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Abstract

The Multiple Comparison Procedure and Modelling (MCPMod) approach has been shown

to be a powerful statistical tool that can significantly improve the design and analysis of

dose finding studies under model uncertainty. Due to its frequentist nature, however, it

is difficult to incorporate into MCPMod information from historical trials on the same

drug. Recently, a Bayesian version of MCPMod has been introduced by Fleischer et al.

(2022) to resolve this issue, which is particularly tailored to the situation where there is

information about the placebo dose group from historical trials. In practice, information

may also be available on active dose groups from early phase trials, e.g., a dose escalation

trial and a preceding small Proof of Concept trial with only a placebo and a high dose. To

address this issue, we introduce a Bayesian hierarchical framework capable of incorporat-

ing historical information about both placebo and active dose groups with the flexibility

of modelling both prognostic and predictive between-trial heterogeneity. Our method is

particularly useful in the situation where the effect sizes of two trials are different. Our

goal is to reduce the necessary sample size in the dose finding trial while maintaining its

target power.
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1. Introduction1

A key component of successful pharmaceutical drug development is the accurate de-2

termination of an appropriate dose level in early phase clinical trials. The final selection3

of dose level in Phase II studies has a considerable impact on the success probability of4

confirmatory Phase III studies and consequently the entire drug development program.5

Owing to the limited amount of available data on the efficacy and safety of a specific6

compound and small sample sizes in early stages of clinical development, determining7

the right dose level is among the most challenging steps during drug development. As8

mentioned in Bretz et al. (2005), if the selected dose is too high, it can lead to safety9

problems as well as unacceptable adverse events in later studies, while a too-low dose10

leads to an increased likelihood that the drug fails to provide adequate clinical benefit,11

which impacts success probabilities of trials in later phases. Hence, when we evaluate the12

dose-response relationship, it is important to use a method capable of extracting the most13

information from available data. A method based on a statistical model that accurately14

reflects the clinical situation stands the best chance of yielding accurate estimates of the15

dose-response relationship.16

Traditionally, dose-finding trials have been addressed through either a multiple com-17

parison procedure (MCP) or a modelling (Mod) approach. Bretz et al. (2005) combined18

these two approaches to devise an improved method called Multiple Comparison Pro-19

cedure and Modelling (MCPMod). The classic MCPMod assumes normally distributed20

data. Pinheiro et al. (2014) extended the approach to non-normal data. The main idea21

of MCPMod is to use a candidate set of parametric models to describe the unknown22

dose-response relationship, test these candidate models against a flat curve using MCP23

techniques and finally select a significant model to fit the data. This approach is rea-24

sonably robust against model misspecification since it allows the specification of multiple25
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candidate models that can hopefully cover all plausible dose-response relationships. It is26

also flexible in the estimation of the optimal dose, which is not restricted to the doses27

under investigation. European Medicines Agency (EMA) (2014) and USA Food and Drug28

Administration (FDA) (2016) qualified MCPMod as an adequate and efficient method29

for dose finding trials.30

MCPMod is based on the frequentist methodology. As a result, it can be difficult for31

a new study to incorporate information from historical trials on the same drug. Neuen-32

schwander et al. (2010) pointed out that information from historical trials can be im-33

portant to the design and analysis of a new trial. The incorporation of such historical34

information in the design and analysis of a new study can reduce the duration of the35

trial and/or the number of patients necessary to achieve the desired power, resulting in36

a reduction of overall cost (Schmidli et al., 2014). There has been increasing interest in37

incorporating such historical information into the design and analysis of clinical studies38

(Berry, 2006). Existing methods to incorporating historical information includes power39

priors (Ibrahim & Chen, 2000), meta-analytic analyses (Neuenschwander et al., 2010)40

and commensurate priors (Hobbs et al., 2012). When incorporating historical data, it is41

always desirable to design the framework in a way that is capable of modelling potential42

differences between historical and current data. In view of this, these approaches discount43

the information in the historical data to either a fixed degree or a degree determined dy-44

namically according to between-trial heterogeneity.45

There has also been work that uses a Bayesian framework to include historical data46

in the design and analysis of new trials. Fleischer et al. (2022) proposed an approach,47

known as Bayesian MCPMod (BMCPMod), that focuses on the situation where such48

historical information is coming only from the placebo dose group. BMCPMod essentially49

reproduces the results of the classic MCPMod for non-informative priors but allows for50

the incorporation of historical data if available, leading to an improvement in design51

efficiency. However, in practice, historical information of active dose groups may also be52

available from early phase trials, e.g., a dose-escalation trial and a preceding small Proof53
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of Concept (PoC) trial with only a placebo and a high dose.54

To address this problem, in this work we introduce a Bayesian hierarchical framework55

for the dose finding problem. It incorporates historical information from both placebo56

and active dose groups and accounts for both prognostic and predictive between-trial57

heterogeneity. One of the primary use cases of this model is for cases where the effect58

sizes of two trials are different. The goal is to reduce the necessary sample size in dose59

finding trials while maintaining its target power. The Bayesian hierarchical model we60

propose in this work performs the requisite analysis combining data from the two trials.61

This is referred to as the meta-analytic-combined approach by Schmidli et al. (2014).62

The remainder of this paper is structured as follows. In Section 2, we introduce our63

Bayesian hierarchical model and review the Bayesian pooling model. In Section 3, we64

perform simulation studies to compare these two approaches in terms of precision, power65

and type I error. Finally, Section 4 provides a summary and discussion of results.66

2. Methodology67

2.1. Bayesian hierarchical model68

We assume there are two trials, a current trial and a historical trial, with Y (c) and69

Y (h) denoting the data from each trial, respectively. We also assume there are a total70

of K + 1 unique dose groups D = {d0, ..., dK} in the two trials, including a placebo dose71

d0. Let Ic and Ih denote the indices of doses present in the current and historical trial,72

respectively. Let n
(c)
i and n

(h)
i denote the number of patients from the current and/or73

historical trial, respectively, who are given dose di. For example, if i /∈ Ic, then n
(c)
i = 0.74

We assume the following statistical model for Y (c) and Y (h):75

Y
(c)
ij | µi, r ∼ N

(
µi + r, σ2

)
, i ∈ Ic, j = 1, . . . , n

(c)
i

Y
(h)
ij | µi, a, r ∼ N

(
a · µi − r, σ2

)
, i ∈ Ih, j = 1, . . . , n

(h)
i

(1)

where µi = µ(di) are the unknown mean effect of the treatment from the current trial76

at each dose level, ±r denotes the deviation from the mean effect in each trial (as a77
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result of heterogeneity of prognostic effects), and a is a scalar to allow for heterogeneity78

in the predictive effects between the two trials. The mean effect µi and the heterogeneity79

parameters r and a are assumed to be random. We will specify their prior distributions80

a bit later. We assume variance σ2 to be known and constant across all dose groups.81

The model can be easily extended to cases where the effect variance is not constant at82

different doses. Finally, we assume all Y
(c)
ij and Y

(h)
ij are conditionally independent given83

µi, r and a.84

For the mean effect µ = (µ0, . . . , µK), we use an improper non-informative uniform85

prior p(µi) ≡ 1 for all i. The heterogeneity of predictive effects (treatment effects) is86

represented by the fixed effect ratio a across different dose groups. The parameter a is87

assumed to be distributed as follows:88

a ∼ N(1, η2) or N[b,1/b](1, η
2) (2)

where N[b,1/b] denotes the normal distribution with variance η2 truncated to the interval89

[b, 1/b] for some 0 < b < 1. The heterogeneity of prognostic effects between the two trials90

is expressed by the random effect r with the following prior91

r|τ ∼ N(0, τ 2) (3)

with between-trial standard deviation τ . The parameter τ controls the level of borrowing92

based on the similarity of prognostic effects between two trials. The prognostic effect93

under model (1) is 2r + (1− a)µ0, where µ0 is the effect of the placebo dose.94

We give some intuition about the choice of the hyperparameter τ . If τ is close to95

0, then the assumption is that the prognostic heterogeneity is small between studies,96

i.e. there is a small difference in response of the placebo arm between studies. On97

the other hand, if τ is large, then the prognostic heterogeneity between the trials is98

high and the historical study data should have less relevance in the analysis of the data99

from the current trial. To account for the uncertainty about τ , we will use the half-100
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normal prior distribution as its prior. This prior distribution should cover the range of101

typical values representing plausible (e.g., from small to large) between-trial heterogeneity102

(Spiegelhalter et al., 2004; Gelman, 2006; Röver et al., 2021). We will discuss the two types103

of heterogeneities in Sections 2.4 and 2.5. Given an observed outcome Y = (Y (c),Y (h)),104

the resulting posterior probability distribution for µ, a, r and τ can be written as:105

P(µ, a, r, τ | Y ) ∝ P(Y | µ, a, r)P(µ)P(a)P(r, τ)

= P(Y (c) | µ, r)P(Y (h) | a,µ, r)
K∏
i=1

P(µi)P(a)P(r | τ)P(τ),
(4)

where106

P(Y (c) | µ, r) =
Ic∏
i

n
(c)
i∏
j

P(Y (c)
ij |µi, r)

P(Y (h) | a,µ, r) =
Ih∏
i

n
(h)
i∏
j

P(Y (h)
ij |µi, a, r).

As the posterior probability distribution above is unavailable in a closed form, we107

perform MCMC sampling using the Metropolis-Hastings algorithm to obtain posterior108

samples of µ, a and r. See Appendix A for details of this algorithm.109

We recall that under the classic frequentist MCPMod, we would like to check for a110

non-flat relationship for the set of candidate models M = {Mm,m = 1, . . . ,M}. We111

will define a Bayesian version of this test that corresponds to the null and alternative112

hypotheses, upon which we will assess type I error and power. Let c = {c1, . . . , cm} be113

the contrast vectors for the candidate models M and µ = (µ1, . . . , µK) be the unknown114

mean effect vector of D. For model m and its corresponding contrast vector cm, we115

consider the single model Mm to be significant at level β in our Bayesian sense if116

P(cTmµ > 0|Y ) > 1− β. (5)

As in the case of the classic MCPMod, the maximum of these probabilities across all117
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candidate models are considered in order to obtain our test decision. A significant dose-118

response signal is established if119

max
m∈{1,...,M}

P(cTmµ > 0|Y ) > 1− β.

The value of β needs to be picked so that type I error of the overall procedure is equal120

to the significance level α, which is specified by the practitioner conducting the trial.121

Under classic MCPMod, the probability on the left hand side of (5) can be computed122

numerically. This is, however, not feasible given the far more complicated model in our123

Bayesian setting. But we can approximate this probability using the µ-samples generated124

using the MCMC procedure. If we have obtained a total of N samples µ1, . . . ,µN , we125

can simply compute cTmµi for each i. We count the number of samples that produces a126

positive cTmµi and divide it by N , which we take to be our estimate of127

P(cTmµ > 0|Y ). (6)

We summarise the procedure for checking the existence of non-flat relationship for the128

set of candidate models M. This is the MCP part of the MCPMod. We fix a significance129

level α, then we perform the following:130

Step 1: Define a set of candidate models to represent the underlying true dose-response131

shape, and derive the optimal contrast coefficients from each model based. This132

step mirrors corresponding steps in MCPMod.133

Step 2: Generate datasets of historical and current trials assuming the null model (i.e.134

flat dose responses). Estimate the threshold β using steps leading to (6) so that135

the desired type I error rate α is achieved.136

Step 3: With data Y , test significance of each candidate model using (5) to assess whether137

a dose-response signal can be established. Proof of Concept (PoC) is established138

when at least one of the model tests is significant.139
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In this work, we focus on the MCP part of MCPMod. Given the µ-samples we have140

generated for each candidate model in Step 3 above, we can perform the modelling part141

of the MCPMod using steps in the classic MCPMod. This is straightforward so we leave142

out the details.143

2.2. Bayesian pooling model/ Bayesian model based on pooled data144

An easy way to account for historical data is to simply pool the historical data with145

the current data, resulting in the pooled dataset Y (p). We end up with a special case of146

the Bayesian hierarchical model described in Section 2.1, with r = 0, Y (p) replacing Y (c),147

and the elimination of Y (h) and the parameter a. More specifically, Y
(p)
ij describes the148

variable of interest in patient j of dose group i and is assumed to be normally distributed149

Y
(p)
ij | µi ∼ N

(
µi, σ

2
)
, i = 0, . . . , K, j = 1, . . . , ni

where µi are the unknown mean effect of the treatment and σ2 is assumed to be known.150

We follow the same steps as described in Section 2.1 to perform the MCP step. If151

µ is given a non-informative prior, then the results obtained using our MCMC-based152

algorithm will converge to that of the classic MCPMod as the number of MCMC samples153

becomes large. We will compare our Bayesian hierarchical model with the Bayesian154

pooling model in Section 3.155

2.3. Choice of contrast vectors156

In classic MCPMod, contrast vectors are chosen to maximise the probability of re-157

jecting the null hypothesis when a candidate model is correct. MCPMod is relatively158

robust against non-optimal choice of contrast vectors. More specifically, even when the159

candidate model set does not contain the true underlying dose-response model, the prob-160

ability of detecting a non-flat dose-response shape is not greatly affected in the MCP161

step, as long as a dose-response model with a shape similar to that of the true shape of162

dose-response model is included in the candidate set.163
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In Pinheiro et al. (2014), MCPMod is extended to allow for an estimated µ̂, which164

can be estimated dose-response parameters using ANOVA or some other means. The165

estimates µ̂ is assume to be distributed according to N(µ,S) where S denotes the vari-166

ance/covariance of µ̂. The matrix S also needs to be estimated, producing Ŝ, which can167

be used to re-estimate the optimal contrast vectors. In our Bayesian setting, we use the168

posterior samples of µ to produce Ŝ, which we use to re-estimate the optimal contrast169

vectors. Compared to the optimal contrast vectors calculated from the regular MCPMod,170

the re-estimated contrast vectors are data dependent and adjust the weight on difference171

dose groups automatically. For example, it will reduce the weight on doses where the172

posterior variance is large. As we will see in Section 3, this can improve the performance173

of our algorithm in certain cases.174

We will use contrast vectors calculated according to the classic MCPMod as well as175

contrast vectors re-estimated using the posterior distribution in later simulation studies.176

2.4. Heterogeneity of prognostic effects177

In (1), heterogeneity of prognostic effects between different trials, which is defined178

to be independent of effects of treatment, is primarily accounted for by r. Generally179

speaking, when we design a clinical study, we typically have some prior information180

about how similar this study is to a historical study. This is usually assessed based181

on the similarity of key factors that could impact the response, for example, the target182

study populations, the regions of the site, and the formulation or delivery route of the183

intervention, etc. In our setting, as described in (3), we impose a normal prior with184

mean 0 and standard deviation τ . We impose a half-normal hyperprior on τ . Following185

Neuenschwander et al. (2010), we adopt 0.5σ as the standard deviation of the half-186

normal distribution. According to Friede et al. (2017), 0.5σ is sufficient to capture typical187

heterogeneity values seen in meta-analyses of heterogeneous studies, making it a sensible188

choice in many applications. The sensitivity analyses for different levels of heterogeneity189

prior will be discussed in Appendix E. Although we use a half-normal distribution here, a190

more flexible distribution could also be considered, e.g., half-T, half-Cauchy, Gamma or191
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Inverse Gamma distributions (Spiegelhalter et al., 2004; Gelman, 2006; Polson & Scott,192

2012).193

2.5. Heterogeneity of predictive effects194

In (1), the parameter a serves to model heterogeneity of predictive factors between195

different trials. It describes the difference in treatment effect sizes between studies. The196

maximum effect in the historical study is a times the one in the current study. Typically,197

predictive factors have a greater influence on the results of analysis than prognostic198

factors. As described in (2), we impose a normal prior distribution (truncated under some199

circumstances) on a, with mean 1 and between-trial heterogeneity standard deviation η.200

When η = 0 and a = 1, we have the same effect size between the historical and current201

trials, which means that there is no between-trial heterogeneity and therefore all data202

from two studies can be pooled for the analysis. The standard deviation η in the prior203

can be used to adjust the strength of prior information on a. We recommend plausible204

values of a to be inside the interval [1 − η, 1 + η], i.e. within one standard deviation of205

the mean 1.206

We truncate the prior distribution for a to an interval [b, 1/b] for some 0 < b < 1 if207

Y (c) and Y (h) do not have exactly the same doses, i.e. there are doses that are present208

in one but the other trial. The reason for this is because in these cases, the posterior209

estimates for a are more unstable, thereby needing slightly more prior information to210

prevent a from becoming negative, which we deem as unrealistic. When we truncate the211

normal distribution, we typically pick b to be around 1/3, since it is unlikely that two212

trials differ in treatment effect size by a factor of more than 3. We do not recommend213

taking b to be very close to 0, as it leads to the simulated posterior distribution a to be214

concentrated at 0, resulting in non-convergence of the simulated posterior distribution of215

treatment effects of dose groups. We find the choice b = 1/3 gives robust results under216

our approach.217

A log-normal distribution can also be used as the prior distribution of a. Since this dis-218

tribution samples only positive values, its performance is similar to that of the truncated219
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normal distribution.220

3. Simulation studies221

3.1. Simulation design222

To evaluate the performance of our method, we run simulation studies. We take223

Dc = {0, 0.15, 0.5, 0.8, 1}, i.e. there are K = 4 active doses with a placebo dose in the224

current study. In the historic study, we consider two scenarios as described in Table 1a,225

with 4 and 5 doses that overlaps those in the current study. We standardise the doses226

and take the standard deviation to be 1. We take the true placebo response rate to be 0227

and the maximal response to be 0.5. In what follows, we only consider equal allocation,228

i.e., each dose group contains 40 patients, 200 patients in total in the current study. We229

specify M = 6 different location-scale models in the candidate model set M, as shown230

in Figure 1.231

Dose

M
o
d
e
l 
m

e
a
n
s

0.0

0.1

0.2

0.3

0.4

0.5

linear

0.0 0.2 0.4 0.6 0.8 1.0

emax1 emax2

0.0 0.2 0.4 0.6 0.8 1.0

exponential quadratic

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.1

0.2

0.3

0.4

0.5

logistic

Figure 1: Visualisation of the candidate model set in the simulations.

Dose finding process in early stage usually contains a series of clinical trials for different232

purposes, including dose escalation trial, proof of concept (PoC) trial and dose-ranging233
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trial. The Phase I dose escalation trial is usually the first time when a new drug is applied234

to humans. Such trial usually increases the doses of an investigational drug by cohorts,235

until an upper limit is reached, which is usually defined by the maximum tolerable dose.236

Sometimes it can also be based on a maximum feasible dose by formulation and delivery, or237

pharmacological active dose where the signal indicating the desired pharmacological effect238

is achieved. Although Phase I dose escalation trials are typically conducted in healthy239

volunteers and the efficacy data is not available, there are cases where the Phase I dose240

escalation trials need to be done in patients. Examples include investigating drugs for241

renal impaired patients where their PK profile will be different from healthy volunteers,242

or for drugs that may be toxic and cannot ethically be applied to healthy volunteers.243

After Phase I, a PoC needs to be established in early Phase II to make a Go/No-Go244

decision based on the efficacy performance. If the new drug demonstrates the efficacy,245

the concept is considered proven, leading to a Phase IIb dose-ranging trial. Therefore, a246

new dose-ranging trial can borrow historical information from a dose escalation trial or a247

PoC trial. In our simulation studies, we consider two scenarios: two dose escalation trials248

with different settings, as shown in Table 1a. We also consider an additional scenario249

(Phase IIa PoC trial) in Appendix D.250

To evaluate the robustness of our method, we run three one-sided hypothesis tests in251

each scenario, which are summarised in Table 1b. Scenario A assumes the effect size of252

the historical trial is worse than the effect size of the current trial. The null hypothesis253

states that the treatment effect at each dose was the same as the placebo dose, and254

the alternative hypothesis states that at least one dose group has a positive treatment255

effect. Scenario B assumes that the treatment effect size of the historical trial exceeds the256

current trial. Definitions of the null and alternative hypotheses are the same as scenario257

A. In scenarios A and B, the results of the historical and current trials are basically258

homogeneous. The drug either worked in both trials or did not work in either.259

In scenario C, however, we consider an extreme case of large discrepancies between the260

historical and the current trial. In scenarios A and B, the null and alternative hypotheses261
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Number of
Scenario Source Dose set overlapping doses
1 Phase I dose escalation trial Dh = {0, 0.15, 0.5, 0.8, 1} 5
2 Phase I dose escalation trial Dh = {0, 0.1, 0.5, 0.8, 1} 4

(a) Two scenarios of historical trial. Dose set of current trial Dc =
{0, 0.15, 0.5, 0.8, 1}.

Scenario ∆c ∆h

A
Null hypothesis Hm

0 : cTmµ = 0 0 0
Alternative hypothesis Hm

1 : cTmµ > 0 0.5 0.3
B
Null hypothesis Hm

0 : cTmµ = 0 0 0
Alternative hypothesis Hm

1 : cTmµ > 0 0.3 0.5
C

Null hypothesis Hm
0 : c

(c)T
m µ = 0 0 0.3

Alternative hypothesis Hm
1 : c

(c)T
m µ > 0 0.5 0.3

(b) Three hypothetical scenarios in simulation study. ∆c = true effect size of current

trial; ∆h = true effect size of historical trial; a = ∆h/∆c; c
(c)
m = contrast vector of

current trial (elements of dose groups in historical trial only are zeros).

Table 1: Simulation scenarios.

are built on the current and historical trials, but in scenario C, the null and alternative262

hypotheses are built on the current study only. More specifically, we take263

c(c)m =

 cm if m ∈ Dc

0 otherwise
,

i.e. the test statistic does not take into account responses at doses not present in the264

current study. This scenario may arise from a situation where it is known that the drug265

has an effect in the historical trial and we investigate a new indication or population to266

find out whether the drug has an effect in the new trial. Differences in patient populations267

or other trial-specific circumstances can lead to large heterogeneity among historical trials268

and between the current trial and historical trials. In each scenario, we investigate four269

different levels of prognostic heterogeneity between the historical and current trials.270

For each scenario, to assess the power to detect model m from the candidate model271
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set M, we simulate datasets assuming model m to be the true dose-response curve. The272

data is generated according to the treatment effect that is assumed under the alternative273

hypothesis for the computation of power, or according to the null hypothesis for type I274

error computation. The steps for estimating power and type I error of our algorithm are275

shown in Appendix B.276

As described in Section 2.4, a half-normal prior with standard deviation 0.5 (i.e.,277

HN(0.5)) is used for the between-study standard deviation of prognostic effects across278

scenarios A, B and C, and a truncated normal distribution with mean 1 and standard279

deviation 0.4 (i.e., N[1/3,3](1, 0.4
2)) is assigned for the effect ratio a. To compare our280

Bayesian hierarchical model (BHM), we also perform281

1. a pooled Bayesian analysis that includes the data of all trials without accounting for282

between-trial heterogeneity,283

2. an MCPMod analysis of only the current trial.284

We use the Receiver Operating Characteristic (ROC) curve (Bradley, 1997; Fawcett,285

2006) to evaluate and compare operating characteristics from different approaches. An286

ROC curve plots the True Positive Rate (TPR) (sensitivity), also known as power, against287

the False Positive Rate (FPR) (i.e., 1 – specificity), also known as type I error. In this288

paper, we plot ROC curves for FPR ∈ [0.025, 0.1], which is a reasonable type I error289

range for dose finding trials.290

3.2. Simulation results291

3.2.1. Scenario 1292

Here we consider a phase I dose escalation trial, where all dose groups in the historical293

trial are the same as those in the current trial, each with the same known variance294

and sample size. In Table 2a, we summarise powers achieved using various approaches295

at 5% type I error rate for the candidate model set illustrated in Figure 1. Amongst296

these approaches is MCPMod (full borrowing), where we simply pool data from both297

the historical and current studies to which we apply the classic MCPMod method. We298
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show the corresponding ROC curves in Figure 4. For all dose groups, the type I error299

is calculated with a true flat dose-response curve with response 0, and the power is300

calculated with a true non-flat dose-response curve.301

We see from Table 2a and Figure 4 that MCPMod (no borrowing) yields the worst302

performance from the four approaches, which should be expected since borrowing from303

historical information can boost the power. MCPMod (full borrowing) and the Bayesian304

pooling model (BPM) have almost the same performance. In comparison, BHM yields305

better performance than all other approaches. This implies that modelling the between-306

trial heterogeneity can further improve the performance, i.e., BPM simply combines the307

historical and current trials into a single trial, but BHM discounts the historical infor-308

mation according to the between-trial heterogeneity. Note that here we use the optimal309

contrast vector derived from MCPMod rather than the re-estimated contrast vector, but310

these two contrasts are shown to reveal similar behaviours.311

In the following, we will only focus on the analysis of the linear model. The other five312

models are expected to exhibit similar behaviour. The main purpose of the simulation313

study is to identify in each scenario which methods have good power. We generate data314

with four different levels of heterogeneity in prognostic factor effects, r = 0, 0.1, 0.2, 0.3,315

respectively. For each scenario, we estimate the treatment effect size of the current study,316

which is the mean of 10,000 posterior means of µ5. This is shown in Table 2b.317

Figure 2 compares the ROC curve of BHM and BPM as a function of FPR ∈318

[0.025, 0.1] for four cases with different heterogeneities of prognostic factor under sce-319

nario 1A, 1B and 1C. We see that the ROC curves of BPM under scenarios 1A and 1B320

look similar to each other. This is because the treatment effect size of the pooled trial321

is the average effect size of two trials, hence BPM is mainly influenced by the average322

treatment effect of two trials. For BPM, since the prognostic factor effect r has opposite323

signs in the historical and current trials, different levels of heterogeneity in prognostic324

factor effects have no influence on the results, so that similar patterns of results are ob-325

served across four different values of r. Table 2b shows that BHM produces more accurate326
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Approach Linear Emax1 Emax2 Exponential Quadratic Logistic
MCPMod no borrowing 0.7901 0.7916 0.7752 0.7638 0.6793 0.8681
MCPMod full borrowing 0.8759 0.8763 0.8650 0.8579 0.7839 0.9356
BPM 0.8710 0.8705 0.8651 0.8563 0.7744 0.9334
BHM 0.8964 0.8983 0.8951 0.8902 0.8185 0.9493

(a) Power values for MCPMod (no borrowing), MCPMod (full borrowing), Bayesian
pooling model (BPM) and Bayesian hierarchical model (BHM) for the candidate model
set when controlling type I error at 5%. Note that the simulation error can be es-

timated using binomial error as

√
p(1−p)

n where p is the power value at 5% type I
error and n is number of simulations. BHM = Bayesian hierarchical model; BPM =
Bayesian pooling model.

Scenario Model |r| = 0 |r| = 0.1 |r| = 0.2 |r| = 0.3
Scenario 1A
Null hypothesis r = 0 r = 0.1 r = 0.2 r = 0.3
(∆c = ∆h = 0) BHM 0.0004 0.0027 0.0020 0.0016

BPM 0.0010 -0.0006 0.0015 0.0023
Alternative hypothesis r = 0 r = 0.1 r = 0.2 r = 0.3
(∆c = 0.5, ∆h = 0.3) BHM 0.4766 0.4782 0.4856 0.4892

BPM 0.4010 0.4019 0.4005 0.3971
Scenario 1B
Null hypothesis r = 0 r = −0.1 r = −0.2 r = −0.3
(∆c = ∆h = 0) BHM 0.0011 -0.0007 0.0009 0.0012

BPM 0.0001 -0.0004 0.0016 -0.0007
Alternative hypothesis r = 0 r = −0.1 r = −0.2 r = −0.3
(∆c = 0.3, ∆h = 0.5) BHM 0.3828 0.3799 0.3752 0.3720

BPM 0.4002 0.4118 0.4011 0.3993
Scenario 1C
Null hypothesis r = 0 r = 0.1 r = 0.2 r = 0.3
(∆c = 0, ∆h = 0.3) BHM 0.1157 0.1273 0.1201 0.1175

BPM 0.1509 0.1492 0.1458 0.1483
Alternative hypothesis r = 0 r = 0.1 r = 0.2 r = 0.3
(∆c = 0.5, ∆h = 0.3) BHM 0.4718 0.4805 0.4863 0.4876

BPM 0.3992 0.4011 0.3998 0.4009

(b) Mean estimated treatment effect size under three simulation scenarios with four
different levels of prognostic heterogeneity. ∆c = effect size of current trial; ∆h =
effect size of historical trial. This table displays mean estimates of ∆c.

Table 2: Scenario 1.
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BHM with initial contrast BHM with re−estimated contrast BPM with initial contrast BPM with re−estimated contrast MCPMod (no borrowing)
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Figure 2: The ROC curves of MCPMod, Bayesian pooling model (BPM) and Bayesian
hierarchical model(BHM) with four different levels of prognostic heterogeneity for scenario
1. The dashed grey line denotes 5% false positive rate, i.e., 5% type I error rate.

estimates of the effect size as the value of r increases. This is probably due to the prior327

HN(0.5) we use for the prognostic between-trial heterogeneity standard deviation rep-328

resenting a large prognostics heterogeneity. Even though the bias becomes smaller with329

the increase of the value of r, the ROC curves of BHM look similar to each other for all330

four different values of r, as can be seen from Figure 2. The sensitivity analysis of the331

results for prognostic heterogeneity will be discussed in Appendix E.332

Under scenarios 1A and 1C, the ROC curve of BHM is always above the ROC curve333

of BPM, but under scenario 1B, BPM performs better than BHM. We surmise this is due334
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to the fact that under scenario 1B where the effect size of the historical trial is higher335

than the current trial, BHM largely discounts the impact of historical data on the basis of336

observed divergence when incorporating historical information, leading to reduced power337

values. Even though BHM’s ROC curve is below that of BPM under scenario 1B, the338

estimates of the effect size under BHM is more accurate.339

With BPM, when the treatment effect size in the new trial is worse than that in the340

historical trial, the borrowing of historical information leads to overestimates of treatment341

effects across the active dose groups. Thus it leads to higher power but that comes at342

the cost of type I error inflation. Generally speaking, we would prefer to use BHM to343

perform dynamic borrowing where the amount of historical data borrowed is related to344

the agreement between the current and historical trial.345

When historical treatment effect size differs from the current trial, BPM may not346

reflect the true treatment effect size. On the other hand, the posterior mean estimates347

of the true effect size using BHM has smaller bias. Compared to BPM, BHM is a better348

statistical analysis method that can reasonably boost statistical power while controlling349

type I error.350

3.2.2. Scenario 2351

Here we investigate a scenario where there is at least one non-overlapping dose between352

the historical and the current trial. In scenario 2, the current trial has a dose of 0.15353

but not 0.1, and the historical trial has a dose of 0.1 but not 0.15. The existence of354

non-overlapping doses has an influence on both BPM and BHM.355

Table 3 displays the estimated treatment effects of dose groups 0.1 and 0.15 under sce-356

narios A, B and C. Apparently BHM produces more accurate estimates for these two dose357

groups, i.e. with smaller bias, than BPM. For both BHM and BMP, larger magnitudes358

in the level of prognostic heterogeneity r produces larger biases in the estimates.359

Figure 3 displays ROC curves of both BHM and BPM, using both the initial contrast360

of MCPMod as well as re-estimated contrasts. Unlike in Scenario 1, we see that both361

BHM and BPM performs better if we use re-estimated contrast. We will focus on perfor-362
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BHM with initial contrast BHM with re−estimated contrast BPM with initial contrast BPM with re−estimated contrast MCPMod (no borrowing)
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Figure 3: The ROC curves of MCPMod, Bayesian pooling model (BPM) and Bayesian hi-
erarchical model (BHM) with four different levels of prognostic heterogeneity for scenario
2.

mance using re-estimated contrasts in the subsequent discussion. If there is no prognostic363

heterogeneity (i.e., r = 0), we find BHM to have mixed performance compared to that364

of BPM, sometimes better, sometimes worse. Indeed, when r = 0, the pooling model is365

the correct model, but this is not the case if r ̸= 0. Therefore we see the advantage of366

BHM over BPM tends to increase as the level of prognostic heterogeneity increases. This367

is caused by a decrease in the power of BPM as r increases, while the power of BHM368

holds roughly steady. When type I error is controlled at 5%, the power of BPM went369

from 0.8833 for r = 0 to 0.8614 for r = 0.3.370

19

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted March 14, 2022. ; https://doi.org/10.1101/2022.03.12.22272175doi: medRxiv preprint 

https://doi.org/10.1101/2022.03.12.22272175
http://creativecommons.org/licenses/by-nc-nd/4.0/


As mentioned earlier, we use re-estimated contrast vector in this scenario, not the371

initial contrast vector derived from MCPMod which would lead to some power loss.372

Figure 5 displays boxplots of the estimated treatment effects of six dose groups for BPM373

and BHM. The estimates for the second and third doses, both of which only exists in one374

of the two trials, has larger variability. Results from scenarios 2A, 2B and 2C show similar375

effect. Therefore, it is beneficial to apply a re-estimation step based on the covariance376

matrix Ŝ after each MCMC simulation to derive a re-estimated contrast vector.377

Under scenario 2C, we consider two decision rules to detect a significant PoC. The378

first one is using all of dose groups in current and historical trials (decision rule I) and the379

second one is using dose groups in the current trial only (decision rule II). The third row380

of Figure 3 compares the performance of BPM and BHM using these two decision rules.381

It shows that the ROC curve of BHM is above that of BPM with either decision rule.382

This is not surprising since BHM produces much more accurate estimates than BPM383

under scenario 2C, as shown in Table 3. We observe that BHM has better performance384

when using decision rule II as the dose found only in the historical trial is ignored. This385

indicates that even though we use a re-estimated contrast vector, the performance is also386

influenced by the non-overlapping doses. On the other hand, the ROC curve of BPM387

is higher with decision rule I than decision rule II. Therefore, when there exist non-388

overlapping doses between the historical and current trials, we recommend using decision389

rule II when the data is pooled.390

4. Discussion391

In this paper, we proposed a Bayesian hierarchical model for dose finding trials that392

incorporates information from historical trials. The model can take into account both393

prognostic and predictive between-trial heterogeneities. We detailed how to set up a394

Bayesian multiple comparison procedure, how to choose contrast vectors, and how to395

check for a non-flat dose response given a desired type I error α. We evaluated the per-396

formance of our model and illustrated the utility of our approach through three simulation397
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Scenario Model |r| = 0 |r| = 0.1 |r| = 0.2 |r| = 0.3
Scenario 2A
Null hypothesis r = 0 r = 0.1 r = 0.2 r = 0.3
0.10 (µ2 = 0) BHM 0.0058 -0.0206 -0.0247 -0.0269

BPM 0.0035 -0.1016 -0.2006 -0.3015
0.10 (µ3 = 0) BHM 0.0005 0.0168 0.0139 0.0121

BPM 0.0022 0.1004 0.1976 0.3032
Alternative hypothesis r = 0 r = 0.1 r = 0.2 r = 0.3
0.10 (µ2 = 0.030) BHM 0.0220 -0.0264 -0.0328 -0.0375

BPM 0.0283 -0.0714 -0.1705 -0.2681
0.15 (µ3 = 0.075) BHM 0.0820 0.0980 0.1019 0.1012

BPM 0.0807 0.1735 0.2725 0.3726
Scenario 2B
Null hypothesis r = 0 r = −0.1 r = −0.2 r = −0.3
0.10 (µ2 = 0) BHM 0.0403 0.0255 0.0241 0.0258

BPM 0.0043 0.1021 0.2147 0.2975
0.15 (µ3 = 0) BHM 0.0004 -0.0174 -0.0159 -0.0095

BPM 0.0046 -0.1127 -0.1965 -0.3110
Alternative hypothesis r = 0 r = −0.1 r = −0.2 r = −0.3
0.10 (µ2 = 0.050) BHM 0.0519 0.0661 0.0683 0.0722

BPM 0.0507 0.1528 0.2439 0.3517
0.15 (µ3 = 0.045) BHM 0.0407 -0.0294 -0.0650 -0.0803

BPM 0.0450 -0.0547 -0.1525 -0.2526
Scenario 2C
Null hypothesis r = 0 r = 0.1 r = 0.2 r = 0.3
0.10 (µ2 = 0.030) BHM 0.0292 -0.0310 -0.0402 -0.0414

BPM 0.0276 -0.1288 -0.2276 -0.3318
0.15 (µ3 = 0) BHM 0.0010 0.0307 0.0526 0.0757

BPM -0.0003 0.0963 0.2006 0.2988
Alternative hypothesis r = 0 r = 0.1 r = 0.2 r = 0.3
0.10 (µ2 = 0.030) BHM 0.0220 -0.0264 -0.0328 -0.0375

BPM 0.0283 -0.0714 -0.1705 -0.2681
0.15 (µ3 = 0.075) BHM 0.0820 0.0980 0.1019 0.1012

BPM 0.0807 0.1735 0.2725 0.3726

Table 3: Estimated treatment effect of two non-overlapping doses under three simulation
scenarios with four different levels of prognostic heterogeneity. This table displays mean
estimates of µ2 or µ3. BHM = Bayesian hierarchical model; BPM = Bayesian pooling
model.

studies, in comparison with the Bayesian pooling model, where data from both trials are398

pooled.399

The main advantage of Bayesian hierarchical model lies in scenarios where there is a400

measurable difference between the behaviour of the historical and the new trials. Com-401
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pared to the Bayesian pooling model, the Bayesian hierarchical model produces more402

accurate estimates of the treatment effects in our simulation studies, even when the ef-403

fect sizes are different in the two trials. We used heavy-tailed hyperpriors for prognostic404

heterogeneity and truncated normal priors for predictive heterogeneity so that the results405

were not sensitive to the prior distribution. Even with an inappropriate prior distribu-406

tion, power usually does not differ too much, hence power values should not be strongly407

affected by prior-data conflicts. We provide more details on effects of prior-data conflicts408

in Appendix E.409

One key limitation of our approach is that we assumed a fixed effect ratio across dif-410

ferent doses, which implies that a fixed relationship between the current and historical411

trials regardless of dose. In practice, however, this may not hold. This assumption can be412

relaxed and our approach can be extended to handle this situation, but extended model413

will have a larger number of unknown parameters. Our method under the assumption414

of a fixed effect ratio across different doses may be a good trade-off between model com-415

plexity and generality. Furthermore, in this work, we only consider the case of borrowing416

information from one historical dose finding trial. Our method can be easily extended to417

cases where information from multiple historical trials or parallel trials can be borrowed.418
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Röver, C., Bender, R., Dias, S., Schmid, C. H., Schmidli, H. et al. (2021). On weakly453

informative prior distributions for the heterogeneity parameter in Bayesian random-454

effects meta-analysis. Research Synthesis Methods , 12 , 448–474.455

Schmidli, H., Gsteiger, S., Roychoudhury, S., O’Hagan, A., Spiegelhalter, D. et al. (2014).456

Robust meta-analytic-predictive priors in clinical trials with historical control informa-457

tion. Biometrics , 70 , 1023–1032.458

Spiegelhalter, D. J., Abrams, K. R., & Myles, J. P. (2004). Bayesian Approaches to459

Clinical Trials and Health-care Evaluation. Chichester: John Wiley & Sons.460

USA Food and Drug Administration (FDA) (2016). Statistical review and evaluation461

qualification of statistical approach: MCP-Mod. https://www.fda.gov/downloads/462

Drugs/DevelopmentApprovalProcess/UCM508701.pdf.463

24

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted March 14, 2022. ; https://doi.org/10.1101/2022.03.12.22272175doi: medRxiv preprint 

https://www.fda.gov/downloads/Drugs/DevelopmentApprovalProcess/UCM508701.pdf
https://www.fda.gov/downloads/Drugs/DevelopmentApprovalProcess/UCM508701.pdf
https://www.fda.gov/downloads/Drugs/DevelopmentApprovalProcess/UCM508701.pdf
https://doi.org/10.1101/2022.03.12.22272175
http://creativecommons.org/licenses/by-nc-nd/4.0/


A. Metropolis-Hasting algorithm464

For each time step t, our algorithm consists of the following steps:465

Step 1: Generate a proposal sample θcand =
(
µcand , acand , rcand , τ cand

)
from the pro-466

posal distribution q
(
θt | θt−1

)
;467

Step 2: Compute the acceptance probability via the acceptance function468

A
(
θcand | θ(t−1)

)
= min

{
1,

p
(
θt | Y

)
q
(
θt | θt−1

)
p
(
θt−1 | Y

)
q
(
θt−1 | θt

)}

based on the proposal distribution and the joint density function (4).469

Step 3: Accept the candidate sample with probability A, i.e. take θt−1 = θcand. Other-470

wise, reject the candidate sample and take θt−1 = θt−1.471

These steps are repeated until a sufficient number of posterior samples have been gener-472

ated.473

We run 500, 000 MCMC iterations for each replicate. We discard the first 5, 000 itera-474

tions as burn-in and then thin the remaining output by keeping every tenth observation.475

B. Steps for estimating power476

The steps for estimating power of our algorithm for fixed values of a, r and α are as477

follows:478

Step 1: repeat the following steps 10000 times:479

1a. Generate Y (c) and Y (h) assuming model m to be flat, using (1).480

1b. Repeat steps of Metropolis-Hastings (MH) algorithm described above until a481

sufficient number of samples of the parameters µ have been obtained.482

1c. Calculate the probability maxm∈1,...,M P(cTmµ > 0|Y ).483

Step 2: use points with a spacing of 0.0001 from 0 to 1 as thresholds to estimate type I484

errors (i.e., maxm∈1,...,M P(cTmµ > 0|Y ) > c, for c ∈ [0, 1]) and choose a specific485

threshold α such that the desired type I error 5% is achieved.486
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Step 3: repeat the following steps 10000 times:487

3a. Generate Y (c) and Y (h) assuming model m to be true, using (1).488

3b. Repeat steps of Metropolis-Hastings (MH) algorithm described above until a489

sufficient number of samples of the parameters µ have been obtained.490

3c. Calculate the probability maxm∈1,...,M P(cTmµ > 0|Y ).491

Step 4: use the obtained threshold α in Step 2 and count how many times the test492

decision is significant (i.e., maxm∈1,...,M P(cTmµ > 0|Y ) > 1− α), this proportion493

of simulations for which the null hypothesis is rejected is the estimate of the494

power of the test.495

C. Figures496

C.1. Figure for scenario 1497
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Figure 4: The ROC curves of MCPMod, Bayesian pooling model (BPM) and Bayesian
hierarchical model (BHM) across six candidate models for scenario 1A.
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Figure 5: Boxplot of estimated treatment effects across different doses of Bayesian hier-
archical model (BHM) and Bayesian pooling model (BPM) under scenario 2A.

C.2. Figure for scenario 2498

D. Scenario 3: a phase II PoC trial499

Scenario 3 is a phase II PoC trial, where two high doses are compared to a placebo500

dose (i.e., Dh = {0, 0.8, 1}). We run our method with same settings as in Section 3.501

Table 4 displays power across six candidate models when type I error is controlled at502

5%. We generate the response data under six dose-response models in Figure 1 as the503

true underlying dose-response model without prognostic heterogeneity (r = 0). We apply504

three methods, including MCPMod (no borrowing), BPM (pooling) and BHM (dynamic505

borrowing), to the dataset under scenario 3A. Both BPM and BHM result in a higher506

power than the no borrowing model for all of six candidate models. Under 5 of the507

6 dose-response models, BHM outperforms BPM. The only exception is the quadratic508

model. The ROC curves of six candidate models are shown in Figure 6.509

Figure 7 shows the ROC curves of MCPMod, BPM and BHM with four levels of510

prognostic heterogeneity for scenario 3. Results and finding for BHM under scenario 3511

are similar to scenarios 1 and 2. However, the behaviour of BPM is different from scenarios512

1 and 2. Under scenarios 3A and 3C, as the level of prognostic heterogeneity increases,513
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Figure 6: The ROC curves of MCPMod (no borrowing), Bayesian pooling model (BPM)
and Bayesian hierarchical model (BHM) across six candidate models for scenario 3A.

Approach Linear Emax1 Emax2 Exponential Quadratic Logistic
MCPMod no borrowing 0.7901 0.7916 0.7752 0.7638 0.6793 0.8681
BPM 0.8517 0.8711 0.8777 0.8309 0.7930 0.9022
BHM 0.8884 0.8915 0.8936 0.8588 0.7665 0.9278

Table 4: Power values for MCPMod (no borrowing), Bayesian pooling model (BPM) and
Bayesian hierarchical model (BHM) for the candidate model set when controlling type I
error at 5%.

the ROC curve of BPM lower significantly indicating that it is more sensitive to the514

heterogeneity of prognostic effects. Table 5 shows the estimated treatment effects of non-515

overlapping dose groups. It shows BHM produces a much smaller bias in the treatment516

effect estimates across nearly all scenarios and level of prognostic heterogeneity only has517

little influence on the treatment effect estimates. On the other hand, BPM produces a518

large bias in the treatment effect estimates of non-overlapping dose groups and as the519

level of prognostic heterogeneity increases, there is an obvious increase in bias under all520

scenarios. There is a large bias in the estimated treatment effects of non-overlapping521

dose groups using BPM. These two non-overlapping dose groups are in the current trial522
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Scenario Model |r| = 0 |r| = 0.1 |r| = 0.2 |r| = 0.3
Scenario 3A
Null hypothesis r = 0 r = 0.1 r = 0.2 r = 0.3
0.15 (µ2 = 0) BHM 0.0014 0.0150 0.0219 0.0228

BPM 0.0023 0.1000 0.1996 0.2994
0.50 (µ3 = 0) BHM 0.0015 0.0182 0.0177 0.0252

BPM 0.0006 0.1033 0.1988 0.3024
Alternative hypothesis r = 0 r = 0.1 r = 0.2 r = 0.3
0.15 (µ2 = 0.075) BHM 0.0737 0.0987 0.1098 0.1119

BPM 0.0713 0.1738 0.2738 0.3702
0.50 (µ3 = 0.250) BHM 0.2541 0.2730 0.2879 0.2873

BPM 0.2504 0.3525 0.4484 0.5511
Scenario 3B
Null hypothesis r = 0 r = −0.1 r = −0.2 r = −0.3
0.15 (µ2 = 0) BHM 0.0014 0.0150 0.0219 0.0228

BPM 0.0023 0.1000 -0.1996 -0.2994
0.50 (µ3 = 0) BHM 0.0015 0.0182 0.0177 0.0252

BPM 0.0006 -0.1033 -0.1988 -0.3024
Alternative hypothesis r = 0 r = −0.1 r = −0.2 r = −0.3
0.15 (µ2 = 0.045) BHM 0.0960 0.0829 0.0812 0.0791

BPM 0.0437 -0.0578 -0.1510 -0.2551
0.50 (µ3 = 0.150) BHM 0.1999 0.1937 0.1934 0.1902

BPM 0.1526 0.0513 -0.0473 -0.1554
Scenario 3C
Null hypothesis r = 0 r = 0.1 r = 0.2 r = 0.3
0.15 (µ2 = 0) BHM -0.0012 0.0290 0.0576 0.0796

BPM 0.0045 0.0991 0.2010 0.3010
0.50 (µ3 = 0) BHM 0.0010 0.0307 0.0526 0.0757

BPM 0.0013 0.0964 0.1979 0.2960
Alternative hypothesis r = 0 r = 0.1 r = 0.2 r = 0.3
0.15 (µ2 = 0.075) BHM 0.0737 0.0987 0.1098 0.1119

BPM 0.0713 0.1738 0.2738 0.3702
0.50 (µ3 = 0.250) BHM 0.2541 0.2730 0.2879 0.2873

BPM 0.2504 0.3525 0.4484 0.5511

Table 5: Estimated treatment effect of two non-overlapping dose groups under three sim-
ulation scenarios with four different levels of prognostic heterogeneity. BHM = Bayesian
hierarchical model; BPM = Bayesian pooling model.

only, which means that when the effect size of the current trial is larger than that in the523

historical trial, BPM overestimates the treatment effects of these two dose groups. In524

contrast, when the effect size of the current trial is smaller than that in the historical trial,525

BPM underestimates the treatment effect of these two dose groups. Under scenario 3B,526
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Figure 7: The ROC curves of MCPMod, Bayesian pooling model (BPM) and Bayesian
hierarchical model (BHM) with four different levels of prognostic heterogeneity for sce-
nario 3.

Figure 7 shows that the gap between ROC curves of BPM and BHM increase significantly527

as the prognostic heterogeneity increases. The power values at 5% type I error for BPM528

increases gradually from 0.8682 for r = 0 to 0.9616 for r = 0.3. The optimal contrast529

coefficients of these two dose groups for the linear dose-response curve are negative. But530

the estimates of µ2 and µ3 under the alternative hypothesis have the wrong sign. This531

leads to an increase in the power of BPM.532

In summary, our simulation studies show that BHM can estimate treatment effects of533

each dose group more accurately than BPM when there exists heterogeneity of prognostic534
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effects, especially for non-overlapping dose groups, resulting in higher statistical power535

for fixed type I error.536

E. Prior-data conflicts537

For the historical trial, there is usually a reasonable amount of information from538

internal or external company databases, literature and expert opinions that can be used539

to formulate an appropriate prior of prognostic and predictive heterogeneities. There540

may exist a mismatch observed between the prior and the data. For this purpose this541

section will investigate the impact of prior-data conflicts on the performance of BHM542

under scenarios 1A, 2A and 3A.543

We will first discuss prior-data conflict of heterogeneity of prognostic effects. We544

assume that information on prognostic factors from the current and historical trials can be545

constructed as informative hyperpriors. In the following simulations, we fix the standard546

deviation of prior of the effect size a at η = 0.4 and generate data from two extreme547

values of r = 0 and r = 0.5. For the heterogeneity of prognostic effects, we consider548

five half-normal prior distributions with scales 0.0625, 0.125, 0.25, 0.5 and 1.0 for the549

prognostic between-study standard deviation τ . These specifications include up to small,550

moderate, substantial, large and very large heterogeneity, respectively.551

Scale of half-normal
prior distribution

1 0.5 0.25 0.125 0.0625

r = 0
Scenario 1A 0.4821 0.4854 0.4815 0.4991 0.5013
Scenario 2A 0.4912 0.4913 0.4997 0.4997 0.5009
Scenario 3A 0.4638 0.4645 0.4766 0.4868 0.4946
r = 0.5
Scenario 1A 0.4912 0.4913 0.5067 0.5152 0.5273
Scenario 2A 0.4952 0.5017 0.5118 0.5203 0.5287
Scenario 3A 0.4920 0.5052 0.5190 0.5249 0.5291

Table 6: Estimated treatment effect size using different scales of half-normal prior distri-
bution for three scenarios. The true effect size is 0.5 (∆c = 0.5).

Table 6 summarises effect size estimates using half-normal prior distribution with552
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Scale of half-normal
prior distribution

1 0.5 0.25 0.125 0.0625

r = 0
Scenario 1A 0.8891 0.8917 0.8905 0.8935 0.8943
Scenario 2A 0.8853 0.8879 0.8851 0.8859 0.8893
Scenario 3A 0.8689 0.8769 0.8806 0.8831 0.8864
r = 0.5
Scenario 1A 0.8816 0.8922 0.8899 0.8892 0.8835
Scenario 2A 0.8831 0.8905 0.8831 0.8827 0.8773
Scenario 3A 0.8701 0.8769 0.8699 0.8667 0.8614

Table 7: Power values at 5% type I error using different scales of half-normal prior
distribution for three scenarios.

five different scales. Generally speaking, when the scale of half-normal distribution is553

approximately equal to the value of prognostic effect r, incorporating historical data on554

the treatment effect leads to little bias in the estimate. For example, in the case of555

r = 0, effect size estimates using scale 0.0625 were more accurate than other scales.556

This is because more accurate hyperparameters for the hyper priors are used resulting557

in more accurate effect size estimates for the current trial. The scale of the half-normal558

distribution exceeding the value of prognostic effect will result in overestimates the effects559

size with increasing bias as the level of prognostic heterogeneity increases.560

Table 7 shows power values for the linear model of the candidate model set using561

half-normal distribution with five levels of prognostic heterogeneity in the hyperprior for562

the between-trial standard deviation τ . When there is no prior-data conflict, the effect563

size can be estimated more accurately using the appropriate prior distribution, resulting564

in higher power. In contrast, as the discrepancy between the true prognostic effect of the565

data and the prior increases, so does the probability of prior-data conflict, which can lead566

to increases in bias and losses in power. However, power values of half-normal prior dis-567

tribution with different scales differ slightly, the difference between the maximum power568

and the minimum power is approximately only 0.1. Using heavy-tailed distributions as569

hyperpriors has the advantage of ensuring some degree of robustness against prior mis-570

specification, reducing the effects of prior-data conflicts. Even if the historical trial is571
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similar to the current study in their specification, we believe that prior-data conflict may572

still occur because of additional unanticipated factors. In such situations we recommend573

using weakly informative half-normal priors HN(0.5) that captures heterogeneity values574

typically seen in meta-analyses of heterogeneous studies and will therefore be a sensible575

choice in many applications.576

Next, we consider the prior-data conflict for the heterogeneity of predictive effects.577

As discussed in Section 2.5, the choice of the value of the standard deviation η is critical.578

In these simulations, we use HN(0.5) as the prior of prognostic between-heterogeneity579

standard deviation τ and generate data from r = 0. For the heterogeneity of treatment580

effects (i.e., the effects ratio a), we consider truncated normal distribution with the same581

mean 1 and seven values of standard deviation η.582

Value of η 0.1 0.2 0.3 0.4 0.5 1 2 pooling
Scenario 1A 0.4097 0.4390 0.4796 0.4998 0.5072 0.5367 0.5458 0.4020
Scenario 2A 0.4112 0.4439 0.4803 0.5014 0.5108 0.5228 0.5284 0.3201
Scenario 3A 0.4074 0.4262 0.4621 0.4831 0.4936 0.5240 0.5322 0.3975

Table 8: Estimated treatment effect size using different standard deviations of truncated
normal prior distribution for three scenarios. The true effect size is 0.5 (∆c = 0.5).

Value of η 0.1 0.2 0.3 0.4 0.5 1 2 pooling
Scenario 1A 0.8732 0.8845 0.8895 0.8936 0.8891 0.8873 0.8849 0.8753
Scenario 2A 0.8803 0.8829 0.8894 0.8916 0.8897 0.8841 0.8789 0.8828
Scenario 3A 0.8492 0.8605 0.8672 0.8832 0.8762 0.8705 0.8694 0.8461

Table 9: Power values at 5% type I error using different standard deviations of truncated
normal prior distribution for three scenarios.

Table 9 contains power values for the linear model of the candidate set using seven583

standard deviations for the prior distributions. Considering the seven prior distributions584

an impact of the prior-data conflict can be observed. From Table 8 we can see that585

estimated effect size using BHM is similar to BPM if a lower standard deviation (η = 0.1)586

is used for the prior of a. This prior distribution (TN(1, 0.12)) represents a situation where587

we would intuitively consider there is prior-data conflict, because under this prior, the588

true value of the effect size (a = 0.6) cannot be covered, leading to lower power values. In589

33

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted March 14, 2022. ; https://doi.org/10.1101/2022.03.12.22272175doi: medRxiv preprint 

https://doi.org/10.1101/2022.03.12.22272175
http://creativecommons.org/licenses/by-nc-nd/4.0/


the case of a too high standard deviation (e.g., η = 2) there is no longer a benefit through590

the use of BHM. This is because weakly informative prior distributions should have little591

influence on the posterior distribution and therefore on the Bayesian inference. As shown592

in Table 8, we see that values of 0.3, 0.4, 0.5 and 1 have higher power than BPM in all593

scenarios and the power is higher when the value of η is set to 0.4. As mentioned in Section594

2.5, the value of η can be estimated roughly using the empirical rule and this rule states595

that 68% of the distribution will occur within one standard deviation. Under scenario A,596

the true value of effect ratio a is equal to 0.6 and a prior distribution TN(1, 0.42) has 68%597

of its observations within one standard deviation of the mean 1 (i.e., 1± η), which means598

the probability that a variable is within a range [0.6, 1.4] in this normal distribution is599

68%. Since this prior distribution is symmetric the standard deviation η = 0.4 is also an600

optimal choice for a = 1.4. We recommend using this approach to determine the value601

of standard deviation η.602

In the case of no reliable information for the effect ratio, the prior distribution needs to603

be suitably vague so that it includes the unexpected, e.g. η = 0.5 and η = 1. There exists604

several appropriate choices of the standard deviation. Even though the inappropriate605

choice of the prior distribution is selected, the power usually do not differ too much606

that means power values should not be strongly affected by prior-data conflicts. This607

is due to weakly informative truncated normal prior distributions used in our model.608

This truncated normal prior distribution with a truncation range [1/3, 3] provides better609

robustness than a normal distribution. A value of the effect ratio a exceeds this range610

corresponds to extremely large heterogeneity of treatment effects, and would essentially611

lead to no borrowing from the historical trial.612

Therefore, heavy-tailed hyperpriors for prognostic heterogeneity and truncated normal613

priors for predictive heterogeneity imply a degree of robustness against prior-data conflicts614

which means the results are not sensitive to the prior specification. Even though the615

inappropriate choice of the prior distribution is selected, the power usually do not differ616

too much that means power values should not be strongly affected by prior-data conflicts.617
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