SARS-CoV-2 reinfections during the first three major COVID-19 waves in Bulgaria =============================================================================== * Georgi K. Marinov * Mladen Mladenov * Antoni Rangachev * Ivailo Alexiev ## Abstract **Background** The COVID-19 pandemic has had a devastating impact on the world over the past two years (2020-2021). One of the key questions about its future trajectory is the protection from subsequent infections and disease conferred by a previous infection, as the SARS-CoV-2 virus belongs to the coronaviruses, a group of viruses the members of which are known for their ability to reinfect convalescent individuals. Bulgaria, with high rates of previous infections combined with low vaccination rates and an elderly population, presents a somewhat unique context to study this question. **Methods** We use detailed governmental data on registered COVID-19 cases to evaluate the incidence and outcomes of COVID-19 reinfections in Bulgaria in the period between March 2020 and early December 2021. **Results** For the period analyzed, a total of 4,106 cases of individuals infected more than once were observed, including 31 cases of three infections and one of four infections. The number of reinfections increased dramatically during the Delta variant-driven wave of the pandemic towards the end of 2021. We observe a moderate reduction of severe outcomes (hospitalization and death) in reinfections relative to primary infections, and a more substantial reduction of severe outcomes in breakthrough infections in vaccinated individuals. **Conclusions** In the available datasets from Bulgaria, prior infection appears to provide some protection from severe outcomes, but to a lower degree than the reduction in severity of breakthrough infections in the vaccinated compared to primary infections in the unvaccinated. ## Introduction The COVID-191–3 pandemic has become the most significant public health crisis in more than a century, and is still rapidly developing. An important question for its future trajectory, especially given the large and steadily growing number of infected individuals in most countries, is the degree of protection from subsequent infection and serious disease that prior SARS-CoV-2 infection and recovery confers. SARS-CoV-2 belongs to the coronavirus family, of which four different endemic human viruses were known prior to the pandemic – HCoV-OC434,5, HCoV-229E 6, HCoVNL637,8 and HCoV-HKU19–11. These usually cause common colds (around 10-15% of colds, depending on the source 12–15, are considered to be caused by them), and, as is common with respiratory viruses 16, they cause repeated reinfections throughout people’s lifetimes 17. Large coronavirus epidemics are thought to occur at two-to three-year intervals 18,19, though these are generally not noticed by society due to the overall mild nature of these viruses. Given that SARS-CoV-2 belongs to the same family of viruses, it is natural to expect that a similar host-pathogen dynamics involving frequent reinfections will be observed with it too. The first reports of repeated infections appeared very early in the pandemic 20. However, at the time it was difficult to exclude the possibility of simple persistence of viral RNA as opposed to true reinfections. Viral genomic sequencing (showing that distinct viral lineages infected the same individual more than once) eventually proved beyond reasonable doubt that reinfection occurs, but it was still initially seen as an exotic and surprising phenomenon 21–27. Since then, however, reinfection has been proven to be far from a rare phenomenon as a large body of case reports has accumulated from around the world 28–122, most recently including even cases of third infections 38,123,124. A number of cohort studies have also been published 124–175, but most of these suffer from various drawbacks, such as the inclusion of a very narrow time window after initial infection, focus on healthcare workers (meaning that the age distribution is not representative of the overall population), and the fact that most such studies were carried out prior to the appearance of the more highly derived SARS-CoV-2 variants that have come to dominate the pandemic in 2021 and 2022. The importance of comprehensive population sampling was shown by a recent reinfection study from Denmark 128, which found protection from reinfection of only 47.1% among those 65 years old and older during the late-2020 surge as opposed to 80.5% for the general population. The importance of variants was first stressed by the placebo arm of the clinical trial of the Novavax vaccine in South Africa 176, which showed little protection of prior infection against infection with the dominant at the time there B.1.351 variant177. Later, towards the end of 2021, the Omicron lineage of variants emerged, with very strong immune escape characteristics 178–181 and the ability to reinfect convalescent individuals at a high rate 124,182–185. In this work, we analyze available reinfection data in Bulgaria prior to the emergence of the Omicron variant, when largely homologous antigenically variants were circulating. Bulgaria has been one of the most seriously affected by the pandemic countries 186, having experienced three major COVID-19 waves in 2020-2021 and exhibiting excess mortality approaching 1% of its population within that period 187. In the same time, only a small portion of the population has been fully vaccinated (≤30% by the end of 2021), meaning that the country provides a unique context in which the clinical impact of reinfections can be observed in a previously severely impacted population with an age structure skewed towards the elderly individuals, but without the confounding factor of high vaccination coverage. We identify 4,106 reinfected individuals out of ≤700,000 cases in the country prior to December 2021. The frequency of reinfection increased substantially during the third wave driven by the Delta variant, at which point reinfections represented ∼2.2% of cases, with protection conferred by previous infection ∼81%. The severity of reinfections (i.e. the rate of hospitalizations and fatalities) was comparable to that of primary infections, while severity was reduced in breakthrough infections in vaccinated uninfected subjects. ## Methodology The research described in this manuscript has been approved by the Ethics Committee of the IMI-BAS (Institute of Mathematics and Informatics, Bulgarian Academy of Sciences). ### Datasets #### Primary SARS-CoV-2 Infections in Bulgaria At the time of writing this manuscript, there were no publicly available age-stratified datasets on hospitalizations and deaths associated with confirmed SARS-CoV-2 infections in Bulgaria. We obtained a patient-sensitive dataset from Bulgaria’s Ministry of Health, which included data on all infections from the beginning of the pandemic until November 5th 2021. This dataset included information about a person’s age, gender, region, the date of their latest Covid-19 test, their status (infected, recovered, hospitalized, deceased), their hospitalization start and end dates, if any, information about accompanying diseases, as well as whether they received any breathing assistance, whether they were taken into intensive care and whether they died of Covid-19. #### Data on breakthrough infections in vaccinated individuals Information about infections, hospitalizations and deaths among the vaccinated population in Bulgaria were obtained through publicly available datasets provided by Bulgaria’s Ministry of Health. These datasets present a daily time series that contain information about the age at 10 year intervals, gender, vaccination course and count of infected, hospitalized or deceased per group. #### Reinfections No publicly available datasets about the reinfection rates in Bulgaria existed prior to the writing of this manuscript. We obtained these datasets through a separate request for information on patient-sensitive data from Bulgaria’s Ministry of Health. The data provided by the Ministry covers the period from the beginning of the pandemic until December 9th 2021. Reinfections were defined as cases of two positive tests spaced ≥90 days apart. Breakthrough reinfections were defined as cases of a second positive tests at least one day after the completion of the vaccination course. #### SARS-CoV-2 sequencing data Information about sequenced SARS-CoV-2 genomes was obtained from the GISAID database 188. ### Data Availability All datasets and associated code can be found at [https://github.com/Mlad-en/Cov-Reinfections](https://github.com/Mlad-en/Cov-Reinfections). The dataset containing reinfections has been blinded to protect individuals medical history and is compliant with General Data Protection Regulation (GDPR) data processing. ## Results ### Suspected SARS-CoV-2 reinfection cases in Bulgaria In order to identify SARS-CoV-2 reinfection cases in Bulgaria, we obtained datasets on the incidence and clinical outcomes of suspected reinfections up to December 9th 2021. We classified cases as suspected reinfections if ≥90 days have passed between testing positive on at least two different occasions. After largely successfully escaping the first global wave of infections in the first half of 2020, Bulgaria experienced three major waves of COVID-19, in October-December 2020, in February-April 2021, and in the later months of 2021, of roughly equal magnitude (Figure 1A). Under this criterion, the eligible population to be considered for potential reinfection was ∼200,000 individuals after the first major wave, doubling to ≥400,000 after the second (Figure 1B). These waves were driven by different variants of the SARS-CoV-2 virus. The first was dominated by B.1 lineages antigenically similar to the ancestral strain. The second consisted almost entirely of the Alpha (B.1.1.7) variant 189,190, while in the third the globally dominant by then Delta (B.1.6.17.2/AY.*) variant191 constituted practically all cases (Figure 1C). We have defined for the purposes of our analyses the dividing lines between these waves as mid-January 2021 and beginning of June 2021. ![Figure 1:](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2022/08/29/2022.03.11.22271527/F1.medium.gif) [Figure 1:](http://medrxiv.org/content/early/2022/08/29/2022.03.11.22271527/F1) Figure 1: Suspected SARS-CoV-2 reinfections in Bulgaria over time. (A) Primary infections in Bulgaria over time. Bulgaria has so far experienced three distinct major epidemiological waves of COVID-19, with peaks in November 2020, March 2021, and October 2021 (an initial wave did occur in the first half of 2020 but it was very small and generally successfully suppressed, and is of little relevance to the progression of the pandemic in the country). (B) Number of people eligible to be considered for reinfection, i.e. people who have tested positive and ≥90 days have elapsed since that positive test. (C) Dominant variants in Bulgaria over time. The first major wave was driven by early B.1/B.1.* derivative variants. The second wave was associated with the Alpha/B.1.1.7 variant. The third wave was dominated by the Delta/B.1.617.2 variant and its AY.* sublineages. (D) Number of probable reinfections over time in Bulgaria (per week). In total, we identified 4,106 cases of individuals infected more than once, including 31 cases of people infected three times and one case of a quadruple infection. The number of reinfections in the first major wave in late 2020 was small, peaking at ≤100 such cases weekly, reflecting the low incidence of COVID-19 earlier that year (Figure 1C). A larger, though still relatively small number of reinfections were observed during the Alpha wave in the first half of 2021. The bulk of reinfections came during the Delta wave in the second half of the year, peaking at 755 a week at the end of October 2021. During the Delta wave reinfections constituted ∼2.3% of cases in Bulgaria. Taking into account the number of eligible for reinfection individuals, during the months of October and November protection from reinfection is estimated to have stood at ∼81% (95% CI 192, 63% to 100%). We then examined the time between primary and subsequent infections. We observe a peak at approximately a year from the initial infection, but the distribution is highly dispersed and a large number of reinfections are observed all throughout the interval from 90 to 360 days (Figure 2A). These numbers correspond primarily to a cohort of people who were infected in the first wave and then reinfected in the Delta wave (*n* = 1, 674), and another group of people infected during the Alpha wave and then reinfected during the Delta wave (*n* = 1, 435). ![Figure 2:](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2022/08/29/2022.03.11.22271527/F2.medium.gif) [Figure 2:](http://medrxiv.org/content/early/2022/08/29/2022.03.11.22271527/F2) Figure 2: Time between primary infections and reinfections against the background of different SARSCoV-2 variants. (A) Distribution of the length of the interval between primary infection and reinfection. (B) Primary infections and reinfections by wave and dominant variant. Waves were defined as follows: “initial infections” refers to the period prior to September 2020; “1st wave” refers to the period between September 2020 and the middle of January 2020, during which D614G variants without many other notable mutations were dominant; the “2nd wave”, between mid-January 2021 and June 2021 was dominated by the B.1.1.7/Alpha variant; the “3rd wave”, dominated by the B.1.617.2/Delta variant, began in July 2021. ### Clinical severity of reinfections We then analyzed the clinical outcomes of reinfections and compared it to outcomes from primary infections and from infections in vaccinated individuals (“breakthrough infections”). Among the 4,106 reinfections, 413 were also “breakthrough reinfections”, i.e. the reinfection occurred after a vaccination course was completed. We divided the reinfection cases into separate unvaccinated and breakthrough reinfection categories. A total of 84 fatalities were recorded within the reinfected cases, one of them within the set of 31 individuals with three infections. This corresponds to an apparent lower case fatality rate (CFR) than the total CFR in Bulgaria for the studied period (∼2% compared to ∼4.2%). In terms of hospitalizations, for the 4,106 reinfected individuals, 705 hospitalizations were recorded for the second infections (a rate of 17.7%); this compares to 8,177 hospitalizations out of 49,170 breakthrough cases in vaccinated individuals (16.6%) and 109,108 hospitalizations out of 332,510 total primary infections (32.8%). However, such comparisons based on total numbers are confounded by the fact that populations are not age matched. We therefore divided cases in all four categories into age groups and compared the rates of hospitalizations and fatalities in each (Figure 3). This analysis reveals a moderately reduced rate of hospitalizations between primary infections and reinfections across all age groups (we observe 40% reduction of risk in the 20-60 age group and 31% in the 60+ age group for the unvaccinated reinfected, and 60% and 40% for the vaccinated reinfected, respectively), and a less pronounced risk of death (38% reduction in the 20-60 age group and 25% in the 60+ age group for the unvaccinated reinfected; note that total numbers were too small for breakthrough reinfections for an accurate estimate). For comparison the severity of breakthrough infections was more strongly reduced compared to primary infections in the unvaccinated (60%/70% risk reductions for hospitalization/death in the 20-60 age group and 49%/66% in the 60+), although that effect diminished in the higher age groups (consistent with previous findings of lower vaccine efficacy in the elderly 193–195). ![Figure 3:](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2022/08/29/2022.03.11.22271527/F3.medium.gif) [Figure 3:](http://medrxiv.org/content/early/2022/08/29/2022.03.11.22271527/F3) Figure 3: Clinical severity of SARS-CoV-2 reinfections in previously infected individuals in Bulgaria. (A) Percentage of hospitalizations among cases in primary infections, breakthrough infections (infections in vaccinated individuals), reinfections (divided into reinfections in the unvaccinated and breakthrough reinfections); (B) Percentage of deaths among cases in primary infections, breakthrough infections (infections in vaccinated individuals), reinfections (divided into reinfections in the unvaccinated and breakthrough reinfections). Binomial proportion confidence intervals were estimated using the Clopper-Pearson exact binomial interval method. (C) Age distribution of reinfected individuals. ## Conclusions In this study we evaluated the rate of incidence and the clinical outcomes of SARS-CoV-2 reinfections during the first three waves of the COVID-19 pandemic in Bugaria, and compared them to primary infections and breakthrough infections in vaccinated individuals. The bulk of reinfections happened during the Delta variant-driven wave, with prior infection providing protection from reinfection at ∼80%. Clinical severity was somewhat reduced relative to primary infections, but to a lesser extent than the observed reduction in severity in breakthrough infections in the vaccinated. A possible limitation of our study is the possibility that in some individuals the disease may have passed with mild symptoms or asymptomatically, and thus not all cases have been properly diagnosed and registered in the national system, leading to some bias towards documenting symptomatic infections. Results regarding the relative severity of reinfections in the literature have ranged from finding no difference in the severity of reinfections and primary infection to finding considerable (though rarely very high) degree of reduction from severe outcomes 171; our results also fit within this range of estimates. ## Data Availability All datasets and associated code can be found at \burl{https://github.com/Mlad-en/Cov-Reinfections}. The dataset containing reinfections has been blinded to protect individuals medical history and is compliant with General Data Protection Regulation (GDPR) data processing. ## Notes ### Competing Interests The authors declare no competing interests. ## Acknowledgments and Funding The authors would like to acknowledge the help of the Bulgarian Ministry of Health and Information Services for providing us with raw data about reinfections, demographics and vaccination status. A.R. would like to acknowledge the financial support of a “Petar Beron i NIE” fellowship [KP06-D15-1] from the Bulgarian Science Fund. ## Footnotes * The Acknowledgments and Funding needed to be updated with the following sentence: "A.R. would like to acknowledge the financial support of a ``Petar Beron i NIE" fellowship [KP-06-D15-1] from the Bulgarian Science Fund." * Received March 11, 2022. * Revision received August 28, 2022. * Accepted August 29, 2022. * © 2022, Posted by Cold Spring Harbor Laboratory This pre-print is available under a Creative Commons License (Attribution-NonCommercial-NoDerivs 4.0 International), CC BY-NC-ND 4.0, as described at [http://creativecommons.org/licenses/by-nc-nd/4.0/](http://creativecommons.org/licenses/by-nc-nd/4.0/) ## References 1. 1.Wang C, Horby PW, Hayden FG, Gao GF. 2020. A novel coronavirus outbreak of global health concern. Lancet 395(10223):470–473. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/S0140-6736(20)30185-9&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F08%2F29%2F2022.03.11.22271527.atom) 2. 2.Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, Si HR, Zhu Y, Li B, Huang CL, Chen HD, Chen J, Luo Y, Guo H, Jiang RD, Liu MQ, Chen Y, Shen XR, Wang X, Zheng XS, Zhao K, Chen QJ, Deng F, Liu LL, Yan B, Zhan FX, Wang YY, Xiao GF, Shi ZL. 2020. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579(7798):270–273. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1038/s41586-020-2012-7&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F08%2F29%2F2022.03.11.22271527.atom) 3. 3.Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X, Cheng Z, Yu T, Xia J, Wei Y, Wu W, Xie X, Yin W, Li H, Liu M, Xiao Y, Gao H, Guo L, Xie J, Wang G, Jiang R, Gao Z, Jin Q, Wang J, Cao B. 2020. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395(10223):497–506. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/S0140-6736(20)30183-5&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F08%2F29%2F2022.03.11.22271527.atom) 4. 4.McIntosh K, Becker WB, Chanock RM. 1967. Growth in suckling-mouse brain of “IBV-like” viruses from patients with upper respiratory tract disease. Proc Natl Acad Sci U S A 58(6):2268–2273 [FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiRlVMTCI7czoxMToiam91cm5hbENvZGUiO3M6NDoicG5hcyI7czo1OiJyZXNpZCI7czo5OiI1OC82LzIyNjgiO3M6NDoiYXRvbSI7czo1MDoiL21lZHJ4aXYvZWFybHkvMjAyMi8wOC8yOS8yMDIyLjAzLjExLjIyMjcxNTI3LmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 5. 5.McIntosh K, Dees JH, Becker WB, Kapikian AZ, Chanock RM. 1967. Recovery in tracheal organ cultures of novel viruses from patients with respiratory disease. Proc Natl Acad Sci USA 57:933–940. [FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiRlVMTCI7czoxMToiam91cm5hbENvZGUiO3M6NDoicG5hcyI7czo1OiJyZXNpZCI7czo4OiI1Ny80LzkzMyI7czo0OiJhdG9tIjtzOjUwOiIvbWVkcnhpdi9lYXJseS8yMDIyLzA4LzI5LzIwMjIuMDMuMTEuMjIyNzE1MjcuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 6. 6.Hamre D, Procknow JJ. 1966. A new virus isolated from the human respiratory tract. Proc Soc Exp Biol Med 121(1):190–193 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3181/00379727-121-30734&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=4285768&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F08%2F29%2F2022.03.11.22271527.atom) 7. 7.Fouchier RA, Hartwig NG, Bestebroer TM, Niemeyer B, de Jong JC, Simon JH, Osterhaus AD.. 2004. A previously undescribed coronavirus associated with respiratory disease in humans. Proc Natl Acad Sci U S A 101(16):6212–6216 [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NDoicG5hcyI7czo1OiJyZXNpZCI7czoxMToiMTAxLzE2LzYyMTIiO3M6NDoiYXRvbSI7czo1MDoiL21lZHJ4aXYvZWFybHkvMjAyMi8wOC8yOS8yMDIyLjAzLjExLjIyMjcxNTI3LmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 8. 8.Pyrc K, Jebbink MF, Berkhout B, van der Hoek L. 2004. Genome structure and transcriptional regulation of human coronavirus NL63. Virol J 1:7 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1186/1743-422X-1-7&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=15548333&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F08%2F29%2F2022.03.11.22271527.atom) 9. 9.Woo PC, Lau SK, Chu CM, Chan KH, Tsoi HW, Huang Y, Wong BH, Poon RW, Cai JJ, Luk WK, Poon LL, Wong SS, Guan Y, Peiris JS, Yuen KY. 2005. Characterization and complete genome sequence of a novel coronavirus, coronavirus HKU1, from patients with pneumonia. J Virol 79(2):884–895 [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MzoianZpIjtzOjU6InJlc2lkIjtzOjg6Ijc5LzIvODg0IjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjIvMDgvMjkvMjAyMi4wMy4xMS4yMjI3MTUyNy5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 10. 10.Lau SK, Woo PC, Yip CC, Tse H, Tsoi HW, Cheng VC, Lee P, Tang BS, Cheung CH, Lee RA, So LY, Lau YL, Chan KH, Yuen KY. 2006. Coronavirus HKU1 and other coronavirus infections in Hong Kong. J Clin Microbiol 44(6):2063–2071 [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiamNtIjtzOjU6InJlc2lkIjtzOjk6IjQ0LzYvMjA2MyI7czo0OiJhdG9tIjtzOjUwOiIvbWVkcnhpdi9lYXJseS8yMDIyLzA4LzI5LzIwMjIuMDMuMTEuMjIyNzE1MjcuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 11. 11.Vabret A, Dina J, Gouarin S, Petitjean J, Corbet S, Freymuth F. 2006. Detection of the new human coronavirus HKU1: a report of 6 cases. Clin Infect Dis 42(5):634–639 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1086/500136&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=16447108&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F08%2F29%2F2022.03.11.22271527.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000235060200009&link_type=ISI) 12. 12.Wat D. 2004. The common cold: a review of the literature. Eur J Intern Med 15(2):79–88 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.ejim.2004.01.006&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=15172021&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F08%2F29%2F2022.03.11.22271527.atom) 13. 13.Mäkelä MJ, Puhakka T, Ruuskanen O, Leinonen M, Saikku P, Kimpimäki M, Blomqvist S, Hyypiä T, Arstila P. 1998. Viruses and bacteria in the etiology of the common cold. J Clin Microbiol 36(2):539–542. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiamNtIjtzOjU6InJlc2lkIjtzOjg6IjM2LzIvNTM5IjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjIvMDgvMjkvMjAyMi4wMy4xMS4yMjI3MTUyNy5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 14. 14.Larson HE, Reed SE, Tyrrell DA. 1980. Isolation of rhinoviruses and coronaviruses from 38 colds in adults. J Med Virol 5(3):221–29 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1002/jmv.1890050306&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=6262450&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F08%2F29%2F2022.03.11.22271527.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=A1980KC68700005&link_type=ISI) 15. 15.Nicholson KG, Kent J, Hammersley V, Cancio E. 1997. Acute viral infections of upper respiratory tract in elderly people living in the community: comparative, prospective, population based study of disease burden. BMJ 315(7115):1060–1064 [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiYm1qIjtzOjU6InJlc2lkIjtzOjEzOiIzMTUvNzExNS8xMDYwIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjIvMDgvMjkvMjAyMi4wMy4xMS4yMjI3MTUyNy5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 16. 16.Yewdell JW. 2021. Individuals cannot rely on COVID-19 herd immunity: Durable immunity to viral disease is limited to viruses with obligate viremic spread. PLoS Pathog 17(4):e100950 17. 17.Callow KA, Parry HF, Sergeant M, Tyrrell DA. 1990. The time course of the immune response to experimental coronavirus infection of man. Epidemiol Infect 105:435–446. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1017/S0950268800048019&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=2170159&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F08%2F29%2F2022.03.11.22271527.atom) 18. 18.Monto AS. Medical reviews: coronaviruses. Yale J Biol Med 47:234–251. 19. 19.Kahn JS, McIntosh K. 2005. History and recent advances in coronavirus discovery. Pediatr Infect Dis J 24(11 Suppl):S223–227. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1097/01.inf.0000188166.17324.60&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=16378050&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F08%2F29%2F2022.03.11.22271527.atom) 20. 20.Mahase E. 2020. Covid-19: WHO and South Korea investigate reconfirmed cases. BMJ 369:m1498 [FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiRlVMTCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiYm1qIjtzOjU6InJlc2lkIjtzOjE3OiIzNjkvYXByMTVfMS9tMTQ5OCI7czo0OiJhdG9tIjtzOjUwOiIvbWVkcnhpdi9lYXJseS8yMDIyLzA4LzI5LzIwMjIuMDMuMTEuMjIyNzE1MjcuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 21. 21.de Vrieze J. 2020. Reinfections, still rare, provide clues on immunity. Science 370(6519):895–897. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6Mzoic2NpIjtzOjU6InJlc2lkIjtzOjEyOiIzNzAvNjUxOS84OTUiO3M6NDoiYXRvbSI7czo1MDoiL21lZHJ4aXYvZWFybHkvMjAyMi8wOC8yOS8yMDIyLjAzLjExLjIyMjcxNTI3LmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 22. 22.Arafkas M, Khosrawipour T, Kocbach P, Zielinski K, Schubert J, Mikolajczyk A, Celinska M, Khosrawipour V. 2021. Current meta-analysis does not support the possibility of COVID-19 reinfections. J Med Virol 93(3):1599–1604. 23. 23.Ledford H. 2020. Coronavirus reinfections: three questions scientists are asking. Nature 585(7824):168–169. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1038/d41586-020-02506-y&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=32887957&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F08%2F29%2F2022.03.11.22271527.atom) 24. 24.Jabbari P, Rezaei N. 2020. With Risk of Reinfection, Is COVID-19 Here to Stay? Disaster Med Public Health Prep 14(4):e33 25. 25.Duggan NM, Ludy SM, Shannon BC, Reisner AT, Wilcox SR. 2021. Is novel coronavirus 2019 reinfection possible? Interpreting dynamic SARS-CoV-2 test results. Am J Emerg Med 39:256.e1-256.e3. 26. 26.York A. 2020. Can COVID-19 strike twice? Nat Rev Microbiol 18(9):477. 27. 27.Law SK, Leung AWN, Xu C. 2020. Is reinfection possible after recovery from COVID-19? Hong Kong Med J 26(3):264–265. 28. 28.Tang CY, Wang Y, McElroy JA, Li T, Hammer R, Ritter D, Lidl GM, Webby R, Hang J, Wan XF. 2021. Reinfection with two genetically distinct SARS-CoV-2 viruses within 19 days. J Med Virol 93(10):5700–5703. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1002/jmv.27154&link_type=DOI) 29. 29.Lee JS, Kim SY, Kim TS, Hong KH, Ryoo NH, Lee J, Park JH, Cho SI, Kim MJ, Kim YG, Kim B, Shin HS, Oh HS, Seo MS, Gwon TR, Kim Y, Park JS, Chin BS, Park WB, Park SS, Seong MW. 2020. Evidence of Severe Acute Respiratory Syndrome Coronavirus 2 Reinfection After Recovery from Mild Coronavirus Disease 2019. Clin Infect Dis ciaa1421. 30. 30.Mulder M, van der Vegt DSJM, Oude Munnink BB, GeurtsvanKessel CH, van de Bovenkamp J, Sikkema RS, Jacobs EMG, Koopmans MPG, Wegdam-Blans MCA. 2020. Reinfection of SARS-CoV-2 in an immunocompromised patient: a case report. Clin Infect Dis ciaa1538 31. 31.To KK, Hung IF, Ip JD, Chu AW, Chan WM, Tam AR, Fong CH, Yuan S, Tsoi HW, Ng AC, Lee LL, Wan P, Tso E, To WK, Tsang D, Chan KH, Huang JD, Kok KH, Cheng VC, Yuen KY. 2020. COVID-19 re-infection by a phylogenetically distinct SARS-coronavirus-2 strain confirmed by whole genome sequencing. Clin Infect Dis ciaa1275 32. 32.Larson D, Brodniak SL, Voegtly LJ, Cer RZ, Glang LA, Malagon FJ, Long KA, Potocki R, Smith DR, Lanteri C, Burgess T, Bishop-Lilly KA. 2020. A Case of Early Re-infection with SARS-CoV-2. Clin Infect Dis ciaa1436 33. 33.Goldman JD, Wang K, Roltgen K, Nielsen SCA, Roach JC, Naccache SN, Yang F, Wirz OF, Yost KE, Lee JY, Chun K, Wrin T, Petropoulos CJ, Lee I, Fallen S, Manner PM, Wallick JA, Algren HA, Murray KM, Su Y, Hadlock J, Jeharajah J, Berrington WR, Pappas GP, Nyatsatsang ST, Greninger AL, Satpathy AT, Pauk JS, Boyd SD, Heath JR. 2020. Reinfection with SARS-CoV-2 and Failure of Humoral Immunity: a case report. medRxiv 2020.09.22.20192443 34. 34.Tillett RL, Sevinsky JR, Hartley PD, Kerwin H, Crawford N, Gorzalski A, Laverdure C, Verma SC, Rossetto CC, Jackson D, Farrell MJ, Van Hooser S, Pandori M. 2021. Genomic evidence for reinfection with SARS-CoV-2: a case study. Lancet Infect Dis 21(1):52–58. [PubMed](http://medrxiv.org/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F08%2F29%2F2022.03.11.22271527.atom) 35. 35.Prado-Vivar B, Becerra-Wong M, Guadalupe JJ, Márquez S, Gutierrez B, Rojas-Silva P, Grunauer M, Trueba G, Barragán V, Cádenas P. 2021. A case of SARS-CoV-2 reinfection in Ecuador. Lancet Infect Dis 21(6):e142. [PubMed](http://medrxiv.org/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F08%2F29%2F2022.03.11.22271527.atom) 36. 36.Sevillano G, Ortega-Paredes D, Loaiza K, Zurita-Salinas C, Zurita J. 2021. Evidence of SARS-CoV-2 reinfection within the same clade in Ecuador: A case study. Int J Infect Dis 108:53–56. 37. 37.Gupta V, Bhoyar RC, Jain A, Srivastava S, Upadhayay R, Imran M, Jolly B, Divakar MK, Sharma D, Sehgal P, Ranjan G, Gupta R, Scaria V, Sivasubbu S. 2020. Asymptomatic reinfection in two healthcare workers from India with genetically distinct SARS-CoV-2. Clin Infect Dis ciaa1451 38. 38.Shastri J, Parikh S, Agrawal S, Chatterjee N, Pathak M, Chaudhary S, Sharma C, Kanakan A, A V, Srinivasa Vasudevan J, Maurya R, Fatihi S, Thukral L, Agrawal A, Pinto L, Pandey R, Sunil S. 2021. Clinical, Serological, Whole Genome Sequence Analyses to Confirm SARS-CoV-2 Reinfection in Patients From Mumbai, India. Front Med (Lausanne) 8:631769 39. 39.Resende PC, Bezerra JF, Teixeira Vasconcelos RH, Arantes I, Appolinario L, Mendonça AC, Paixao AC, Duarte AC, Silva T, Rocha AS, Lima ABM, Pauvolid-Corréa A, Motta FC, Teixeira DLF, de Oliveira Carneiro TF, Neto FPF, Herbster ID, Leite AB, Riediger IN, do Carmo Debur M, Naveca FG, Almeida W, Livorati M, Bello G, Siqueira MM. 2021. Severe Acute Respiratory Syndrome Coronavirus 2 P.2 Lineage Associated with Reinfection Case, Brazil, June-October 2020. Emerg Infect Dis 27(7):1789–1794. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3201/eid2707.210401&link_type=DOI) 40. 40.Nonaka CKV, Franco MM, Gräf T, de Lorenzo Barcia CA, de Ávila Mendonca RN, de Sousa KAF, Neiva LMC, Fosenca V, Mendes AVA, de Aguiar RS, Giovanetti M, de Freitas Souza BS. 2021. Genomic Evidence of SARS-CoV-2 Reinfection Involving E484K Spike Mutation, Brazil. Emerg Infect Dis 27(5):1522–1524. 41. 41.Mahajan NN, Gajbhiye RK, Lokhande PD, Bahirat S, Modi D, Mathe AM, Bharmal R, Rathi S, Mohite SC, Tilve A. 2021. Clinical Presentation of Cases with SARS-CoV-2 Reinfection/ Reactivation. J Assoc Physicians India 69(1):16–18. 42. 42.Garvey MI, Casey AL, Wilkinson MAC, Ratcliffe L, McMurray C, Stockton J, Holden E, Osman H, Loman NJ. 2021. Details of SARS-CoV-2 reinfections at a major UK tertiary centre. J Infect 82(6):e29–e30. [PubMed](http://medrxiv.org/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F08%2F29%2F2022.03.11.22271527.atom) 43. 43.Harrington D, Kele B, Pereira S, Couto-Parada X, Riddell A, Forbes S, Dobbie H, Cutino-Moguel T. 2021. Confirmed Reinfection with SARS-CoV-2 Variant VOC-202012/01. Clin Infect Dis ciab014 44. 44.Zucman N, Uhel F, Descamps D, Roux D, Ricard JD. 2021. Severe reinfection with South African SARS-CoV-2 variant 501Y.V2: A case report. Clin Infect Dis ciab129 45. 45.Ramírez JD, Muñoz M, Ballesteros N, Patiño LH, Castañeda S, Rincón CA, Mendez C, Oliveros C, Perez J, Márquez EK, Ortiz FLS, Correa-Cárdenas CA, Duque MC, Paniz-Mondolfi A. 2021. Phylogenomic Evidence of Reinfection and Persistence of SARS-CoV-2: First Report from Colombia. Vaccines (Basel) 9(3):282. 46. 46.Van Elslande J, Vermeersch P, Vandervoort K, Wawina-Bokalanga T, Vanmechelen B, Wollants E, Laenen L, André E, Van Ranst M, Lagrou K, Maes P. 2021. Symptomatic Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Reinfection by a Phylogenetically Distinct Strain. Clin Infect Dis 73(2):354–356. 47. 47.Tomassini S, Kotecha D, Bird PW, Folwell A, Biju S, Tang JW. 2021. Setting the criteria for SARS-CoV-2 reinfection - six possible cases. J Infect 82(2):282–327. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.jinf.2021.01.008&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F08%2F29%2F2022.03.11.22271527.atom) 48. 48.Hoang VT, Dao TL, Gautret P. 2020. Recurrence of positive SARS-CoV-2 in patients recovered from COVID-19. J Med Virol 92(11):2366–2367. 49. 49.Bongiovanni M. 2021. COVID-19 reinfection in a healthcare worker. J Med Virol 93(7):4058–4059. 50. 50.Salzer HJF, Neuböck M, Heldt S, Haug I, Paar C, Lamprecht B. 2021. Emerging COVID-19 reinfection four months after primary SARS-CoV-2 infection. Wien Med Wochenschr 1–3. doi: 10.1007/s10354-021-00813-1 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s10354-021-00813-1&link_type=DOI) 51. 51. Sicsic I Jr, Chacon AR, Zaw M, Ascher K, Abreu A, Chediak A. 2021. A case of SARS-CoV-2 reinfection in a patient with obstructive sleep apnea managed with telemedicine. BMJ Case Rep 14(2):e240496 52. 52.Salcin S, Fontem F. 2021. Recurrent SARS-CoV-2 infection resulting in acute respiratory distress syndrome and development of pulmonary hypertension: A case report. Respir Med Case Rep 33:101314. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.rmcr.2020.101314&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=33312856&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F08%2F29%2F2022.03.11.22271527.atom) 53. 53.Selhorst P, Van Ierssel S, Michiels J, Maria J, Bartholomeeusen K, Dirinck E, Vandamme S, Jansens H, Ariën KK. 2020. Symptomatic SARS-CoV-2 reinfection of a health care worker in a Belgian nosocomial outbreak despite primary neutralizing antibody response. Clin Infect Dis ciaa1850. 54. 54.Scarpati G, Piazza O, Pagliano P, Rizzo F. 2021. COVID-19: a confirmed case of reinfection in a nurse. BMJ Case Rep 14(7):e244507 55. 55.Garg J, Agarwal J, Das A, Sen M. 2021. Recurrent COVID-19 infection in a health care worker: a case report. J Med Case Rep 15(1):363 56. 56.Goes LR, Siqueira JD, Garrido MM, Alves BM, Pereira ACPM, Cicala C, Arthos J, Viola JPB, Soares MA; INCA COVID-19 Task Force. 2021. New infections by SARS-CoV-2 variants of concern after natural infections and post-vaccination in Rio de Janeiro, Brazil. Infect Genet Evol 94:104998 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.meegid.2021.104998&link_type=DOI) 57. 57.Ahmadian S, Fathizadeh H, Shabestari Khiabani S, Asgharzadeh M, Kafil HS. 2021. COVID-19 reinfection in a healthcare worker after exposure with high dose of virus: A case report. Clin Case Rep 9(6):e04257. 58. 58.Amorim MR, Souza WM, Barros ACG Jr, Toledo-Teixeira DA, Dos-Santos KB, Simeoni CL, Parise PL, Vieira A, Forato J, Claro IM, Mofatto LS, Barbosa PP, Brunetti NS, Franca ESS, Pedroso GA, Carvalho BFN, Zaccariotto TR, Krywacz KCS, Vieira AS, Mori MA, Farias AS, Pavan MHP, Bachur LF, Cardoso LGO, Spilki FR, Sabino EC, Faria NR, Santos MNN, Angerami R, Leme PAF, Schreiber A, Moretti ML, Granja F, Proenca-Modena JL. 2021. Respiratory Viral Shedding in Healthcare Workers Reinfected with SARS-CoV-2, Brazil, 2020. Emerg Infect Dis 27(6):1737–1740. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3201/eid2706.210558&link_type=DOI) 59. 59.Bongiovanni M, Marra AM, Bini F, Bodini BD, Carlo DD, Giuliani G. 2021. COVID-19 reinfection in healthcare workers: A case series. J Infect 82(6):e4–e5. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.jinf.2020.07.017&link_type=DOI) 60. 60.Salehi-Vaziri M, Omrani MD, Pouriayevali MH, Fotouhi F, Banifazl M, Farahmand B, Sadat Larijani M, Ahmadi Z, Fereydouni Z, Tavakoli M, Jalali T, Ramezani A. 2021. SARS-CoV-2 presented moderately during two episodes of the infection with lack of antibody responses. Virus Res 299:198421. 61. 61.Bonifácio LP, Pereira APS, Araújo Dcae, Balbão VDMP, Fonseca BALD, Passos ADC, Bellissimo-Rodrigues F. 2020. Are SARS-CoV-2 reinfection and Covid-19 recurrence possible? a case report from Brazil. Rev Soc Bras Med Trop 53:e20200619 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1590/0037-8682-0619-2020&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=32965458&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F08%2F29%2F2022.03.11.22271527.atom) 62. 62.Silva MSD, Demoliner M, Hansen AW, Gularte JS, Silveira F, Heldt FH, Filippi M, Pereira Vmag, Silva FPD, Mallmann L, Fink P, Silva LLD, Weber MN, Almeida PR, Fleck JD, Spilki FR. 2021. Early detection of SARS-CoV-2 P.1 variant in Southern Brazil and reinfection of the same patient by P.2. Rev Inst Med Trop Sao Paulo 63:e58 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1590/S1678-9946202163058&link_type=DOI) 63. 63.Yu ALF, Liphaus BL, Ferreira PM, Tanamachi AT, Masuda ET, Trevisan CM, Lucas PCC, Bugno A, Carvalhanas Trmp. 2021. SARS-CoV-2 reinfection: report of two cases in Southeast Brazil. Rev Inst Med Trop Sao Paulo 63:e50. 64. 64.Romano CM, Felix AC, Paula AV, Jesus JG, Andrade PS, Cándido D, Oliveira FM, Ribeiro AC, Silva FCD, Inemami M, Costa AA, Leal COD, Figueiredo WM, Pannuti CS, Souza WM, Faria NR, Sabino EC. 2021. SARS-CoV-2 reinfection caused by the P.1 lineage in Araraquara city, Sao Paulo State, Brazil. Rev Inst Med Trop Sao Paulo 63:e36. 65. 65.West J, Everden S, Nikitas N. 2021. A case of COVID-19 reinfection in the UK. Clin Med (Lond) 21(1):e52– e53. 66. 66.Sharma R, Sardar S, Mohammad Arshad A, Ata F, Zara S, Munir W. 2020. A Patient with Asymptomatic SARS-CoV-2 Infection Who Presented 86 Days Later with COVID-19 Pneumonia Possibly Due to Reinfection with SARS-CoV-2. Am J Case Rep 21:e927154 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.12659/AJCR.927154&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=33257644&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F08%2F29%2F2022.03.11.22271527.atom) 67. 67.Ozaras R, Ozdogru I, Yilmaz AA. 2020. Coronavirus disease 2019 re-infection: first report from Turkey. New Microbes New Infect 38:100774. 68. 68.Colson P, Finaud M, Levy N, Lagier JC, Raoult D. 2021. Evidence of SARS-CoV-2 re-infection with a different genotype. J Infect 82(4):84–123. [PubMed](http://medrxiv.org/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F08%2F29%2F2022.03.11.22271527.atom) 69. 69.Selvaraj V, Herman K, Dapaah-Afriyie K. 2020. Severe, Symptomatic Reinfection in a Patient with COVID-19. R I Med J (2013) 103(10):24–26. 70. 70.AlFehaidi A, Ahmad SA, Hamed E. 2021. SARS-CoV-2 re-infection: a case report from Qatar. J Infect 82(3):414–451. 71. 71.de Brito CAA, Lima PMA, de Brito Mcm, de Oliveira DB. 2020. Second Episode of COVID-19 in Health Professionals: Report of Two Cases. Int Med Case Rep J 13:471–475 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.2147/IMCRJ.S277882&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=33061670&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F08%2F29%2F2022.03.11.22271527.atom) 72. 72.Mulder M, van der Vegt Dsjm, Oude Munnink BB, GeurtsvanKessel CH, van de Bovenkamp J, Sikkema RS, Jacobs EMG, Koopmans MPG, Wegdam-Blans MCA. 2020. Reinfection of SARS-CoV-2 in an immunocompromised patient: a case report. Clin Infect Dis ciaa1538. 73. 73.Hanif M, Haider MA, Ali MJ, Naz S, Sundas F. 2020. Reinfection of COVID-19 in Pakistan: A First Case Report. Cureus 12(10):e11176. 74. 74.Ferrante L, Livas S, Steinmetz WA, Almeida ACL, Leão J, Vassão RC, Tupinambás U, Fearnside PM, Duczmal LH. 2021. The First Case of Immunity Loss and SARS-CoV-2 Reinfection by the Same Virus Lineage in Amazonia. J Racial Ethn Health Disparities 8(4):821–823 75. 75.Arteaga-Livias K, Panduro-Correa V, Pinzas-Acosta K, Perez-Abad L, Pecho-Silva S, Espinoza-Sánchez F, Dámaso-Mata B, Rodriguez-Morales AJ. 2021. COVID-19 reinfection? A suspected case in a Peruvian patient. Travel Med Infect Dis 39:101947 76. 76.Novoa W, Miller H, Mattar S, Faccini-Martínez A, Rivero R, Serrano-Coll H. 2021. A first probable case of SARS-CoV-2 reinfection in Colombia. Ann Clin Microbiol Antimicrob 20(1):7 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1186/s12941-020-00413-8&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=33435982&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F08%2F29%2F2022.03.11.22271527.atom) 77. 77.Alzedam A, Bengblya AM, Zeglam MJ, Benmassoud ET, Bennji SM. 2021. A case of COVID-19 re-infection in Libya. Afr J Thorac Crit Care Med 27(2):doi:10.7196/AJTCCM.2021.v27i2.131 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.7196/AJTCCM.2021.v27i2.131&link_type=DOI) 78. 78.Camargo CH, Goncalves CR, Pagnoca Evrg, Campos KR, Montanha JOM, Flores MNP, Soares MMCN, Binhardi FMT, Ferreira PM, Yu ALF, Carvalhanas Trmp, Abbud A, Bugno A, Sacchi CT. 2021. SARS-CoV-2 reinfection in a healthcare professional in inner Sao Paulo during the first wave of COVID-19 in Brazil. Diagn Microbiol Infect Dis 101(4):115516 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.diagmicrobio.2021.115516&link_type=DOI) 79. 79.Díaz Y, Ortiz A, Weeden A, Castillo D, González C, Moreno B, Martínez-Montero M, Castillo M, Vasquez G, Sáenz L, Franco D, Pitti Y, Chavarria O, Gondola J, Moreno AM, Ábrego L, Beltrán D, Guerra I, Chang J, Chaverra Z, Guerrero I, Valoy A, Gaitán M, Araúz D, Morán E, Chen-Germán M, Valdespino E, Rodríguez R, Corrales R, Chen-Camaño R, Pascale JM, Martínez AA, López-Vergés S; Gorgas COVID19 Team. 2021. SARS-CoV-2 reinfection with a virus harboring mutation in the Spike and the Nucleocapsid proteins in Panama. Int J Infect Dis 108:588–591. 80. 80.Aguilar-Shea AL, Gutiérrez-Martín-Arroyo J, Vacas-Córdoba M, Gallardo-Mayo C. 2021. Reinfection by SARS-CoV-2: The first one in a family reported in Spain. Med Clin (Barc) S0025-7753(21)00250-5 81. 81.Rodríguez-Espinosa D, Broseta Monzó JJ, Casals Q, Piñeiro GJ, Rodas L, Vera M, Maduell F. 2021. Fatal SARS-CoV-2 reinfection in an immunosuppressed patient on hemodialysis. J Nephrol 34(4):1041–1043. 82. 82.Sanyang B, Kanteh A, Usuf E, Nadjm B, Jarju S, Bah A, Bojang A, Grey-Johnson M, Jones JC, Gai A, Sarr C, Sillah F, Wariri O, Oko F, Cerami C, Forrest K, Sey AP, Jallow H, Nwakanma D, Sesay AK, D’Alessandro U, Roca A. 2021. COVID-19 reinfections in The Gambia by phylogenetically distinct SARS-CoV-2 variants-first two confirmed events in west Africa. Lancet Glob Health 9(7):e905–e907 83. 83.Loconsole D, Sallustio A, Accogli M, Centrone F, Casulli D, Madaro A, Tedeschi E, Parisi A, Chironna M. 2021. Symptomatic SARS-CoV-2 Reinfection in a Healthy Healthcare Worker in Italy Confirmed by Whole-Genome Sequencing. Viruses 13(5):899 84. 84.Garduño-Orbe B, Sánchez-Rebolledo JM, Cortés-Rafael M, García-Jiménez Y, Perez-Ortiz M, Mendiola-Pastrana IR, López-Ortiz E, López-Ortiz G. 2021. SARS-CoV-2 Reinfection among Healthcare Workers in Mexico: Case Report and Literature Review. Medicina (Kaunas) 57(5):442 85. 85.Vora T, Vora P, Vora F, Sharma K, Desai HD. 2021. Symptomatic reinfection with COVID-19: A first from Western India. J Family Med Prim Care 10(3):1496– 1498. 86. 86.Sánchez Mollá M, de Gregorio Bernardo C, Ibarra Rizo M, Soriano A. 2021. [Reinfection by SARS-CoV-2 in a socio-sanitary residence. Description of the outbreak]. Aten Primaria 53(8):102100. 87. 87.Fageeh H, Alshehri A, Fageeh H, Bizzoca ME, Lo Muzio L, Quadri MFA. 2021. Re-infection of SARS-CoV-2: A case in a young dental healthcare worker. J Infect Public Health 14(6):685–688. 88. 88.Novazzi F, Baj A, Genoni A, Spezia PG, Colombo A, Cassani G, Zago C, Pasciuta R, Della Gasperina D, Ageno W, Severgnini P, Dentali F, Focosi D, Maggi F. 2021. SARS-CoV-2 B.1.1.7 reinfection after previous COVID-19 in two immunocompetent Italian patients. J Med Virol 93(9):5648–5649. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1002/jmv.27066&link_type=DOI) 89. 89.Letizia AG, Smith DR, Ge Y, Ramos I, Sealfon RSG, Goforth C, Gonzalez-Reiche AS, Vangeti S, Weir DL, Alshammary H, Chen HW, George MC, Soares-Schanoski A, Lizewski RA, Lizewski SE, Marayag J, Miller CM, Nunez E, Porter CK, Ana ES, Schilling M, Sugiharto VA, Sun P, Termini M, van de Guchte A, Troyanskaya OG, van Bakel H, Sealfon SC. 2021. Viable virus shedding during SARS-CoV-2 reinfection. Lancet Respir Med 9(7):e56–e57 90. 90.Staub T, Arendt V, Lasso de la Vega Ec, Braquet P, Michaux C, Kohnen M, Tsobo C, Abdelrahman T, Wienecke-Baldacchino A, Francois JH. 2021. Case series of four re-infections with a SARS-CoV-2 B.1.351 variant, Luxembourg, February 2021. Euro Surveill 26(18):2100423. 91. 91.Brehm TT, Pfefferle S, von Possel R, Kobbe R, Nörz D, Schmiedel S, Grundhoff A, Olearo F, Emmerich P, Robitaille A, Günther T, Braun P, Andersen G, Knobloch JK, Addo MM, Lohse AW, Aepfelbacher M, Fischer N, Schulze Zur Wiesch J, Lütgehetmann M. 2021. SARS-CoV-2 Reinfection in a Healthcare Worker Despite the Presence of Detectable Neutralizing Antibodies. Viruses 13(4):661. 92. 92.Konstantinou F, Skrapari I, Bareta E, Bakogiannis N, Papadopoulou AM, Bakoyiannis C. 2021. A Case of SARS-CoV-2 Clinical Relapse after 4 Negative RT-PCR Tests in Greece: Recurrence or Reinfection? Clin Med Insights Case Rep 14:11795476211009813. 93. 93.Shoar S, Khavandi S, Tabibzadeh E, Khavandi S, Naderan M, Shoar N. 2021. Recurrent coronavirus diseases 19 (COVID-19): A different presentation from the first episode. Clin Case Rep 9(4):2149–2152. 94. 94.Rani PR, Imran M, Lakshmi JV, Jolly B, Jain A, Surekha A, Senthivel V, Chandrasekhar P, Divakar MK, Srinivasulu D, Bhoyar RC, Vanaja PR, Scaria V, Sivasubbu S. 2021. Symptomatic reinfection of SARS-CoV-2 with spike protein variant N440K associated with immune escape. J Med Virol 93(7):4163–4165. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1002/jmv.26997&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=33818797&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F08%2F29%2F2022.03.11.22271527.atom) 95. 95.Váncsa S, Dembrovszky F, Farkas N, Szakó L, Teutsch B, Bunduc S, Nagy R, Párniczky A, Eróss B, Péterfi Z, Hegyi P. 2021. Repeated SARS-CoV-2 Positivity: Analysis of 123 Cases. Viruses 13(3):512 96. 96.Das P, Satter SM, Ross AG, Abdullah Z, Nazneen A, Sultana R, Rimi NA, Chowdhury K, Alam R, Parveen S, Rahman MM, Hossain ME, Rahman MZ, Mazumder R, Abdullah A, Rahman M, Banu S, Ahmed T, Clemens JD, Rahman M. 2021. A Case Series Describing the Recurrence of COVID-19 in Patients Who Recovered from Initial Illness in Bangladesh. Trop Med Infect Dis 6(2):41. 97. 97.Fintelman-Rodrigues N, da Silva APD, Dos Santos MC, Saraiva FB, Ferreira MA, Gesto J, Rodrigues DAS, Vale AM, de Azevedo IG, Soares VC, Jiang H, Tan H, Tschoeke DA, Sacramento CQ, Bozza FA, Morel CM, Bozza PT, Souza TML. 2021. Genetic Evidence and Host Immune Response in Persons Reinfected with SARS-CoV-2, Brazil. Emerg Infect Dis 27(5):1446–1453. 98. 98.Teka IA, BenHasan MH, Alkershini AA, Alatresh OK, Abulifa TA, Lembagga HA, Alhudiri IM, Elzagheid A. 2021. Reinfection with SARS-CoV-2: A case report from Libya. Travel Med Infect Dis 41:102040 99. 99.Roy S. 2021. COVID-19 Reinfection in the Face of a Detectable Antibody Titer. Cureus 13(3):e14033. 100.100.Fernandes AC, Figueiredo R. 2021. SARS-CoV-2 reinfection: a case report from Portugal. Rev Soc Bras Med Trop 54:e0002–2021. 101.101.Ul-Haq Z, Khan A, Fazid S, Noor F, Yousafzai YM, Sherin A. 2020. First documented reinfection of SARS-COV-2 in second wave from Pakistan. J Ayub Med Coll Abbottabad 32(Suppl 1)(4):S704–S705. 102.102.Krishna VN, Ahmad M, Overton ET, Jain G. 2021. Recurrent COVID-19 in Hemodialysis: A Case Report of 2 Possible Reinfections. Kidney Med 3(3):447–450. 103.103.Leung S, Hossain N. 2021. Recurrence and Recovery of COVID-19 in an Older Adult Patient with Multiple Comorbidities: A Case Report. Gerontology 67(4):445–448. 104.104.Salehi-Vaziri M, Jalali T, Farahmand B, Fotouhi F, Banifazl M, Pouriayevali MH, Sadat Larijani M, Afzali N, Ramezani A. 2021. Clinical characteristics of SARS-CoV-2 by re-infection vs. reactivation: a case series from Iran. Eur J Clin Microbiol Infect Dis 40(8):1713–1719. 105.105.Romera I, Núñez K, Calizaya M, Baeza I, Molina R, Morillas J. 2021. SARS-CoV-2 reinfection. Med Intensiva (Engl Ed) 45(6):375–376. 106.106.Yadav SP, Wadhwa T, Thakkar D, Kapoor R, Rastogi N, Sarma S. 2021. COVID-19 reinfection in two children with cancer. Pediatr Hematol Oncol 38(4):403–405. 107.107.Cavanaugh AM, Thoroughman D, Miranda H, Spicer K. 2021. Suspected Recurrent SARS-CoV-2 Infections Among Residents of a Skilled Nursing Facility During a Second COVID-19 Outbreak - Kentucky, July-November 2020. MMWR Morb Mortal Wkly Rep 70(8):273–277. 108.108.Vetter P, Cordey S, Schibler M, Vieux L, Despres L, Laubscher F, Andrey DO, Martischang R, Harbarth S, Cuvelier C, Bekliz M, Eckerle I, Siegrist CA, Didierlaurent AM, Eberhardt CS, Meyer B, Kaiser L; Geneva Center for Emerging Viral Diseases. 2021. Clinical, virologic and immunologic features of a mild case of SARS-CoV-2 reinfection. Clin Microbiol Infect27(5):791.e1–4. 109.109.Lee JT, Hesse EM, Paulin HN, Datta D, Katz LS, Talwar A, Chang G, Galang RR, Harcourt JL, Tamin A, Thornburg NJ, Wong KK, Stevens V, Kim K, Tong S, Zhou B, Queen K, Drobeniuc J, Folster JM, Sexton DJ, Ramachandran S, Browne H, Iskander J, Mitruka K. 2021. Clinical and Laboratory Findings in Patients with Potential SARS-CoV-2 Reinfection, May-July 2020. Clin Infect Dis ciab148. 110.110.Kulkarni O, Narreddy S, Zaveri L, Kalal IG, Tallapaka KB, Sowpati DT. 2021. Evidence of SARS-CoV-2 reinfection without mutations in Spike protein. Clin Infect Dis ciab136. 111.111. Adrielle Dos Santos L, Filho PGG, Silva AMF, Santos JVG, Santos DS, Aquino MM, de Jesus RM, Almeida MLD, da Silva JS, Altmann DM, Boyton RJ, Alves Dos Santos C, Santos CNO, Alves JC, Santos IL, Magalhães Ls, Belitardo Emma, Rocha DJPG, Almeida JPP, Pacheco LGC, Aguiar Ergr, Campos GS, Sardi SI, Carvalho RH, de Jesus AR, Rezende KF, de Almeida RP. 2021. Recurrent COVID-19 including evidence of reinfection and enhanced severity in thirty Brazilian healthcare workers. J Infect 82(3):399–406. 112.112.Inada M, Ishikane M, Terada M, Matsunaga A, Maeda K, Tsuchiya K, Miura K, Sairenji Y, Kinoshita N, Ujiie M, Kutsuna S, Ishizaka Y, Mitsuya H, Ohmagari N. 2021. Asymptomatic COVID-19 re-infection in a Japanese male by elevated half-maximal inhibitory concentration (IC50) of neutralizing antibodies. J Infect Chemother 27(7):1063–1067. 113.113.Fonseca V, de Jesus R, Adelino T, Reis AB, de Souza BB, Ribeiro AA, Guimarães NR, Livorati MTFP, Neto DFL, Kato RB, Portela LMO, Dutra LH, Freitas C, de Abreu AL, Filizzola ERM, de Medeiros AC, Iani FCM, Carvalho G, Lourenço J, de Oliveira T, Al-cantara Lcj, Giovanetti M. 2021. Genomic evidence of SARS-CoV-2 reinfection case with the emerging B.1.2 variant in Brazil. J Infect 83(2):237–279. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.jinf.2021.03.025&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F08%2F29%2F2022.03.11.22271527.atom) 114.114.Zhou X, Zhou YN, Ali A, Liang C, Ye Z, Chen X, Zhang Q, Deng L, Sun X, Zhang Q, Luo J, Li W, Zhou K, Cao S, Zhang X, Li XD, Zhang XE, Cui Z, Men D. 2021. Case Report: A Re-Positive Case of SARS-CoV-2 Associated With Glaucoma. Front Immunol 12:70129 115.115.Massachi J, Donohue KC, Kelly JD. 2021. Severe Acute Respiratory Syndrome Coronavirus 2 Reinfection Cases Corroborated by Sequencing. Am J Trop Med Hyg tpmd210365. 116.116.Massanella M, Martin-Urda A, Mateu L, Marín T, Aldas I, Riveira-Muñoz E, Kipelainen A, Jiménez-Moyano E, Rodriguez de la ConcepciÃn ML, Avila-Nieto C, Trinité B, Pradenas E, Rodon J, Marfil S, Parera M, Carrillo J, Blanco J, Prado JG, Ballana E, Vergara-Alert J, Segalés J, Noguera-Julian M, Masabeu À, Clotet B, Toda MR, Paredes R. 2021. Critical Presentation of a Severe Acute Respiratory Syndrome Coronavirus 2 Reinfection: A Case Report. Open Forum Infect Dis 8(7):ofab329 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/ofid/ofab329&link_type=DOI) 117.117.Alshukairi AN, El-Kafrawy SA, Dada A, Yasir M, Yamani AH, Saeedi MF, Aljohaney A, AlJohani NI, Bahaudden HA, Alam I, Gojobori T, Radovanovic A, Alandijany TA, Othman NA, Alsubhi TL, Hassan AM, Tolah AM, Al-Tawfiq JA, Zumla A, Azhar EI. 2021. Re-infection with a different SARS-CoV-2 clade and prolonged viral shedding in a hematopoietic stem cell transplantation patient. Int J Infect Dis 110:267– 271. 118.118.Bader N, Khattab M, Farah F. 2021. Severe reinfection with severe acute respiratory syndrome coronavirus 2 in a nursing home resident: a case report. J Med Case Rep 15(1):392. 119.119.Awada H, Nassereldine H, Hajj Ali A. 2021. Severe acute respiratory syndrome coronavirus 2 reinfection in a coronavirus disease 2019 recovered young adult: a case report. J Med Case Rep 15(1):382 120.120.Zanferrari C, Fanucchi S, Sollazzo MT, Ranieri M, Volterra D, Valvassori L. 2021. Focal Cerebral Arteriopathy in a Young Adult Following SARS-CoV2 Reinfection. J Stroke Cerebrovasc Dis 30(9):105944. 121.121.Zhang N, Chen X, Jia W, Jin T, Xiao S, Chen W, Hang J, Ou C, Lei H, Qian H, Su B, Li J, Liu D, Zhang W, Xue P, Liu J, Weschler LB, Xie J, Li Y, Kang M. 2021. Evidence for lack of transmission by close contact and surface touch in a restaurant outbreak of COVID-19. J Infect 83(2):207–216. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.jinf.2021.05.030&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=34062182&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F08%2F29%2F2022.03.11.22271527.atom) 122.122.Naveca FG, Nascimento VA, Nascimento F, Ogrzewalska M, Pauvolid-Corrêa A, Araujo MF, Arantes I, Batista ÉLR, Magalhães ALÁ, Vinhal F, Mattos TP, Riediger I, do Carmo Debur M, Grinsztejn B, Veloso VG, Brasil P, Rodrigues RR, Rovaris DB, Fernandes SB, Fernandes C, Santos JHA, Abdalla LF, Costa-Filho R, Silva M, Souza V, Costa ÁA, Mejía M, Brandão MJ, Goncalves LF, Silva GA, de Jesus MS, Pessoa K, de Lima Guerra Corado A, Duarte DCG, Machado AB, de Azevedo Zukeram K, Valente N, Lopes RS, Pereira EC, Appolinario LR, Rocha AS, Tort LFL, Sekizuka T, Itokawa K, Hashino M, Kuroda M, Wallau GL, Delatorre E, Gräf T, Siqueira MM, Bello G, Resende PC. 2021. A case series of SARS-CoV-2 reinfections caused by the variant of concern Gamma in Brazil. medRxiv 2021.11.29.21266109 123.123.Hasanzadeh S, Shariatmaghani SS, Vakilian A, Javan A, Rahmani M, Ganjloo S, Jangi M, Amel Jamehdar S. 2021. Case series: Reinfection of recovered SARS CoV-2 patients for the third time. Clin Case Rep 9(10):e04936 124.124.Pulliam JRC, van Schalkwyk C, Govender N, von Gottberg A, Cohen C, Groome MJ, Dushoff J, Mlisana K, Moultrie H. 2021. Increased risk of SARS-CoV-2 reinfection associated with emergence of the Omicron variant in South Africa. medRxiv 2021.11.11.21266068 125.125.Vitale J, Mumoli N, Clerici P, De Paschale M, Evangelista I, Cei M, Mazzone A. 2021. Assessment of SARS-CoV-2 Reinfection 1 Year After Primary Infection in a Population in Lombardy, Italy. JAMA Intern Med e212959 126.126.Babiker A, Marvil CE, Waggoner JJ, Collins MH, Piantadosi A. 2020. The importance and challenges of identifying SARS-CoV-2 reinfections. J Clin Microbiol 59(4):e02769–20. 127.127.Boyton RJ, Altmann DM. 2021. Risk of SARS-CoV-2 reinfection after natural infection. Lancet 397(10280):1161–1163. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/S0140-6736(21)00662-0&link_type=DOI) 128.128.Hansen CH, Michlmayr D, Gubbels SM, Molbak K, Ethelberg S. 2021. Assessment of protection against reinfection with SARS-CoV-2 among 4 million PCR-tested individuals in Denmark in 2020: a population-level observational study. Lancet 397(10280):1204– 1212. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/S0140-6736(21)00575-4&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=33743221&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F08%2F29%2F2022.03.11.22271527.atom) 129.129.Gousseff M, Penot P, Gallay L, Batisse D, Benech N, Bouiller K, Collarino R, Conrad A, Slama D, Joseph C, Lemaignen A, Lescure FX, Levy B, Mahevas M, Pozzetto B, Vignier N, Wyplosz B, Salmon D, Goehringer F, Botelho-Nevers E; in behalf of the COCOREC study group. 2020. Clinical recurrences of COVID-19 symptoms after recovery: Viral relapse, reinfection or inflammatory rebound? J Infect 81(5):816–846. [PubMed](http://medrxiv.org/lookup/external-ref?access_num=32619697&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F08%2F29%2F2022.03.11.22271527.atom) 130.130.Lawandi A, Warner S, Sun J, Demirkale CY, Danner RL, Klompas M, Gundlapalli A, Datta D, Harris AM, Morris SB, Natarajan P, Kadri SS. 2021. Suspected SARS-CoV-2 Reinfections: Incidence, Predictors, and Healthcare Use among Patients at 238 U.S. Healthcare Facilities, June 1, 2020-February 28, 2021. Clin Infect Dis ciab671 131.131.Iwasaki A. 2020. What reinfections mean for COVID-19. Lancet Infect Dis 2(20):19–20. 132.132.Leidi A, Koegler F, Dumont R, Dubos R, Zaballa ME, Piumatti G, Coen M, Berner A, Darbellay Farhoumand P, Vetter P, Vuilleumier N, Kaiser L, Courvoisier D, Azman AS, Guessous I, Stringhini S; SEROCoV-POP study group. 2021. Risk of reinfection after seroconversion to SARS-CoV-2: A population-based propensity-score matched cohort study. Clin Infect Dis ciab495 133.133.Hall VJ, Foulkes S, Charlett A, Atti A, Monk EJM, Simmons R, Wellington E, Cole MJ, Saei A, Oguti B, Munro K, Wallace S, Kirwan PD, Shrotri M, Vusirikala A, Rokadiya S, Kall M, Zambon M, Ramsay M, Brooks T, Brown CS, Chand MA, Hopkins S; SIREN Study Group. 2021. SARS-CoV-2 infection rates of antibody-positive compared with antibodynegative health-care workers in England: a large, multicentre, prospective cohort study (SIREN). Lancet 397(10283):1459–1469. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/s0140-6736(21)00675-9&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F08%2F29%2F2022.03.11.22271527.atom) 134.134.Abu-Raddad LJ, Chemaitelly H, Malek JA, Ahmed AA, Mohamoud YA, Younuskunju S, Ayoub HH, Al Kanaani Z, Al Khal A, Al Kuwari E, Butt AA, Coyle P, Jeremijenko A, Kaleeckal AH, Latif AN, Shaik RM, Rahim HFA, Yassine HM, Al Kuwari MG, Al Romaihi HE, Al-Thani MH, Bertollini R. 2020. Assessment of the risk of SARS-CoV-2 reinfection in an intense reexposure setting. Clin Infect Dis ciaa1846 135.135.Ghorbani SS, Taherpour N, Bayat S, Ghajari H, Mohseni P, Hashemi Nazari SS. 2021. Epidemiologic characteristics of cases with re-infection, recurrence and hospital readmission due to COVID-19: a systematic review and meta-analysis. J Med Virol doi: 10.1002/jmv.27281 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1002/jmv.27281&link_type=DOI) 136.136.Santiago-Espinosa O, Prieto-Torres ME, Cabrera-Gaytán DA. 2021. Laboratory-confirmed SARS-CoV-2 reinfection in the population treated at social security. Respir Med Case Rep 34:101493. 137.137.Peghin M, Bouza E, Fabris M, De Martino M, Palese A, Bontempo G, Graziano E, Gerussi V, Bressan V, Sartor A, Isola M, Tascini C, Curcio F. 2021. Low risk of reinfections and relation with serological response after recovery from the first wave of COVID-19. Eur J Clin Microbiol Infect Dis 1–8. 138.138.Wilkins JT, Hirschhorn LR, Gray EL, Wallia A, Carnethon M, Zembower TR, Ho J, DeYoung BJ, Zhu A, Torvik LJR, Taiwo B, Evans CT. 2021. Serologic Status and SARS CoV-2 Infection over 6-Months of Follow-Up in Healthcare Workers in Chicago: A Cohort Study. Infect Control Hosp Epidemiol 1–29. 139.139.Ali AM, Ali KM, Fatah MH, Tawfeeq HM, Rostam HM. 2021. SARS-CoV-2 reinfection in patients negative for immunoglobulin G following recovery from COVID-19. New Microbes New Infect 43:100926. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.nmni.2021.100926&link_type=DOI) 140.140.Ringlander J, Olausson J, Nyström K, Härnqvist T, Jakobsson HE, Lindh M. 2021. Recurrent and persistent infection with SARS-CoV-2 - epidemiological data and case reports from Western Sweden, 2020. Infect Dis (Lond). 1–8 141.141.Dobaño C, Ramírez-Morros A, Alonso S, Vidal-Alaball J, Ruiz-Olalla G, Vidal M, Rubio R, Cascant E, Parras D, Rodrigo Melero N, Serra P, Carolis C, Santamaria P, Forcada A, Mendioroz J, Aguilar R, Moncunill G, Ruiz-Comellas A. 2021. Persistence and baseline determinants of seropositivity and reinfection rates in health care workers up to 12.5 months after COVID-19. BMC Med 19(1):155. 142.142.Sánchez-Montalvá A, Fernández-Naval C, Antón A, Durà X, Vimes A, Silgado A, Velásquez-Orozco F, Espinosa-Pereiro J, Salvador F, Pumarola T, Almirante B, Esperalba J. 2021. Risk of SARS-CoV-2 Infection in Previously Infected and Non-Infected Cohorts of Health Workers at High Risk of Exposure. J Clin Med 10(9):1968. 143.143.Lutrick K, Ellingson KD, Baccam Z, Rivers P, Beitel S, Parker J, Hollister J, Sun X, Gerald JK, Komatsu K, Kim E, LaFleur B, Grant L, Yoo YM, Kumar A, Mayo Lamberte J, Cowling BJ, Cobey S, Thornburg NJ, Meece JK, Kutty P, Nikolich-Zugich J, Thompson MG, Burgess JL. 2021. COVID-19 Infection, Reinfection, and Vaccine Effectiveness in a Prospective Cohort of Arizona Frontline/Essential Workers: The AZ HEROES Research Protocol. JMIR Res Protoc doi: 10.2196/28925 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.2196/28925&link_type=DOI) 144.144.Crellen T, Pi L, Davis EL, Pollington TM, Lucas TCD, Ayabina D, Borlase A, Toor J, Prem K, Medley GF, Klepac P, Déirdre Hollingsworth T. 2021. Dynamics of SARS-CoV-2 with waning immunity in the UK population. Philos Trans R Soc Lond B Biol Sci 376(1829):20200274 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1098/rstb.2020.0274&link_type=DOI) 145.145.Breathnach AS, Riley PA, Cotter MP, Houston AC, Habibi MS, Planche TD. 2021. Prior COVID-19 significantly reduces the risk of subsequent infection, but reinfections are seen after eight months. J Infect 82(4):e11–e12. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.jinf.2021.02.010&link_type=DOI) 146.146.O Murchu E, Byrne P, Carty PG, De Gascun C, Keogan M, O’Neill M, Harrington P, Ryan M. 2021. Quantifying the risk of SARS-CoV-2 reinfection over time. Rev Med Virol e2260 147.147.Leidi A, Koegler F, Dumont R, Dubos R, Zaballa ME, Piumatti G, Coen M, Berner A, Darbellay Farhoumand P, Vetter P, Vuilleumier N, Kaiser L, Courvoisier D, Azman AS, Guessous i, Stringhini S; SEROCoV-POP study group. 2021. Risk of reinfection after seroconversion to SARS-CoV-2: A population-based propensity-score matched cohort study. Clin Infect Dis ciab495. 148.148.Iruretagoyena M, Vial MR, Spencer-Sandino M, Gaete P, Peters A, Delgado I, Perez I, Calderon C, Porte L, Legarraga P, Anderson A, Aguilera X, Vial P, Weitzel T, Munita JM. 2021. Longitudinal assessment of SARS-CoV-2 IgG seroconversionamong front-line healthcare workers during the first wave of the Covid-19 pandemic at a tertiary-care hospital in Chile. BMC Infect Dis 21(1):478 149.149.Turner JS, Kim W, Kalaidina E, Goss CW, Rauseo AM, Schmitz AJ, Hansen L, Haile A, Klebert MK, Pusic I, O’Halloran JA, Presti RM, Ellebedy AH. 2021. SARS-CoV-2 infection induces long-lived bone marrow plasma cells in humans. Nature 595(7867):421– 425. [PubMed](http://medrxiv.org/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F08%2F29%2F2022.03.11.22271527.atom) 150.150.Qureshi AI, Baskett WI, Huang W, Lobanova I, Naqvi SH, Shyu CR. 2021. Re-infection with SARS-CoV-2 in Patients Undergoing Serial Laboratory Testing. Clin Infect Dis ciab345 151.151.Zare F, Teimouri M, Khosravi A, Rohani-Rasaf M, Chaman R, Hosseinzadeh A, Jamali Atergeleh H, Binesh E, Emamian MH. 2021. COVID-19 re-infection in Shahroud, Iran: a follow-up study. Epidemiol Infect 149:e159. 152.152.Fabiánová K, Kyncl J, Vlcková I, Jirincová H, Koštálová J, Liptáková M, Orlíková H, Šebestová H, Limberková R, Macková B, Malý M. 2021. COVID-19 reinfections. Epidemiol Mikrobiol Imunol 70(1):62–67. 153.153.Davido B, De Truchis P, Lawrence C, Annane D, Domart-Rancon M, Gault E, Saleh-Mghir A, Delarocque-Astagneau E, Gautier S. 2021. SARS-CoV-2 reinfections among hospital staff in the greater Paris area. J Travel Med 28(4):taab058. 154.154.Brouqui P, Colson P, Melenotte C, Houhamdi L, Bedotto M, Devaux C, Gautret P, Million M, Parola P, Stoupan D, La Scola B, Lagier JC, Raoult D. 2021. COVID-19 re-infection. Eur J Clin Invest 51(5):e13537 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1111/eci.13537&link_type=DOI) 155.155.Dimeglio C, Herin F, Miedougé M, Martin-Blondel G, Soulat JM, Izopet J. 2021. Protection of healthcare workers against SARS-CoV-2 reinfection. Clin Infect Dis ciab069. 156.156.Breathnach AS, Duncan CJA, Bouzidi KE, Hanrath AT, Payne BAI, Randell PA, Habibi MS, Riley PA, Planche TD, Busby JS, Sudhanva M, Pallett SJC, Kelleher WP. 2021. Prior COVID-19 protects against reinfection, even in the absence of detectable antibodies. J Infect 83(2):237–279. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.jinf.2021.03.025&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F08%2F29%2F2022.03.11.22271527.atom) 157.157.Rennert L, McMahan C. 2021. Risk of SARS-CoV-2 reinfection in a university student population. Clin Infect Dis ciab454 158.158.Abu-Raddad LJ, Chemaitelly H, Coyle P, Malek JA, Ahmed AA, Mohamoud YA, Younuskunju S, Ayoub HH, Al Kanaani Z, Al Kuwari E, Butt AA, Jeremijenko A, Kaleeckal AH, Latif AN, Shaik RM, Abdul Rahim HF, Nasrallah GK, Yassine HM, Al Kuwari MG, Al Romaihi HE, Al-Thani MH, Al Khal A, Bertollini R. 2021. SARS-CoV-2 antibody-positivity protects against reinfection for at least seven months with 95% efficacy. EClinicalMedicine 35:100861 159.159.Hanrath AT, Payne BAI, Duncan CJA. 2021. Prior SARS-CoV-2 infection is associated with protection against symptomatic reinfection. J Infect 82(4):e29– e30. [PubMed](http://medrxiv.org/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F08%2F29%2F2022.03.11.22271527.atom) 160.160.Lumley SF, O’Donnell D, Stoesser NE, Matthews PC, Howarth A, Hatch SB, Marsden BD, Cox S, James T, Warren F, Peck LJ, Ritter TG, de Toledo Z, Warren L, Axten D, Cornall RJ, Jones EY, Stuart DI, Screaton G, Ebner D, Hoosdally S, Chand M, Crook DW, O’Donnell AM, Conlon CP, Pouwels KB, Walker AS, Peto TEA, Hopkins S, Walker TM, Jeffery K, Eyre DW; Oxford University Hospitals Staff Testing Group. 2021. Antibody Status and Incidence of SARS-CoV-2 Infection in Health Care Workers. N Engl J Med 384(6):533–540. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1056/NEJMoa2034545&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F08%2F29%2F2022.03.11.22271527.atom) 161.161.Hamed E, Sedeeq S, Alnuaimi AS, Syed M, ElHamid MA, Alemrayat B, Mukhtar A, AlFehaidi A, A/Qotba H. 2021. Rates of recurrent positive SARS-CoV-2 swab results among patients attending primary care in Qatar. J Infect 82(4):84–123. [PubMed](http://medrxiv.org/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F08%2F29%2F2022.03.11.22271527.atom) 162.162.Addetia A, Crawford KHD, Dingens A, Zhu H, Roychoudhury P, Huang ML, Jerome KR, Bloom JD, Greninger AL. 2020. Neutralizing Antibodies Correlate with Protection from SARS-CoV-2 in Humans during a Fishery Vessel Outbreak with a High Attack Rate. J Clin Microbiol 58(11):e02107–20. 163.163.Mack CD, Tai C, Sikka R, Grad YH, Maragakis LL, Grubaugh ND, Anderson DJ, Ho D, Merson M, Samant RM, Fauver JR, Barrett J, Sims L, DiFiori J. 2021. SARS-CoV-2 Reinfection: A Case Series from a 12-Month Longitudinal Occupational Cohort. Clin Infect Dis ciab738 164.164.Abu-Raddad LJ, Chemaitelly H, Bertollini R; National Study Group for COVID-19 Epidemiology. 2021. Severity of SARS-CoV-2 Reinfections as Compared with Primary Infections. N Engl J Med NE-JMc2108120 165.165.Bean DJ, Monroe J, Turcinovic J, Moreau Y, Connor JH, Sagar M. 2021. SARS-CoV-2 reinfection associates with unstable housing and occurs in the presence of antibodies. Clin Infect Dis ciab940. 166.166.Mensah AA, Campbell H, Stowe J, Seghezzo G, Simmons R, Lacy J, Bukasa A, O’Boyle S, Ramsay ME, Brown K, Ladhani S. 2021. Risk of SARS-CoV-2 reinfections in children: prospective national surveillance, January 2020 to July 2021, England. medRxiv 2021.12.10.21267372 167.167.Levin-Rector A, Firestein L, McGibbon E, Sell J, Lim S, Lee EH, Weiss D, Geevarughese A, Zucker JR, Greene SK. 2021. Reduced Odds of SARS-CoV-2 Reinfection after Vaccination among New York City Adults, June–August 2021. medRxiv 2021.12.09.21267203 168.168.Malhotra S, Mani K, Lodha R, Bakhshi S, Mathur VP, Gupta P, Kedia S, Sankar J, Kumar P, Kumar A, Ahuja V, Sinha S, Guleria R; COVID Reinfection AIIMS Consortium, Dua A, Ahmad S, Sathiyamoorthy R, Sharma A, Sakya T, Gaur V, Chaudhary S, Sharma S, Madan D, Gupta A, Virmani S, Gupta A, Yadav N, Sachdeva S, Sharma S, Singh S, Pandey A, Singh M, Jhurani D, Sarkar S, Lokade AK, Mohammad A, Pandit S, Dubey R, Singh AK, Gohar N, Soni D, Bhattacharyya A, Rai S, Tummala S, Gupta I, Shukla S. 2022. SARS-CoV-2 Reinfection Rate and Estimated Effectiveness of the Inactivated Whole Virion Vaccine BBV152 Against Reinfection Among Health Care Workers in New Delhi, India. JAMA Netw Open 5(1):e2142210 169.169.Mao Y, Wang W, Ma J, Wu S, Sun F. 2021. Reinfection rates among patients previously infected by SARS-CoV-2: systematic review and meta-analysis. Chin Med J (Engl) 135(2):145–152. 170.170.Salehi-Vaziri M, Pouriayevali MH, Fotouhi F, Jalali T, Banifazl M, Farahmand B, Sadat Larijani M, Ahmadi Z, Fereydouni Z, Tavakoli M, Karami A, Azad-Manjiri S, Yektay Sanati P, Dahmardeh S, Nemati AH, Sajadi M, Kashanian S, Ramezani A. 2021. SARS-CoV-2 reinfection rate in Iranian COVID-19 cases within one-year follow-up. Microb Pathog 161(Pt B):105296 171.171.Mensah AA, Lacy J, Stowe J, Seghezzo G, Sachdeva R, Simmons R, Bukasa A, O’Boyle S, Andrews N, Ramsay M, Campbell H, Brown K. 2022. Disease severity during SARS-COV-2 reinfection: a nationwide study. J Infect S0163-4453(22)00010-X 172.172.McKeigue PM, McAllister DA, Robertson C, Stockton D, Colhoun HM, for the PHS COVID-19 Epidemiology and Research Cell. 2021. Reinfection with SARS-CoV-2: outcome, risk factors and vaccine efficacy in a Scottish cohort. medRxiv 2021.11.23.21266574 173.173.Maier HE, Balmaseda A, Ojeda S, Cerpas C, Sanchez N, Plazaola M, van Bakel H, Kubale J, Lopez R, Saborio S, Barilla C, PSP Study Group, Harris E, Kuan G, Gordon A. 2021. An immune correlate of SARS-CoV-2 infection and severity of reinfections. medRxiv 2021.11.23.21266767 174.174.Goldberg Y, Mandel M, Bar-On YM, Bodenheimer O, Freedman L, Ash N, Alroy-Preis S, Huppert A, Milo R. 2021. Protection and waning of natural and hybrid COVID-19 immunity. medRxiv 2021.12.04.21267114 175.175.Chivese T, Matizanadzo JT, Musa OAH, Hindy G, Furuya-Kanamori L, Islam N, Al-Shebly R, Shalaby R, Habibullah M, Al-Marwani T, Hourani RF, Nawaz AD, Haider MZ, Emara MM, Cyprian F, Doi SAR. 2021. The prevalence of adaptive immunity to COVID-19 and reinfection after recovery – a comprehensive systematic review and meta-analysis. medRxiv 2021.09.03.21263103 176.176.Shinde V, Bhikha S, Hoosain Z, Archary M, Bhorat Q, Fairlie L, Lalloo U, Masilela MSL, Moodley D, Hanley S, Fouche L, Louw C, Tameris M, Singh N, Goga A, Dheda K, Grobbelaar C, Kruger G, Carrim-Ganey N, Baillie V, de Oliveira T, Lombard Koen A, Lombaard JJ, Mngqibisa R, Bhorat AE, Benadé G, Lalloo N, Pitsi A, Vollgraaff PL, Luabeya A, Esmail A, Petrick FG, Oommen-Jose A, Foulkes S, Ahmed K, Thombrayil A, Fries L, Cloney-Clark S, Zhu M, Bennett C, Albert G, Faust E, Plested JS, Robertson A, Neal S, Cho I, Glenn GM, Dubovsky F, Madhi SA; 2019nCoV-501 Study Group. 2021. Efficacy of NVX-CoV2373 Covid-19 Vaccine against the B.1.351 Variant. N Engl J Med 384(20):1899–1909. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1056/nejmoa2103055&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F08%2F29%2F2022.03.11.22271527.atom) 177.177.Tegally H, Wilkinson E, Giovanetti M, Iranzadeh A, Fonseca V, Giandhari J, Doolabh D, Pillay S, San EJ, Msomi N, Mlisana K, von Gottberg A, Walaza S, Allam M, Ismail A, Mohale T, Glass AJ, Engelbrecht S, Van Zyl G, Preiser W, Petruccione F, Sigal A, Hardie D, Marais G, Hsiao NY, Korsman S, Davies MA, Tyers L, Mudau I, York D, Maslo C, Goedhals D, Abrahams S, Laguda-Akingba O, Alisoltani-Dehkordi A, Godzik A, Wibmer CK, Sewell BT, Lourenço J, Alcantara LCJ, Kosakovsky Pond SL, Weaver S, Martin D, Lessells RJ, Bhiman JN, Williamson C, de Oliveira T. 2021. Detection of a SARS-CoV-2 variant of concern in South Africa. Nature 592(7854):438–443. [PubMed](http://medrxiv.org/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F08%2F29%2F2022.03.11.22271527.atom) 178.178.Muik A, Lui BG, Wallisch AK, Bacher M, Mühl J, Reinholz J, Ozhelvaci O, Beckmann N, Güimil Garcia RC, Poran A, Shpyro S, Finlayson A, Cai H, Yang Q, Swanson KA, Türeci Ö, Sahin U. 2022. Neutralization of SARS-CoV-2 Omicron by BNT162b2 mRNA vaccine-elicited human sera. Science 375(6581):678–680 [PubMed](http://medrxiv.org/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F08%2F29%2F2022.03.11.22271527.atom) 179.179.Dejnirattisai W, Huo J, Zhou D, ZahradnÃk J, Supasa P, Liu C, Duyvesteyn HME, Ginn HM, Mentzer AJ, Tuekprakhon A, Nutalai R, Wang B, Dijokaite A, Khan S, Avinoam O, Bahar M, Skelly D, Adele S, Johnson SA, Amini A, Ritter TG, Mason C, Dold C, Pan D, Assadi S, Bellass A, Omo-Dare N, Koeckerling D, Flaxman A, Jenkin D, Aley PK, Voysey M, Costa Clemens SA, Naveca FG, Nascimento V, Nascimento F, Fernandes da Costa C, Resende PC, Pauvolid-Correa A, Siqueira MM, Baillie V, Serafin N, Kwatra G, Da Silva K, Madhi SA, Nunes MC, Malik T, Openshaw PJM, Baillie JK, Semple MG, Townsend AR, Huang KA, Tan TK, Carroll MW, Klenerman P, Barnes E, Dunachie SJ, Constantinides B, Webster H, Crook D, Pollard AJ, Lambe T; OP-TIC Consortium; ISARIC4C Consortium, Paterson NG, Williams MA, Hall DR, Fry EE, Mongkolsapaya J, Ren J, Schreiber G, Stuart DI, Screaton GR. 2022. SARS-CoV-2 Omicron-B.1.1.529 leads to widespread escape from neutralizing antibody responses. Cell 185(3):467-484.e15 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/J.CELL.2021.12.046&link_type=DOI) 180.180.Hui KPY, Ho JCW, Cheung MC, Ng KC, Ching RHH, Lai KL, Kam TT, Gu H, Sit KY, Hsin MKY, Au TWK, Poon LLM, Peiris M, Nicholls JM, Chan MCW. 2022. SARS-CoV-2 Omicron variant replication in human bronchus and lung ex vivo. Nature doi: 10.1038/s41586-022-04479-6. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1038/s41586-022-04479-6&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=35104836&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F08%2F29%2F2022.03.11.22271527.atom) 181.181.Meng B, Abdullahi A, Ferreira Iatm, Goonawardane N, Saito A, Kimura I, Yamasoba D, Gerber PP, Fatihi S, Rathore S, Zepeda SK, Papa G, Kemp SA, Ikeda T, Toyoda M, Tan TS, Kuramochi J, Mitsunaga S, Ueno T, Shirakawa K, Takaori-Kondo A, Brevini T, Mallery DL, Charles OJ; CITIID-NIHR BioResource COVID-Collaboration; Genotype to Phenotype Japan (GP-Japan) Consortium members; Ecuador-COVID19 Consortium, Bowen JE, Joshi A, Walls AC, Jackson L, Martin D, Smith KGC, Bradley J, Briggs JAG, Choi J, Madissoon E, Meyer K, Mlcochova P, Ceron-Gutierrez L, Doffinger R, Teichmann SA, Fisher AJ, Pizzuto MS, de Marco A, Corti D, Hosmillo M, Lee JH, James LC, Thukral L, Veesler D, Sigal A, Sampaziotis F, Goodfellow IG, Matheson NJ, Sato K, Gupta RK. 2022. Altered TMPRSS2 usage by SARS-CoV-2 Omicron impacts tropism and fusogenicity. Nature doi: 10.1038/s41586-022-04474-x. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1038/s41586-022-04474-x&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=35104837&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F08%2F29%2F2022.03.11.22271527.atom) 182.182.Altarawneh H, Chemaitelly H, Tang P, Hasan MR, Qassim S, Ayoub HH, AlMukdad S, Yassine HM, Benslimane FM, Al Khatib HA, Coyle P, Al Kanaani Z, Al Kuwari E, Jeremijenko A, Hassan Kaleeckal A, Nizar Latif A, Mohammad Shaik R, Abdul Rahim HF, Nasrallah GK, Al Kuwari MG, Butt AA, Al Romaihi HE, Al-Thani MH, Al Khal A, Bertollini R, Abu-Raddad LJ. 2022. Protection afforded by prior infection against SARS-CoV-2 reinfection with the Omicron variant. medRxiv 2022.01.05.22268782 183.183.Nunes MC, Sibanda S, Baillie VL, Kwatra G, Aguas R, Madhi SA, the Wits VIDA HCW Study Group. 2022. SARS-CoV-2 Omicron symptomatic infections in previously infected or vaccinated South African health-care workers. medRxiv 2022.02.04.22270480 184.184.Lyngse FP, Mortensen LH, Denwood MJ, Christiansen LE, Moller CH, Skov RL, Spiess K, Fomsgaard A, Lassaunière MM, Rasmussen M, Stegger M, Nielsen C, Sieber RN, Cohen AS, Moller FT, Overvad M, Molbak K, Krause TG, Kirkeby CT. 2021. SARS-CoV-2 Omicron VOC Transmission in Danish Households. medRxiv 2021.12.27.21268278 185.185.Lacy J, Mensah A, Simmons R, Andrews M, Siddiqui MR, Bukasa A, O’Boyle S, Campbell H, Brown K. 2022. Protective effect of a first SARS-CoV-2 infection from reinfection: a matched retrospective cohort study using PCR testing data in England. medRxiv 2022.01.10.22268896; 186.186.Rangachev A, Marinov GK, Mladenov M. 2021. The demographic and geographic impact of the COVID pandemic in Bulgaria and Eastern Europe in 2020. medRxiv 2021.04.06.21254958 187.187.Karlinsky A, Kobak D. 2021. Tracking excess mortality across countries during the COVID-19 pandemic with the World Mortality Dataset. Elife 10:e69336 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.7754/eLife.69336&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F08%2F29%2F2022.03.11.22271527.atom) 188.188.Shu Y, McCauley J. 2017. GISAID: Global initiative on sharing all influenza data - from vision to reality. Euro Surveill 22(13):30494 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.2807/1560-7917.ES.2017.22.13.30494&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=28382917&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F08%2F29%2F2022.03.11.22271527.atom) 189.189.Kraemer MUG, Hill V, Ruis C, Dellicour S, Bajaj S, McCrone JT, Baele G, Parag KV, Battle AL, Gutierrez B, Jackson B, Colquhoun R, O’Toole A, Klein B, Vespignani A; COVID-19 Genomics UK (COG-UK) Consortium, Volz E, Faria NR, Aanensen DM, Loman NJ, du Plessis L, Cauchemez S, Rambaut A, Scarpino SV, Pybus OG. 2021. Spatiotemporal invasion dynamics of SARS-CoV-2 lineage B.1.1.7 emergence. 2021. Science 373(6557):889–895 [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6Mzoic2NpIjtzOjU6InJlc2lkIjtzOjEyOiIzNzMvNjU1Ny84ODkiO3M6NDoiYXRvbSI7czo1MDoiL21lZHJ4aXYvZWFybHkvMjAyMi8wOC8yOS8yMDIyLjAzLjExLjIyMjcxNTI3LmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 190.190.Davies NG, Abbott S, Barnard RC, Jarvis CI, Kucharski AJ, Munday JD, Pearson CAB, Russell TW, Tully DC, Washburne AD, Wenseleers T, Gimma A, Waites W, Wong KLM, van Zandvoort K, Silverman JD; CMMID COVID-19 Working Group; COVID-19 Genomics UK (COG-UK) Consortium, Diaz-Ordaz K, Keogh R, Eggo RM, Funk S, Jit M, Atkins KE, Edmunds WJ. 2021. Estimated transmissibility and impact of SARS-CoV-2 lineage B.1.1.7 in England. Science 372(6538):eabg3055 [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6Mzoic2NpIjtzOjU6InJlc2lkIjtzOjE3OiIzNzIvNjUzOC9lYWJnMzA1NSI7czo0OiJhdG9tIjtzOjUwOiIvbWVkcnhpdi9lYXJseS8yMDIyLzA4LzI5LzIwMjIuMDMuMTEuMjIyNzE1MjcuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 191.191.Mlcochova P, Kemp SA, Dhar MS, Papa G, Meng B, Ferreira Iatm, Datir R, Collier DA, Albecka A, Singh S, Pandey R, Brown J, Zhou J, Goonawardane N, Mishra S, Whittaker C, Mellan T, Marwal R, Datta M, Sengupta S, Ponnusamy K, Radhakrishnan VS, Abdullahi A, Charles O, Chattopadhyay P, Devi P, Caputo D, Peacock T, Wattal C, Goel N, Satwik A, Vaishya R, Agarwal M; Indian SARS-CoV-2 Genomics Consortium (INSACOG); Genotype to Phenotype Japan (G2P-Japan) Consortium; CITIID-NIHR BioResource COVID-19 Collaboration, Mavousian A, Lee JH, Bassi J, Silacci-Fegni C, Saliba C, Pinto D, Irie T, Yoshida I, Hamilton WL, Sato K, Bhatt S, Flaxman S, James LC, Corti D, Piccoli L, Barclay WS, Rakshit P, Agrawal A, Gupta RK. 2021. SARS-CoV-2 B.1.617.2 Delta variant replication and immune evasion. Nature 599(7883):114–119. 192.192.Hightower AW, Orenstein WA, Martin SM. 1988. Recommendations for the use of Taylor series confidence intervals for estimates of vaccine efficacy. Bull World Health Organ 66(1):99–105. [PubMed](http://medrxiv.org/lookup/external-ref?access_num=3260147&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F08%2F29%2F2022.03.11.22271527.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=A1988N277000010&link_type=ISI) 193.193.Cohn BA, Cirillo PM, Murphy CC, Krigbaum NY, Wallace AW. 2022. SARS-CoV-2 vaccine protection and deaths among US veterans during 2021. Science 375(6578):331–336. [CrossRef](http://medrxiv.org/lookup/external-ref?access\_num=10.1126/SCIENCE.ABM0620/SUPPL\_FILE/SCIENCE.ABM0620\_MDAR_REPRODUCIBILITY_CHECKLIST.PDF&link_type=DOI) 194.194.Bar-On YM, Goldberg Y, Mandel M, Bodenheimer O, Freedman L, Alroy-Preis S, Ash N, Huppert A, Milo R. 2021. Protection against Covid-19 by BNT162b2 Booster across Age Groups. 2021. N Engl J Med 385(26):2421–2430. [PubMed](http://medrxiv.org/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F08%2F29%2F2022.03.11.22271527.atom) 195.195.Collier DA, Ferreira Iatm, Kotagiri P, Datir RP, Lim EY, Touizer E, Meng B, Abdullahi A; CITIID-NIHR BioResource COVID-19 Collaboration, Elmer A, Kingston N, Graves B, Le Gresley E, Caputo D, Bergamaschi L, Smith KGC, Bradley JR, Ceron-Gutierrez L, Cortes-Acevedo P, Barcenas-Morales G, Linterman MA, McCoy LE, Davis C, Thomson E, Lyons PA, McKinney E, Doffinger R, Wills M, Gupta RK. 2021. Age-related immune response heterogeneity to SARS-CoV-2 vaccine BNT162b2. Nature 596(7872):417–422. [PubMed](http://medrxiv.org/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2022%2F08%2F29%2F2022.03.11.22271527.atom)