers to BP, ρ represents blood density and d129

indicates the diameter of the vessel. Since parameters such as the arterial elasticity and the130
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length of the artery vary between individuals, it needs frequent calibration. Hence, it affects131

the application of PWV in health care[6].132

2.2.3 Pulse wave analysis methods133

Pulse wave analysis (PWA) refers to extract important features from the PPG waveform134

directly for creating models using machine learning or deep neural network[6, 24]. The most135

significant advantage of this method is that it only requires one PPG sensor for BP136

estimation[6]. Currently, there are two main methods for feature extraction. One is manual137

feature extraction, which is complex, error prone and uncompleted. For instance, Lin, et al.138

[25] have extracted 65 features from the PPG signals and their first and second derivative139

values for BP estimation and indicated that their proposed features set outperforms the two140

previously proposed feature sets[26, 27]. The other is automatic feature extraction based on141

specific algorithm[17]. Esmaelpoor, et al. [5] have adopted convolutional neural network142

(CNN) to extract the morphological features from PPG waveforms and then transmitted the143

extracted feature vector to the next stage for BP values evaluation. As the PPG signals can be144

affected by kinds of internal and external factors, extracting features manually become145

extraordinarily difficult[17]. Therefore, automatic feature extraction has more advantages for146

its simplicity and convenience.147

2.3 Machine learning models148

In recent years, many linear and non-linear models have been employed to estimate BP149

with PPG signals, such as linear regression[28, 29], support vector machine (SVM)[30],150

AdaBoost classifier[31], feedforward neural network[32], restricted boltzmann machine[33],151

and recurrent neural network (RNN)[34]. Generally, the performance of nonlinear model is152

better than that of linear model, but it also depends on the quality of dataset and the modelling153

method [6]. Currently, some advanced approaches have been proposed, such as Long-Short154

Term Memory (LSTM)[2, 17] and CNN models[5]. These models perform well in predicting155

BP values by using automatically extracted important features and have great potential in the156

future.157
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In this work, we proposed two hybrid neural network models to estimate cuff-less158

real-time BP values utilizing the features automatically extracted from fingertip PPG signals.159

The two hybrid models were similar in structure and mainly consisted of three stages. The160

first stage utilized CNN or Bidirectional Long Short-Term Memory (BiLSTM) to extract161

important features automatically from fingertip PPG signals, and the remaining stages used162

stacked LSTM layers with residual connection and two fully connected (FC) layers to163

estimate BP values based on the features extracted in the first stage.164

3. Materials and methods165

3.1 Data source166

The dataset used in this paper was derived from [35], which belongs to the167

Multi-parameter Intelligent Monitoring in Intensive Care (MIMIC) II online waveform168

database of PhysioNet[36]. This database provides rich data including PPG (collected from169

pulse oximeter placed on the fingertip) as well as the arterial blood pressure (ABP, measured170

by a catheter in the radial artery) with sampling frequency of 125Hz. While the database171

provides a wealth of raw waveform signals, their quality is uneven, therefore, a powerful172

preprocessing method was taken by [35] for removing undesirable components such as173

baseline wander and low-quality signals to obtain reliable records. Thus, the preprocessed174

dataset was applied to evaluate the performance of our methods proposed in this work.175

3.2 Preprocessing176

3.2.1 Waveform segmentation and abnormal BP signals processing177

The waveforms of PPG and ABP always fluctuate periodically with the heartbeat,178

however, the fluctuation frequency is dynamic by the influence of internal and external179

factors. Therefore, the method of sliding segmentation with fixed number of cycles was180

adopted in this work rather than a fixed length. As shown in Figure 3, each segment consists181

of two cycles with the length of three consecutive PPG peaks, and then extracts the182
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corresponding ABP segments according to the peaks of PPG. It’s worth noting that there is an183

overlap between adjacent segments with a length of one cycle.184

Figure 3. Illustration of waveform segmentation. The waveform of PPG is showed by
orange, the ABP signal is performed by blue, and the peaks of PPG are marked with red
dots. BP = blood pressure; ABP = arterial blood pressure; PPG = photoplethysmogram.

After removing the ABP segments with very high or very low BP values (e.g., SBP ≥185

180, DBP ≥ 130, SBP ≤ 80, DBP ≤ 60) and the corresponding segments of PPG (SBP and186

DBP correspond to the maximum and minimum of each ABP segment respectively), we187

obtained millions of PPG segments and then resampled them to 256 samples. Finally, the first188

100,000 segments of the dataset were selected in this paper considering the training cost of189

models. Table 1 and figure 4 show the distribution and ranges of SBP, DBP, and mean arterial190

pressure (MAP) values in the final dataset.191

Table 1. Statistics of the BP datasets used in the experiments.192

Min(mmHg) Max(mmHg) Mean(mmHg) STD(mmHg)

SBP 83.00 180.00 134.76 14.28

DBP 60.00 130.00 70.79 8.84

MAP 68.00 142.00 92.12 8.14
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193

Figure 4. Distribution histogram of the dataset used in this paper. (a) systolic blood pressure (SBP), (b)
diastolic blood pressure (DBP), (c) mean arterial pressure (MAP).

3.2.2 Normalization194

In order to speed up the optimization process, we normalized the amplitude of PPG195

signals to [0-1]. The formula is as follows:196

��' = ��−����
����−����

(3)197

���� and ���� are the maximum and minimum values of the training set respectively.198

3.3 Multistage model199

The overall flow diagram of the proposed methods is exhibited in figure 5. We fed the200

preprocessed data into two multistage deep learning models separately to test their201

performances in predicting BP, and the detailed frameworks are displayed in figure 6 and 7.202

Both models were composed of three stages. The only difference between them was in the203

first stage: model 1 adopted BiLSTM but model 2 adopted CNN to fully extract the important204

features of the whole input sequences. To solve the problem of vanishing or exploding205

gradient, we applied residual connections in multiple stacked LSTM layers in the next phase.206

Finally, the estimated SBP and DBP values were outputted after the last two fully connected207

(FC) layers.208
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Figure 5. The flow diagram of proposed methods.

The first stage of model 1 was a BiLSTM, which processed sequences of inputs from the209

front and back directions[37]. It can improve the performance of predicting when processing210

time series compared with unidirectional LSTM[38, 39]. In addition, CNNs have also been211

widely used in BP estimation and achieved good results for its advantages in local perception212

and parameter sharing so as to simplify the complexity of the network model[40, 41]. CNNs213

have been commonly used for image processing, here we adopted it to process214

one-dimensional time series data which were arranged in an instant sequence of time[42]. As215

a note, both LSTM layers of BiLSTM consisted of 32 units, each vector X in model 1216

contained 16 features, and d represented the number of segments. In model 2, the CNN was217

composed of four hidden convolutional layers and the first two layers followed with an218

average pooling layer separately (please see Figure 7 for more details).219

The second stage was composed of multiple stacked LSTM layers and each layer220

consisted of 64 units. Every two layers of LSTM were regarded as a whole, in which the221

residual connection was applied to the first layer. The sum of input and output vectors of222

previous layer was conducted as the input of next layer. In total, there were six structure cells223

like this (Figure 6).224
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Figure 6. Overall framework of model 1 proposed in this paper. FC = fully connected layer, LSTM
= Long-Short Term Memory.

In the final stage, the output from the last LSTM layer of the second stage was fed into225

two FC layers to predict SBP and DBP values. The number of neurons in the first FC layer226

was set to 512 and the second layer was 2.227

Figure 7. Illustration of the feature vectors extraction part in model 2.

Model parameters of the two models were identical. The activation function used in our228

proposed models was ReLU, and the dropout rate was set to 0.2. In training process, we used229

Adam Optimizer with the initial learning rate of 0.0001. In addition, the L2 norm of230
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regularization was set to 0.05, and the batch size was 32. For maximal epochs, 300 was used.231

We used mean square error (MSE) loss function to optimize gradient.232

4. Results233

In order to obtain a more stable and reliable model, we conducted the five-fold234

cross-validation on the dataset using the above two models respectively and the results were235

displayed in Table 2 and 3. Here, we used mean absolute error (MAE) and standard deviation236

(STD) as the evaluation metrics of the models. We found that the performances of both237

models were relatively stable. In general, both algorithms we proposed achieved relatively238

satisfactory results, while the performance of the model 2 based on CNN is slightly better239

than model 1 based on BiLSTM in stability and accuracy.240

Table 2. Five-fold cross-validation results of Model 1 (BiLSTM).241

SBP DBP

MAE STD MAE STD

Fold 1 4.15 6.58 2.82 4.87
Fold 2 4.18 6.46 2.76 4.74
Fold 3 4.06 6.26 2.66 4.55
Fold 4 4.14 6.57 2.81 4.74
Fold 5 4.09 6.31 2.75 4.76

Average (STD) 4.12 (0.04) 6.44 (0.13) 2.76 (0.06) 4.73 (0.10)

242

Table 3. Five-fold cross-validation results of Model 2 (CNN-LSTM).243

SBP DBP

MAE STD MAE STD

Fold 1 3.89 6.31 2.60 4.68
Fold 2 3.95 6.34 2.63 4.68
Fold 3 3.98 6.29 2.64 4.59
Fold 4 4.05 6.57 2.70 4.74
Fold 5 4.06 6.48 2.70 4.85

Average (STD) 3.99 (0.06) 6.40 (0.11) 2.65 (0.04) 4.71 (0.09)
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The comparation of our proposed models with other algorithms in BP estimation were244

shown in Table 4. Notably, the estimation error (indicated by MAE and STD) of SBP and245

DBP of our proposed models were smaller than that of other works. Besides, our proposed246

models did not require manual feature extraction, which avoids the impact of manual247

operation on the training process. Obviously, we found that the DBP estimation accuracy of248

all models in Table 4 were higher than that of SBP, which may be caused by the large249

fluctuation of SBP in human bodies. Therefore, the estimation error of SBP should be the250

focus of evaluating the performance of models in predicting BP.251

Table 4. Performance of different algorithms in blood pressure estimation.252

Methods Dataset Sensors SBP(mmHg) DBP(mmHg)
MAE STD MAE STD

MARS[43] MIMIC II PPG&ECG 7.83 9.1 4.86 5.21
AdaBoost[26] MIMIC II PPG&ECG 11.17 10.09 5.35 6.14
BiLSTM-4L[2] MIMIC II PPG&ECG 6.73 14.51 2.52 6.44
Model 1 (BiLSTM) MIMIC II PPG 4.12 6.44 2.76 4.73

Model 2 (CNN-LSTM) MIMIC II PPG 3.99 6.40 2.65 4.71
Note: the maximum and minimum values of MAE and STD were in bold.253

We further assessed the performance of model 2, the best method we proposed, based on254

Association for the Advancement of the Medical Instrumentation (AAMI) standard[44] and255

British Hypertension Society (BHS) standard[45] (Table 5). According to the AAMI standard,256

it requires the values of mean error (ME) and STD tested on more than 85 subjects lower than257

5mmHg and 8mmHg separately. However, the BHS standard divides the performance of BP258

measuring devices into three grades based on the cumulative frequency percentage of errors259

(details were showed in Table 5). As a result, our proposed model 2 satisfied the AAMI260

standard and obtained grade A for SBP and DBP estimation according to the BHS standard.261

Table 5. Performance evaluation based on AAMI and BHS standards.262
Cumulative Error ME STD

≤5mmHg ≤10mmHg ≤15mmHg (mmHg) (mmHg)

BHS
Grade A 60% 85% 95% - -
Grade B 50% 75% 90% - -
Grade C 40% 65% 85% - -

AAMI - - - ＜5 ＜8

Model 2
SBP 77.60% 92.31% 96.17% 0.21 6.40
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DBP 87.60% 96.44% 98.28% 0.19 4.71

The distributions of SBP and DBP estimation error from the model 2 were presented in263

Figure 8. Both of the distributions were similar to the normal distribution and distributed264

around zero, while, the estimation errors for DBP have a lower variation compared with the265

SBP, indicating that the less variances in the target data, the smaller the prediction error.266

Figure 8. Error histogram from the model 2. (a) SBP, (b) DBP.

The spearman correlation coefficient between target and estimated values for SBPs and267

DBPs were 0.86 and 0.82 (Figure 9 a and b), respectively, indicating that there is a high268

correspondence between true and predicted BP. In addition, there was no significant269

difference in the distribution of the target and predicted values, although there were some270

outliers in the data (Figure 9 c and d). It means that our proposed model can also achieve271

satisfactory accuracy when predicting extreme BP values.272
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Figure 9. Regression plot and the box plot for SBP and DBP based on the estimation results from
model 2. (a) and (b) represented the regression plot for SBP and DBP respectively, (c) and (d)
represented the box plot for SBP and DBP respectively.

Moreover, we performed consistency evaluation using the Bland-Altman plots of SBP273

and DBP from model 2 (Figure 10). The area between two dashed lines represents that there274

is 95% of the difference between target and estimated values of SBP or DBP falling in275

[Mean - 1.96SD, Mean + 1.96SD], which is known as the 95% limits of agreement (95%276

LoA). Here, the 95% LoAs for SBP and DBP were [﹣12.76, 10.76] and [﹣9.80, 9.80],277

separately. As shown in figure 10, most of the errors fall within the ranges, thus, there is278

good consistency between the target and estimated values.279
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Figure 10. Bland-Altman plot of model 2. (a) SBP, (b) DBP.

5. Discussion280

The subjects, quality of signals, data volume, and algorithms may influence the results of281

BP evaluation. In order to increase the comparability of the models, we chose to compare with282

other BP estimation methods based on datasets similar to ours in this paper and most of them283

came from the same batch of data initially,which became cleaner after rough284

preprocessing[35]. For instance, Sharifi, et al. [43] proposed a novel dynamical method by285

using PTT and PPG intensity ratio (PIR) coming from the preprocessed dataset for continuous286

BP estimation. Li, et al. [2] employed a deep learning model which had a similar framework287

with model 1 proposed in this work and adopted the same batch of data with our works, based288

on the ECG and PPG signals for BP estimation. Kachuee, et al. [26] presented a regression289

algorithm based on PAT and informative features from the vital signals in dataset MIMIC II290
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for the continuous and cuff-less BP estimation. Such comparison of the performance of291

different models in predicting BP values based on similar dataset is hard to see in previous292

similar studies. The result shows that the estimation error of the deep neural network models293

generally lower than the traditional machine learning methods. As for the reason why the294

STD of SBP in ‘BiLSTM-4L’[2] is so high, it may be caused by the huge variation of SBP in295

the database. It can be seen that the fluctuation range of SBP and DBP in the training dataset296

has great influence on the results.297

In addition, we compared the model 1 with the algorithm of [2] to investigate the298

influence of different input signals on the performance of results with similar frameworks299

(Table 2). The outcome indicates that the performance of models based on the unique PPG300

signals can achieve a comparable and even better effect as the models based on the ECG and301

PPG signals, which suggests that the unique PPG signals are also promising for estimating the302

continuous BP values. Models based on the unique PPG signals can be more conveniently303

applied to daily monitoring of continuous BP values.304

BiLSTM and CNNs are commonly used for automatic feature extraction in the latest305

studies. In order to compare the pros and cons of the two, we built two models based on them306

respectively, namely model 1 and model 2. Finally, we found that the result of BP estimation307

model based on CNNs performed better, indicating that CNNs might be slightly better than308

BiLSTM in extracting PPG features. The reason behind this, presumably, is that CNNs are309

good at learning the morphological features of signals from the spatial dimension, which310

helps to discover the local characteristics of signals and preserve more details[46]. Of course,311

it still needs more studies to verify.312

However, there are also some limitations in our study. For example, our training samples313

were all from patients in the intensive care unit, hence, our algorithm had not been verified on314

other populations, so that lacking the evidences to evaluate the generalization ability of the315

models. Another important point is that the quality of the original signals in the MIMIC316

database was uneven, so the performance of the models depended heavily on the effect of317
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preprocessing. It may have better results if the stable and continuous high-quality signals can318

be obtained.319

6. Conclusion and future work320

In this paper, we proposed two multistage models based on deep neural network for321

estimating cuff-less continuous blood pressure using the unique PPG signals. Both models322

contained three parts, and the only difference between them was part one. The first part of323

model 1 adopted BiLSTM, while the model 2 adopted CNN. Although both of them had324

shown good prediction performance, the model based on CNN was slightly better. For the325

similar dataset, the performance of our proposed models were better than other models[2, 26,326

43] which required manual feature extraction. For the similar framework, the model 1 based327

on the unique PPG signals we proposed performed better than the model based on the ECG328

and PPG signals of [2]. Moreover, our proposed models had absolute advantages in automatic329

feature extraction, which is able to achieve the continuous BP measurement. As the best330

model we proposed, the model 2 satisfied the AAMI standard and obtained grade A for SBP331

and DBP estimation according to the BHS standard. What’s more, it could be seen that the332

model had good fitting ability from the regression plots and the box plots for SBP and DBP.333

And the Bland-Altman plot showed that there were most errors fall within the 95% LoA,334

which indicated the good consistency between the target and estimated values. Nonetheless,335

all subjects of our proposed models came from the intensive care unit, the PPG signals of336

which were inferior in quality and lacks representativeness. Therefore, we must carry out337

complicated preprocessing in order to obtain high-quality PPG signals. In future works, we338

will try to improve the robustness and generalization of the model by training in larger339

number and wider variety of subjects with stable and high-quality PPG signals collected by340

more advanced equipments.341
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